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Integrated approach to analysis and veri�cation of

imperative programs∗

I. S. Anureev

Abstract. This paper describes a new approach to the analysis and veri�cation of
imperative programs, which allows us to integrate, unify and combine the methods
and techniques of analysis and veri�cation of imperative programs, accumulate and
use knowledge about them. A feature of the approach is to use the domain-speci�c
language Atoment, designed to develop tools for analysis and veri�cation of pro-
grams, which allows us to represent both methods and techniques of analysis and
veri�cation and data for them (program models, annotations, inference rules, etc.)
in a single uni�ed format. The paper includes an introduction to the language Ato-
ment, a description of a multilanguage system Spectrum of analysis and veri�cation
of programs, based on this language, and a methodology of applying this approach
to veri�cation of imperative programs by example of the C-light language.
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1. Introduction

Imperative programming languages such as C, C++, Java, C# play an im-
portant role in the software industry. Therefore, analysis and veri�cation of
programs in these languages is an actual problem in the theory and practice
of programming. Let us consider the most interesting projects in this area.

In the project of Sharma, Dhodapkar, Ramesh et al. (Bhabba Atomic
Research Centre, Indian Institute of Technology) [1], a deductive method for
detecting runtime errors in programs written in the industrially sponsored
safe subset of C called MISRA C was presented. The method is based on a
special model of C programs: each C program is modeled as a typed tran-
sition system encoded in the speci�cation language accepted by the PVS
theorem prover. Since the speci�cation is strongly typed, proof obligations
are generated, for possible type violations in each statement in C, when
loaded in the PVS theorem prover [2] which need to be discharged. The
technique does not require execution of the program to be analysed and is
capable of detecting runtime errors such as array bound errors, division by
zero, arithmetic over�ows and under�ows, etc. Based upon the method, a
tool was developed which converts MISRA C programs into PVS speci�ca-
tions automatically. The tool was used in checking runtime errors in several
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programs developed for real-time control applications. However, despite the
fact that the language of MISRA C is extremely limited (for example, unions,
pointer arithmetic, dynamic memory and recursion are forbidden), it has no
formal syntax de�nition. Therefore, input programs should be examined for
compliance with this standard. Also, the method is not a deductive veri�ca-
tion in a usual sense and is intended only for a search for some classes (see
above) of run-time errors.

The Verisoft project (University of Saarlandes, German Research Center
for Arti�cial Intelligence) [3] is an example of ad-hoc veri�cation project
oriented mainly to embedded systems. Veri�cation of the operating system
kernel for a simple but annotated processor is one of the goals of the project.
The C0 language, a simple subset of C, is used. Its semantics is modeled in
the theorem-proving system Isabelle/HOL [4]. Because of a weak expressive
power of the C0 language, the Assembler language is used in addition, which
complicates the veri�cation. However, the veri�ed libraries of string and list
processing were written in C0.

A promising approach to veri�cation of C-programs was proposed in the
project Why (France, INRIA) [5]. Why is a platform suitable for veri�-
cation of many imperative languages. It de�nes an intermediate language
of the same name to which programs of target programming languages are
translated. The purpose of translation is generation of veri�cation conditions
in a form that does not depend on the speci�c theorem-proving system. The
toolset Frama-C [6] was built on the basis of Why. It supports a static anal-
ysis of the full C language and deductive veri�cation for a limited subset
of C (the goto statements can not jump backward and inside blocks; func-
tion pointers, casting between integers and pointers, union, functions with
variable parameter lists, and computation over real numbers are forbidden.).
Also, a subset of the standard library, including the important functions
of memory and �les, was annotated using the speci�cation language ACSL
(ANSI/ISO C Speci�cation Language Home Page) [7]. The list of veri�ed
programs includes quite simple sorting and search programs.

In 1997, the University of Nijmegen started the LOOP project (Logic of
Object-Oriented Programming) [8]. It is oriented to automated veri�cation
of Java programs. Most of Java constructions, except for multi-threading
and nested classes, are supported. In fact, LOOP is a compiler written in
OCaml. Its input is a sequential Java program and its speci�cation in the
JML language (Java Modelling Language) [9, 10]. Its output is a set of �les in
the syntax of the theorem-proving system PVS which describe the meaning
of the program and its speci�cations. The algebraic approach is used to
de�ne the semantics of objects and classes. The system was successfully
applied to veri�cation of programs in the JavaCard language which is used
in the so-called smart cards. As a drawback, we note that the system works
e�ectively only for small programs.
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The project ESC/Java (Extended static checking for Java) [11, 12] is
another example of Java program veri�cation. It supports a broad sub-
set of Java. The key idea of the project is that the system ESC/Java is
aimed at �nding common errors in programs rather than at proving their
full functional correctness. This increases the power of automated proving
at the cost of skipping some errors. The system uses a simple language of
contracts, which is a subset of JML, as the speci�cation language. The se-
mantics is described by the weakest precondition calculus. Although this
approach is criticized for its incompleteness and inconsistency, the system is
recognized as impressive in deductive program veri�cation. The system has
also been used successfully for verifying JavaCard programs.

The Spec# programming system [13, 14] is a new attempt at a more
cost-e�ective way to develop and maintain high-quality software. It fully
integrates into the development environment Microsoft Visual Studio and
.NET Framework and thus provides the complete infrastructure, including
libraries, designing support, editing tools, etc. The system is oriented to
the Spec# language, which is an extension of the object-oriented language
C#. Spec# extends the type system to include non-null types and checked
exceptions. It provides contracts in the form of pre- and postconditions,
as well as object invariants. Speci�cations become a part of the program
execution and are checked dynamically. A special component of the Spec#
programming system, the Spec# static program veri�er Boogie [15], allows
static checking of speci�cations. It generates logical veri�cation conditions
from a Spec# program. Internally, it uses an automatic theorem prover that
analyzes the veri�cation conditions to prove correctness of the program or
�nd errors in it.

Analysis of the projects reviewed allows us to indicate a number of in-
herent disadvantages. First, their theories are often developed for a speci�c
rather limited class of problems or for a single programming language. On
the other hand, for a general-purpose system (eg. Why) quite simple ex-
amples of analysis and veri�cation are considered, which demonstrates the
limited power of the veri�cation methods used in these systems. Second,
in some projects little attention is paid to justi�cation of the methods cor-
rectness. Finally, the �closed� approach to development dominates in the
absolute majority of projects. The closeness in this context means that the
methods developed and implemented by participants (experts and program-
mers) of a project are black boxes for users of a corresponding veri�cation
system. Users have to wait for new versions of the system or adding new
methods in the current version. At the same time, the complexity of the
approaches used and the lack of documentation prevents analysis and modi-
�cation of the system by ordinary users even if the source code of the system
is accessible.

We propose a new approach to veri�cation of imperative programs which
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uni�es and integrates the methods and techniques of veri�cation of impera-
tive programs and allows us to overcome these shortcomings. The key idea
of the approach is the use of uni�ed models to describe programs (as well as
annotations, logical formulas, deduction rules, etc.) and a domain-speci�c
language (which is natural to both mathematicians and programmers) to de-
scribe the methods and techniques of analysis and veri�cation of programs.

The approach uses the executable speci�cation language Atoment [16,
17, 18] as a domain-speci�c language. It takes into account the speci�city of
this problem domain, namely:

• representation of data (programs, annotations, axioms, properties, in-
ference rules, etc.) in the form of trees;

• application of analysis and veri�cation methods to software models,
which are labeled ordered directed graphs, instead of their application
to original annotated program texts;

• a natural representation of many practical methods and techniques of
analysis and veri�cation (static analysis methods, methods based on
transformational, operational and axiomatic semantics, model-check-
ing techniques, automaton methods; bisimulation techniques) as con-
versions on these graphs;

• a complex conceptual structure of software systems and programming
languages, including hundreds of concepts.

The Atoment language also ensures the ful�lment of a number of method-
ological principles, which, in our opinion, one needs to follow when developing
the methods of analysis and veri�cation.

First, transition from program texts (annotations, axioms, inference
rules, etc.) to their models should satisfy the principle of structural iden-
tity. This means that each of the lexical and syntactic units of a text should
match exactly one unit of the model. Ful�lment of this principle allows us to
identify a text with its model, without proving the correctness of translation
of the text into its model.

Second, the translation should satisfy the principle of naturalness. This
means that the model should maintain the common terminology and nota-
tion. Ful�lment of this principle provides a comfortable conceptual environ-
ment for development of methods and techniques of analysis and veri�cation.

Third, the language should have a compact syntax and transparent se-
mantics. This allows us to not spend time learning the language itself, and
concentrate on developing the analysis and veri�cation methods.

The multilanguage system Spectrum of analysis and veri�cation of pro-
grams, based on this language, allows a user:

• to describe techniques of analysis and veri�cation in a natural notation,
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• to transfer these techniques from one programming language to another
(using model commonality),

• to analyze and verify algorithms in various object domains, adding (if
necessary) new languages to represent them,

• to share methods and techniques of analysis and veri�cation with other
users and combine them.

Drawing the user into the development of methods for analysis and veri�-
cation of its speci�c tasks should increase both the penetration of formal
methods into software development and the quality of analysis and veri�ca-
tion of programs. Bene�ts of a universal approach for teaching analysis and
veri�cation methods are also obvious.

The system Spectrum can be regarded both as a specialized develop-
ment environment for analysis and veri�cation tools and as an information
system which accumulates experience in this �eld in the form of knowledge
represented by Atoment speci�cations and provides access to them. In par-
ticular, the methods and techniques of analysis and veri�cation of imperative
programs are knowledge represented in this information system.

The paper has the following structure. In Section 2, a short review of
the Atoment language is given. In Section 3, the conceptual framework of
the extensible multilanguage analysis and veri�cation system Spectrum and
the speci�cation of its kernel in Atoment are considered. Section 4 describes
the methodology of application of our approach by the example of C-light
program veri�cation. In conclusion, the results of the paper are summarized
and plans for future research are outlined.

2. The Atoment language

This section describes the basic concepts of the Atoment language to the
extent necessary for understanding the examples of its use presented in the
following sections.

The Atoment language has a compact uni�ed syntax. All (both syntactic
and semantic) units of the language are represented by expressions that
are built of bricks of two types � atoms and elements (collectively called
atoments) � with a single expression constructor (...). Atoms are syntactic
bricks which have a syntactic representation. Elements are the semantic
bricks that have no syntactic representation. Formally, elements and atoms
are two disjoint sets Elem and At and expressions are the set Exp which are
de�ned as follows:

• if A is an atoment, then A is an expression;

• () is an (empty) expression;

• if A1, ..., An are slots, then (A1 ... An) is a (compound) expression.
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Slots are �places� for subexpressions. They de�ne semantics of subex-
pressions in the context of the expression. Let B be an expression. Four
types of slots (depending on their role in the expression) are distinguished:
value slots and attribute slots which have the same form B, type slots of the
form B@, and property slots of the form B@@. A value slot of the expression A

is called an attribute slot, if it is in an odd position of the expression which
is obtained from A by removing all type and property slots. The meaning of
these roles is explained below.

Expressions consisting only of value slots are called lists. They are similar
to the lists of the Lisp language.

The set of atoms At is de�ned as follows:

1. If A is a sequence of Unicode symbols and A does not contain whitespace
symbols, reserved symbols (, ), {, }, [, ], ", and the reserved symbol
sequence ′′′, then A is an atom.

2. If A is a sequence of Unicode symbols and A does not contain " and ′′′,
then "A" is an atom. It is called a string.

3. If A is a sequence of Unicode symbols and A does not contain ′′′, then
′′′A′′′ is an atom. It is called a text and used to insert texts written in
other languages.

The atoms of the �rst type, starting with @ or terminating with this symbol,
are used for special purposes (for example, to represent the type slots and
property slots).

Expressions can be interpreted both as data and as computable entities.
The �rst interpretation is used to represent the data (programs, annotations,
axioms, properties, inference rules, etc.) for veri�cation methods and the
second one to represent veri�cation methods themselves. Before describing
the semantics of (computation of) expressions, we introduce the concepts of
the state and the variable that de�ne the context of the computation.

A state s is a partial function from elements to expressions. Let St be
the set of all states. An element E is de�ned in the state s, if s(E) is de�ned.
The expression s(E) is called the value (or the content) of the element E.
If the expression s(E) contains an attribute slot B, then the expression B is
called an attribute of E. If a value slot V follows B, then V is called a value
of the attribute B of the element E in the state s. Let us note that, because
the attribute slot B can appear in the expression s(E) more than once, the
attribute B can have several values. If the expression s(E) contains a type
slot B@, then the expression B is called a type of the element E in the state s.
Similar to attributes, the element E can have more than one type, because
there also can be a few type slots in the expression s(E). If the expression
s(E) contains a slot B@@, then the expression B is called a property of E in
the state s. A slot U is called a slot of the element E in the state s, if U is a
slot of the expression s(E).
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A state has a natural graph interpretation and represents a labeled or-
dered directed graph. Each element represents a node of the graph, and
the slots of the expression, which is the value of this element in the current
state, represent labeled ordered arcs. The element is the tail of these arcs,
and subexpressions appearing in the slots are the heads of these arcs. The
labels of the arcs are the types of corresponding slots. The order of the arcs
is de�ned by the order of the slots of the expression. Thus, states allow us
to describe models, and expressions allow us to describe model conversions.

Any element E can be regarded as a concept. The content of the concept
E is the set of elements for which E@ is a slot. These elements are called
instances of the concept of E. For example, the element E with the value
(goto-statement@ label L) is an instance of the concept goto-statement,
which has the attribute label with the value L, i.e. E is a goto statement
with the label L. The concepts provide the means for categorizing units of
target languages (programming languages, annotation languages and so on).
Properties also provide the means for categorizing but they do not de�ne
new concepts.

Concepts and attributes are used to represent the conceptual (ontolog-
ical) framework for software systems and programming languages. For a
software system they describe its domain ontology, and for a programming
language they describe its categorial apparatus.

A variable meaning vv is a partial function from atoments to expres-
sions. Let VV be the set of all variable meanings. If vv(A) is de�ned, then
A is called a variable, and vv(A) is called the value of the variable A. Vari-
ables are used to store intermediate results of evaluation of expressions. We
extend the function vv to expressions in the following way: vv(U) is the
result of replacing all occurrences of variables de�ned by the meaning vv in
the expression U with their values; vv(U, V) is the result of replacing all
occurrences of variables, which are de�ned by the meaning vv and do not
belong to the set V, in the expression U with their values.

Evaluation of the expression E returns an expression which is called the
value of the expression E. Also, evaluation of an expression can change the
state. The result of evaluation of an expression depends on the current
state and the current variable meaning. Formally, the expression semantics
Sem is a function from triples (E, s, vv), where E is an expression to be
evaluated, s is the current state, vv is the current variable meaning, to the
set of triples (V, s′, vv′), where V is the value of the expression E in the
state s in the variable meaning vv, s′ and vv′ are the state and the variable
meaning resulting from evaluation of the expression E. The semantics of
simple expressions is determined by the rules:

• if A is an atoment and vv(A) is unde�ned or A is an empty expression,
then Sem(A, s, vv) = {(A, s, vv)};
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• if A is an atoment and vv(A) is de�ned, then Sem(A, s, vv) =

{(vv(A), s, vv)}.

The semantics of compound expressions is de�ned by semantic schemes.
A semantic scheme is an element with the value of the form (sem A var C

where B := D). The attribute sem de�nes the kind of expressions that sat-
isfy the scheme. The expression A, which is the value of this attribute, is
called a pattern of the scheme. The attribute var de�nes the variables of the
pattern A, and the attribute where de�nes restrictions on the values of these
variables. Variables are represented by atoments, and their values are repre-
sented by expressions. The expression C is either an atoment (representing
one variable), or a list of atoments (representing a set of variables).

An expression E is said to match the pattern A or satisfy the scheme if E
is obtained from A by replacing all occurrences of variables from C in A with
their values subject to the condition that these values satisfy the condition
B. In this case, the values of the pattern variables are substituted into the
expression D and the resulting expression D′ is evaluated. The result of
evaluating the target expression E is the result of evaluating the expression D′.
Semantic schemes for the library expressions with the prede�ned semantics
do not contain the body D. The body D can contain an expression (return

U). This expression terminates the evaluation of D with the value equal to
the value of U. The special case (return) is an abbreviation for (return

()). For example, the expression (one) satis�es the scheme (sem (one) :=

(return 1)) and the evaluation of this expression returns 1.

The expression (sem A var C where B := D), evaluated in the state s

in the variable meaning vv, adds a new semantic scheme with the value
(sem vv(A, V) var C where vv(B, V) := vv(D, V)), where V is a set of
pattern variables de�ned by the attribute var.

Denotation. Let us introduce some denotations which we use below.
Let A′, B′, A′2,... denote the results of evaluation of expressions A, B, A2,
... . In the case of several expressions, the expression that is lower in the
lexicographic order for letters and the numeric order for indexes is evaluated
before. For example, the expression A is evaluated before the expression B,
and the expression A1 is evaluated before the expression A2. Let s′ denote
the state obtained after the evaluation of these expressions.

3. Multilanguage system Spectrum of program analysis and

veri�cation

In this section we consider the conceptual framework of the extensible multi-
language analysis and veri�cation system Spectrum and the speci�cation of
its kernel in the Atoment language. The conceptual framework of the system
is presented in Figure 1.



Integrated approach to analysis and veri�cation of imperative programs 9

Figure 1. Conceptual framework of the Spectrum system

The logic of the system operation is based on the successive conversions
of models, among which are program models, annotation models, models of
logical formulas, models of deduction rules, etc.

The main cycle of operation of the system is sending a query to perform
a model conversion and obtaining a result of this conversion. The query
speci�es the applicable conversion and the model to which it applies. The
result of conversion of the model includes a model or a set of models (if
the model is converted to several models) and additional information. In
particular, this information can describe backward dependencies and the
conversion status.

Backward dependencies (the correspondence between units of the input
model and units of the output models) are used to adjust the result of suc-
cessive conversions to the initial formulation of the target task of analysis or
veri�cation.

The conversion status describes a logical connection between the input
model and the output model. For program models it can take the values
�preserves correctness�, �strengthens correctness�, �weakens correctness�. The
status �preserves correctness� means that the input model is correct if and
only if the output model is correct. The status �strengthens correctness�
means that if the output model is correct, then the input model is correct.
The status �weakens correctness� means that if the input model is correct,
then the output model is correct. For formula models it can take the values
�preserves validity� or �preserves satis�ability�.

Additionally, a user can send queries �to generate a model� and �to add
a conversion speci�cation�.

The query �to generate a model� speci�es the text in a target language
(a programming language, an annotation language, a language of inference
rules, etc.) which is converted to the model. The uni�ed format of the inter-
nal language of the system (the language of models) represented by Atoment
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expressions provides a multilanguage character of the system. To generate a
model, the system uses a repository of language adapters which translate the
text in the target language into its model. The result of the translation is a
model and additional information which, in particular, describes the back-
ward dependencies (correspondence between units of the target language and
units of the resulting model).

A special case of conversions is application of solvers to check formulas.
To translate a formula model into the format of a solver, a repository of solver
adapters is used. The result of the conversion in this case is a simpli�ed
formula (more properly, a model of the formula), the proof status (with the
values �true�, �false�, �unproven�) or a counterexample. The result can also
contain information about the process of proving (derivation tree, statistical
information).

The query �to add a conversion speci�cation� speci�es the conversion
speci�cation added. This speci�cation de�nes a set of conversions that be-
come available after executing the query by the system.

Thus, in the system Spectrum both models and their conversions are
speci�ed by Atoment expressions. Another important feature of the system
is that the kernel of the system is also an Atoment speci�cation that is
executed by the interpreter of the Atoment language. The system kernel
does not include the repository of language adapters and the repository of
solver adapters.

The expression that launches the system Spectrum has the form (include

"spectrum"). The library expression (include A) successively executes the
expressions from the �le with the name A as if these expressions were directly
fed to the Atoment interpreter from the command line. The �le spectrum

describes the set of prede�ned variables and functions of the system, de�ned
by variables and expressions of the Atoment language, respectively.

Since model conversions are Atoment expressions, a query to perform a
model conversion is reduced to the execution of the appropriate expression
by the interpreter of the Atoment language.

Conversion speci�cations are described by semantic schemes. The repos-
itory of conversion speci�cations is a set of �les with the extension cs (con-
version speci�cation). A query to add a conversion speci�cation has the form
(include "name.cs"), where name.cs is the name of the �le containing a
set of semantic schemes. These schemes de�ne expressions that serve as con-
versions. For example, the query (include "C-kernel VC generator.cs")

adds the speci�cation of the veri�cation condition generator for the C-kernel
language (see Section 4) to the set of accessible conversions of the system.
The single conversion of this speci�cation has the form (generateVC A),
where A is a list of Hoare triples. This expression returns the list of veri�ca-
tion conditions for Hoare triples from the list A.

A query to generate a model has the form (generate-model A lang
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B), where A is the name of the �le containing a text in an input lan-
guage, B is the name of the input language. For example, the expres-
sion (generate-model "sorting.c" lang c-kernel) generates a model
for the C-kernel program that is in the sorting.c, and the expression
(generate-model "safe-property.txt" lang mu) generates a model for
the formula in the language of µ-calculus that is in the �le
safe-property.txt.

In the case of conversion which applies a solver to check a formula, the
query has the form (check A solver B), where A is the model of the formula
to be checked, B is the solver used. For example, (check ((x + y) = z)

solver Z3) checks the formula ((x + y) = z) in the solver Z3.

4. Methodology of applying the integrated approach by the

example of the C-light language

In this section, we consider how to add a new programming language and the
methods and techniques of program veri�cation for it to the Spectrum system
by the example of the C-light language. To add a language L, it is required
to describe a model of L-programs in Atoment, implement L-adapter that
translates an (annotated) L-program into its model, and specify methods and
techniques of veri�cation of L-programs in Atoment. They together form an
L-component of the Spectrum system.

The C-light-component of the system includes the C-program model, C-
adapter and speci�cation of two-stage C-program veri�cation method [19, 20]
in Atoment. A two-stage method is applied to the representative subset C-
light of the C language. In the �rst stage, an annotated C-light program is
translated into the subset C-kernel of C-light [21, 22]. In the second stage,
veri�cation conditions for the resulting C-kernel program are generated based
on the C-kernel axiomatic semantics [20].

Let us consider the examples of translation of some C-light constructions
into their models in Atoment. Other C-light constructions are translated
into their models in a similar way.

The annotated while statement with the condition A, body B and in-
variant I corresponds to the element with the value (while-statement@

condition A body B inv I). Thus, this element is an instance of the con-
cept while-statement and has the attributes condition, body and inv,
which de�ne the condition A, body B and invariant I of the while statement,
respectively.

The if statement with the condition A, the then branch B and the else
branch C corresponds to the element with the value (if-statement@

condition A then B else C).
The break statement corresponds to the element with the value

(break-statement@), and the continue operator corresponds to the element
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with the value (continue-statement@).
The return statement with the expression A corresponds to the element

with the value (return-statement@ expression A), and the return state-
ment without the expression corresponds to the element with the value
(return-statement@).

The switch statement with the governing expression A and the body B

corresponds to the element with the value (switch-statement@ expression

A body B).
The block statement {A1 ... An} corresponds to the element with the

value (block-statement@ A1 ... An).
The expression statement A; corresponds to the element with the value

(expression-statement@ expression A).
C-light expressions can use the same translation scheme as C-light state-

ments. But to simplify a combination of expressions with formulas of the
annotation language in the rules of the C-kernel axiomatic semantics, we use
another translation scheme. In this scheme, C-light expressions are trans-
lated to the Atoment expressions that are structurally equivalent to them (up
to parentheses). For example, the C-light expression A + B * C is translated
to the Atoment expression (A + (B * C)).

It is important to note that the translation matches each construction of
an annotated program in a target programming language with exactly one
element in the Atoment language. Also, the translation preserves the termi-
nology of the target language. Thus, the translation satis�es the principles of
structural identity and naturalness. In addition, for each construction of the
target language, its model has a number of reserved properties (attributes).
In particular, these properties describe the position of the construction in the
program in the target language and are used for reverse mapping of elements
of the model to the corresponding constructions of the target program.

Models of programs in other programming languages are constructed in
a similar way on the basis of this technique.

Let us consider the speci�cation of the conversion which translates a C-
light program into a C-kernel program [21, 22] by the example of elimination
of the break statement. The conversion recursively analyses the statements
of the C-light program until it reaches a break statement. All occurrences
of this statement are replaced by goto statements in accordance with the
following rules:

switch(e){A break; B} -> {switch(e){A goto L; B} L:}

while(e){A break; B} -> {while(e){A goto L; B} L:}

Here A, B are program fragments, L is a label.
First of all we de�ne the concept label-place. It describes the place to

which the control is transferred if we met a break statement. The attribute
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statement of this concept points to the ... {A break; B} if we have not
met a break statement in A, and points to the block {... L:} otherwise.
The label L is de�ned by the attribute label of this concept.

The conversion is described by the expression (eliminate-break A

label-place LP) with the following semantics:

(sem (eliminate-break A label-place LP) var (A LP)

where (((A is statement) or (A = ())) and

(LP is label-place)) :=

(seq@

(if ((A is while-statement) or (A is switch-statement))

then (seq@

(eliminate-break (A . body)

label-place (new (label-place@ statement A)))

(return)))

(if (A is break-statement)

then

(seq@

(var@ Lab)

(if (LP . label)

then (Lab := (LP . label))

else // create a new block {... L:}

(seq@

(Lab := (new))

(var@ LabSt St St1)

(LabSt := (new (labelled-statement@ label Lab)))

(St := (LP . statement))

(St1 := (new))

(value St1 := (value St))

(value St := (block-statement@ St1 LabSt))))

(value A := (new (goto_statement@ label Lab)))

(return)))

(if (A is block-statement)

then

(seq@

(foreach X in A do (eliminate-break X label-place LP))

(return)))

(if (A is if-statement)

then

(seq@

(eliminate-break (A . then) label-place B)

(eliminate-break (A . else) label-place B)

(return)))
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... // other statements

(if (A = ()) then (return))))

The expressions (A1 and ... and An) and (A1 or ... or An) de�ne
the conjunction and disjunction of the expressions A′1, ..., A′n, respectively.
The false value is speci�ed by the empty expression (), and the true value
is speci�ed by any other expression.

The expression (A is B), if it is not rede�ned by semantic schemas for
speci�c values of A and B, returns true, if A′ is an instance of the concept
B′, and () otherwise.

The expression (seq@ A1 ... An) successively calculates the expres-
sions A1, ..., An and returns A′n.

The expression (if U then V else W) is similar to a usual conditional
statement. The condition U′ is false if and only if it returns the false value
().

The expression (U . V) returns the value of the attribute V′ for the
element U′.

The expression (U := V) sets the variable U to V′.
The expression (new U) evaluated in a state s generates a new element

E with the value U′, where U′ is the result of evaluation of subexpressions
of all slots of the expression U, and expands the domain of s on this ele-
ment (s′(E) = U′). In our case, this expression is used to create new labels
and new instances of the concepts label-place, labelled-statement, and
goto-statement. A special case (new) is an abbreviation for (new ()).

The expression (var@ U1 ... Un) declares the variables U1, ..., Un,
setting them to (). The existence domains of these variables are within the
nearest parentheses surrounding this expression.

The expression (value A := B) sets the element A′ to the value B′. The
expression (value A) evaluated in a state s returns the expression s(A′).

The expression (foreach X in Y do Z) goes over value slots of the ex-
pression s′(Y′) from left to right and for each of them evaluates the expression
obtained by replacing all occurrences of the atoment X in vv′(Z, {X}) by
this slot. Here (Y′, s′, vv′) is a result of evaluation of the expression Y.

Let us now consider the speci�cation of the veri�cation condition gener-
ator for the C-kernel language. We will describe the generic structure of the
generator and the speci�cation of the rule for the while statement. Rules for
other statements are described in a similar way. The generator implements
the forward strategy which is applied to the �rst operator S of the program
fragment S D of the Hoare triple {P}S D {Q}, where P and Q are pre- and
postconditions. The rule for the while statement in this case has the form:

P ⇒ Inv {Inv ∧B}C {Inv} {I ∧ not(B)}D {Q}
{P}S D {Q}

,
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where Inv is the invariant of the while statement S of the form while(B)C.
The generator is described by the expression (generateVC A), where A is

a list of Hoare triples. This expression returns a list of generated veri�cation
conditions for Hoare triples from the list A:

sem (generateVC A) var A where (A is (list Hoare-triple)) :=

(seq@

(if (A is empty-expression) then (return)

else

(seq@

(var@ HT FRAG S HT-pre HT-post)

(HT := (A . 1 right@@)) (FRAG := (HT . fragment))

(HT-pre := (HT . pre)) (HT-post := (HT . post))

(if (FRAG is empty-expression)

then (return (exp (HT-pre implies HT-post))))

(var@ S) (S := (FRAG . 1))

(// the rule for the while statement

if (S is while-statement)

then

(seq@

(var Inv B) (Inv := (S . inv)) (B := (S . condition))

(A +=

(new (Hoare-triple@ pre (exp (Inv and B))

fragment (S . body) post Inv))

(delete FRAG . 1)

(A +=

(new (Hoare-triple@ pre (exp (Inv and (not B)))

fragment FRAG post HT-post))))

(return (add (exp (HT-pre implies Inv))

to (generateVC A)))))

// rules for other statements

... )))

The concept Hoare-triple describes Hoare triples. Instances of this concept
have the obligatory attributes pre, post, and fragment. The attributes pre
and post match P and Q and de�ne pre- and postconditions, respectively.
The attribute fragment matches the program fragment S D.

Instances of the concept (list T) are lists of the instances of the con-
cept of T. The concept empty-expression has the only instance, the empty
expression ().

The expression (A . B right@@) returns the B′-th element of the list A′

counting from the end. The property rightmeans that elements are counted
from right to left.
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The expression (exp A) returns the expression vv(A) and does not
change the current state and the current variable meaning.

The expressions (A implies B), (A and B) and (not A) represent the
corresponding propositional formulas of the annotation language.

The expression (A += B) adds the expression B′ to the end of the list A′.
The expression (delete A . B) deletes the B′-th element from the list A′.
The expression (add A to B) adds the element A′ to the end of the list B′

and returns the resulting list.
In conclusion of this section, let us consider a typical user session. In this

session the user applies the two-stage method to a sorting program written
in C (for simplicity, we are restricted only to user queries):

> (include "spectrum")

> (var@ Model Hoare-Triple-list VC-list Result)

> (Model := (generate-model "sorting.c" lang c-light))

> (include "C-light to C-kernel translator.cs")

> (Model := (translate Model from C-light to C-kernel))

> (include "C-kernel VC generator.cs")

> (Hoare-Triple-list += Model)

> (VC-list := (generateVC Hoare-Triple-list))

> (foreach X in VC-list do (Result += (check X solver Z3)))

5. Conclusion

A modern trend in the �eld of program veri�cation is transition from the
development of veri�cation methods which are applied to small programs in
model languages to development of veri�cation methods which are applied
to big software systems in industrial programming languages. The tendency
is to pick out program properties which are important in practice and to
develop specialized methods of analysis and veri�cation for these cases. Uni-
�cation and formalization of descriptions of these properties and veri�cation
methods for them are an important open problem. The use of combinations
of veri�cation methods is also peculiar to industrial veri�cation. Develop-
ment of tools for accumulation, analysis and formalization of experience in
the �eld of integration of di�erent veri�cation methods is another important
open problem.

To solve these problems, the paper presents a new approach to analy-
sis and veri�cation of imperative programs, which allows us to integrate,
unify and combine the methods and techniques of analysis and veri�cation
of imperative programs, accumulate and use knowledge about them. The
components of this approach (the domain-speci�c language Atoment and
the extensible multilanguage system Spectrum of analysis and veri�cation of
programs) have been considered. The methodology of application of the ap-
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proach to veri�cation of imperative programs by the example of the C-light
language has been described.

We plan to apply this approach to development of

• program models of programming languages that are extensively used
in practice (Java, C/C++, C# and so on),

• formal executable speci�cations of these languages on the basis of op-
erational ontological approach [23],

• the methods of analysis and veri�cation of program models and soft-
ware systems.
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