
Bull. Nov. Comp.Center, Comp. Science, 31 (2010), 1–16
c© 2010 NCC Publisher

Introduction to the Atoment language∗

I. S. Anureev

Abstract. The Atoment language is a domain-specific language of development
for program verification methods. It is used in the multilanguage software system
Spectrum of rapid development and testing of verification methods. The easy-to-use
specialized language allows a user of the system to describe verification methods
in a natural notation, verify algorithms for different object domains adding new
languages for their representations as necessary, share verification methods with
other users and combine them. In this paper, an introduction to the Atoment
language including a description of its main entities and examples of their use are
given.

Keywords: program specification, program verification, domain specific lan-
guage, pattern matching, program model, information system

1. Introduction

A modern trend in the field of program verification is transition from the
development of verification methods which are applied to small programs in
model languages to development of verification methods which are applied
to big software systems in industrial programming languages. The tendency
is to pick out program properties which are important in practice and to
develop specialized methods of analysis and verification for these cases. Uni-
fication and formalization of descriptions of these properties and verification
methods for them are an important open problem. The use of combinations
of verification methods is also peculiar to industrial verification. Develop-
ment of tools for accumulation, analysis and formalization of experience in
the field of integration of different verification methods is another important
open problem.

The purpose of the project Spectrum is to develop a new approach to
program verification which allows us to integrate, unify and combine verifi-
cation methods, accumulate and use knowledge about them. A peculiarity
of the approach is the use of the domain-specific language Atoment [1, 2] for
development of program verification tools which allows us to represent both
verification methods and data for them (program models, annotations, logi-
cal formulas) in an unified format. The system Spectrum [3] which is based
on this language can be considered as both a specialized environment for
development of program verification tools and an information system which

∗Partially supported by RFBR under Grant 08-01-00899-а and Integration Project
RAN 2/12.

2 I. S. Anureev

accumulates knowledge in this field and provides access to it. In particu-
lar, program verification methods are knowledge represented in this system
in the Atoment language. At present author’s developments in the field
[4, 5, 6, 7, 8, 9, 10] are integrated into the system.

The paper has the following structure. In Section 2 the requirements to
a domain-specific language for development of program verification methods
are formulated and it is shown what components of the Atoment language
meet these requirements. The main semantic entities of the Atoment lan-
guage and examples of their use are presented in Sections 3–7. Syntactic
constructs of this language are described in Sections 8–9.

2. Requirements to the verification-oriented language

In this section we define the requirements that a domain-specific language
for development of program verification methods should meet. A sufficiently
large number of practical methods of program analysis and verification sat-
isfy the following scheme of use:

1. Get a verification method, a program in a target programming lan-
guage and an annotation that describes a program property to be an-
alyzed.

2. Translate the annotated program into a graph form.

3. Apply a graph transformation that implements the method.

4. Return an interpretation of the final graph.

Static analysis methods, operational and axiomatic semantics methods,
model checking methods, finite-state automaton methods, bisimulation
methods and transformation semantics methods are well suited to this
scheme.

Futher, a graph form of an annotated program or its (the graph form)
textual representation in the verification-oriented language (VOL) will call
a program model.

Translation of an annotated program into a program model must be one-
to-one to provide the correctness of translation on the syntactic level and
ease of handling of this program model. This requires a flexible syntax of
VOL.

A more detailed analysis of transformations shows that the following
tasks are often decided in these transformations: transformation combination
tasks (for instance, sequential combination), local graph pattern matching,
and local graph modification w.r.t. a pattern.

A local pattern matching on directed graphs is a task to check whether
a node matches a pattern or not. The pattern depends on ancestors and
descendants of the node of the specified depth. A local modification of a

Introduction to the Atoment language 3

graph w.r.t. a pattern is a task to modify a node of the graph (and may be
its descendants) in accordance with the pattern.

A modern programming language has a complex conceptual structure
including hundreds of concepts. Therefore specification of a method in VOL
should provide categorization of entities of the programming language, as
well as creation and deletion of instances of these categories (concepts).

Let us summarize the requirements that VOL should meet. It should

1) specify programs, annotations and other data in a graph form;

2) specify transformation combination tasks;

3) specify a local graph pattern matching;

4) specify a local graph modification w.r.t. a pattern;

5) have flexible syntax for one-to-one representation of target program-
ming languages;

6) categorize entities of target programming languages;

7) provide creation and deletion of instances of these categories.

The Atoment language meets all these requirements:

1) In this language, nodes of graphes are represented by atoments and
labelled directed arcs are represented by labelled and ordinal properties
(Section 3).

2) Transformation combination tasks are specified by contexts (Section 4),
execution schemes (Section 6) and imperative actions of the standard
library [2] of Atoment.

3) A local graph pattern matching is specified by search patterns (Sec-
tion 5).

4) A local graph modification w.r.t. a pattern is specified by modification
patterns (Section 5) and property declarations (Section 7).

5) Its flexible syntax is provided by different ways of building atoms from
the Unicode symbols (Section 8) and a hierarchical way of definition
of expressions (Section 9).

6) Categorization of entities of target programming languages is provided
by logical properties (Section 3).

7) Creation and deletion of instances of these categories are provided by
the logical property [potential] (Section 3).

4 I. S. Anureev

3. Atoments and properties

The Atoment language is based on the concepts of an atom, element and
property. The set of atoms and elements of the language forms the universe,
the elements of which are called atoments. Atoments play the roles of data
and actions. As an action, an atoment can be executed, it can change the
state of the universe and return a value. As a data, an atoment can be used
to represent a value returning an action and a data structure, the content of
which is defined by a map from properties to atoments. A total function st
from pairs (P, A), where P is a property and A is an atoment, to atoments
is called the state of the universe. The atoment st(P, A) is called the value
of P w.r.t. A in st. A special atom void is a sign whether an atoment has
a property. The atoment A has the property P, if st(P, A) 6= void. The
atoment A has not the property P, if st(P, A) = void. The atom void is
also used as a value returned by an action, if this value is not important.

Properties are divided into labelled, logic and ordinal.
The set of labelled properties coincides with the set of sequences of the

form {A1 ... An}, where Ai are atoments. In the case {A1}, where A1 is
not an integer, brackets can be omitted. The value of the labelled property
P of an atoment A is defined as st(P, A).

The set of all logic properties coincides with the set of sequences of the
form [A1 ... An], where Ai are atoments.

Let the action A.P ::= B change the current state st to the state st′,
where st′(P, A) = B for the pair (P, A) and st′(V) = st(V) for each other
pair V. The action A.P := B is similar to the action A.P ::= B except for
two cases:

• If A is an exception, then this action does nothing and returns A;

• If A is not an exception, and B is an exception, then this action does
nothing and returns B.

Exceptions are special kinds of elements that are considered in this section
below.

Example. Assume that A does not have the labelled property color
and logic property [traffic lights]. The action A.[traffic lights]
:= true adds the property [traffic lights] to A. The action A.color :=
green adds the property color to A and assigns green to it. The action
A.color := red changes the value of the property color from green to
red. The action A.color := void deletes the property color from A.

The set of ordinal properties coincides with the set of integers. Integers
are atoms. The value of the ordinal property P of an atoment A is defined
as st(P, A). The number of ordinal properties of an atoment is called its
length. An atoment must satisfy the continuity property: if i < j, A.i 6=
void, A.j 6= void, then A.k 6= void for each i < k < j. An atoment with

Introduction to the Atoment language 5

the ordinal properties from Min to Max is called a sequence from Min to Max.
The labelled properties left and right define different kinds of sequences.
A sequence A with the property left cannot have an ordinal property that
is less than A.left. A sequence A with the property right cannot have an
ordinal property that is greater than A.right. The action A.m := B for an
ordinal property m depends on the kind of the sequence A.

Example. Let A have the ordinal properties 1, 2, 3 with their values
1, 4, 9. Let A.left = 0 and A.right = void. The action A.0 := 0 adds
the property 0 to A and assigns 0 to it. The action A.-1 := 0 does nothing,
since A.left = 0. The action A.6 := 36 adds the properties 4, 5, 6 to A and
assigns null, null, 36 to them. A special atom null is used for filling holes
in the sequence A to preserve the continuity property. The action A.3 :=
void does nothing, since deletion of the property 3 violates the continuity
property. The action A.3 := 36 deletes the property 6 from A.

Let A, B be atoments, P be a property. Let A.P denote st(P, A). Let A =
(P1:B1 ... Pn:Bn [Q1] ... [Qm]) mean that A has ordinal and labelled
properties P1, ..., Pn with values B1, ..., Bn and logic properties [Q1], ..., [Qm]
and has no other properties.

The atoment A is called a parent of B w.r.t. P, if A.P = B. The atoment
A is called a parent of B, if A.P = B for some P. The atoment A is called a
child of B w.r.t. P, if B.P = A. The atoment A is called a child of B, if B.P
= A for some P. The atoment A is called an ancestor of B, if A.P = B or A.P
is an ancestor of B for some P. The atoment A is called an ancestor of B
w.r.t. P, if A.P = B or A.P is an ancestor of B w.r.t. P. The atoment A is
called a descendant of B, if B is an ancestor of A. The atoment A is called a
descendant of B w.r.t. P, if B is an ancestor of A w.r.t. P. The atoment A is
called a forefather of B, if A is an ancestor of B and A has no parents. The
atoment A is called a forefather of B w.r.t. P, if A is an ancestor of B w.r.t.
P and A has no parent w.r.t. P.

Note. Atoments can be parents (ancestors) of each other.
Elements are divided into actual and potential. The element A is called

potential if A has the property [potential]. The element A is called actual if
A has no property [potential]. The set of actual elements is called the ac-
tual universe. Potential elements cannot have properties except [potential]
and they cannot be executed. All actions over a state of the universe are
executed in the actual universe.

Potential elements can be added to an actual universe, and actual el-
ements can be deleted from it. Adding a potential element to the actual
universe is called generation of an (actual) element. Generation of an ele-
ment consists in a nondeterministic choice of a potential element and deletion
of the property [potential] from it. Deletion of an element consists in dele-
tion of all its properties and all properties of its parents that refer to it and
addition of the property [potential] to it.

6 I. S. Anureev

Let new:(A1:B1 ... An:Bn) mean to generate an element D with the
properties A1, ..., An with the values B1, ..., Bn and to return it, and new:()
mean to generate an element without properties and to return it.

An action returns either a pure value, or void, or an exception. The
atom void has a sign that the action does not return a pure value or an
exception. Exceptions are special kinds of elements. The atoment A is called
a pure value, if A 6= void and A is not an exception.

An exception is an element with the obligatory property exception and
the optional property value. The value of exception is the type of the
returned exception or its description. The value of value is usually an
action which returns this exception.

4. Contexts

Actions must be executed in execution contexts.
The execution context ct is an element with the obligatory property

[context] and the optional property value. Values returning by actions
which are executed in the context ct are stored in the property value. If
the action A returns the value V in ct, then ct.value := V. The atoment
ct.value is called a current value in ct. The context ct can have the
property parent. The value of this property is a context. The context
ct.parent is called a parent of ct. A context can inherit data and actions
of its parent. A context can contain elements: A ∈ ct iff A.context = ct.

Because the contexts are elements, they can be added to an actual uni-
verse (be generated) and be deleted from it. Generation of a context consists
in generation of an element and addition of the property [context] to it.
Deletion of a context consists in deletion of all elements belonging to it and
this context itself.

The access to an atoment can be performed by a special property uid.
The atom A.uid is called a unique identifier of A. If A and B have the property
uid and A 6= B, then A.uid 6= B.uid.

Note. The property uid is not obligatory.
Variables are a special kind of elements which must belong to contexts.

Variables are used to refer to atoments.
A variable is an element with obligatory properties [variable], context,

value and name. Let A be a variable. The element A.context is a context
to which A belongs. The atoment A.value is called the value of A. The value
of the variable A is an atoment to which A refers. The atoment A.name is
called the name of A. The name of a variable is used for access to its value.

A context can have the property [inheritvar]. If ct.[inheritvar] 6=
void, ct.parent 6= void, x is a variable of ct.parent, and a variable with
the name x.name does not belong to ct, then one can refer to the variable x
from ct by its name.

Introduction to the Atoment language 7

5. Search and modification patterns

Patterns are used to search for atoments which meet certain demands, gen-
erate and modify atoments. A sequence of atoms called pattern variables
can be associated with a pattern. Patterns are divided into search patterns
and modification patterns.

A search pattern defines a set of atoments which have certain properties
with certain values. An atoment E matches the search pattern, if E belongs
to this set. A search pattern is used to check whether an atoment matches it
and to extract the values of the properties of this atoment and its descendants
and store them in the pattern parameters in case of matching.

An atoment can have hidden properties which are not taken into account
when this atoment matches a pattern. The property [show] is a sign whether
matching takes into account the hidden properties. The hidden properties
are taken into account iff the pattern has this property.

Example. The pattern ([figure]) defines atoments that have the prop-
erty [figure].

Example. The pattern ([figure] ˜[triangle]) defines atoments that
have the property [figure] and do not have the property [triangle].

Example. The pattern ([figure] length:5) defines atoments that
have the logic property [figure] and the labelled property length with the
value 5.

Example. The pattern (1:a1 ... n:an) defines atoments that have
the properties 1, ..., n with the values a1, ..., an.

The pattern (1:x1 ... n:xn) with the parameters x1, ..., xn defines
atoments that have the properties 1, ..., n. The values of these properties
are assigned to the parameters x1, ..., xn.

Example. The pattern ([figure] length:x ˜width) with the param-
eter x defines atoments that have the logic property [figure], labelled prop-
erty length and do not have the labelled property width. The value of the
property length is assigned to the parameter x.

Example. The pattern if:x then:y else:z defines a set of if state-
ments. Matching an if statement E this pattern assigns the values of E.if,
E.then, E.else to the pattern parameters x, y, z.

Example. Let E = (1:1 2:2 3:3 4:4 5:5). The pattern (2#4:x)
(-3#1:y) (7#10:z) assigns a new element new:(2:2 3:3 4:4) to the pa-
rameter x, a new element new:(1:1) to the parameter y and a new element
new:() with the empty set of properties to the parameter z.

A modification pattern is applied to an atoment and defines the following
transformations:

• addition of properties to the atoment and its descendants;

• deletion of properties of the atoment and its descendants;

8 I. S. Anureev

• change of values of properties of the atoment and its descendants.

A modification pattern is also used to generate elements with definite
properties. In this case, new elements with an empty set of properties are
generated and then they are modified w.r.t. the modification pattern.

Example. The action modify:E match:([figure] length:5 ˜width)
is equivalent to the action E.[figure] := true; E.length := 5; E.width
:= void.

Example. The action modify:E match:(B:(C:3)) is equivalent to the
action E.B.C := 3.

Example. The action modify:E match:(B:(C:3) [new]) is equivalent
to the action x := new:(C:3); E.B := x.

Example. The action modify:E match:(inslab:A inslog:B
insright:C inslabn:D) adds the labelled properties of A, the logic proper-
ties of B, the ordinal properties of C and the labelled properties of D to E.
The ordinal properties of C are added right from the ordinal properties of E.
The values of the labelled properties of A change the values of the labelled
properties of E. A labelled property of D is added to E only if E does not
have this property. Let E = (u:1 v:2 w:3 [c] 1:1 2:2), A = (u:2 a:3),
B = ([b]), C = (1:3 2:4) and D = (v:5 r:6). Then E′ = u:2 v:2 w:3
a:3 r:6 [c] [b] 1:1 2:2 3:3 4:4), where E′ is the result of modification
of E.

Example. The action modify:E match:(del:lab del:log) deletes all
labelled and logic properties of E.

6. Execution schemes

Execution of atoments (actions) is described by execution schemes. An exe-
cution scheme defines a set of atoments and a way of execution of atoments
from this set. An atoment satisfies this scheme if it belongs to this set.

Note. An atoment can satisfy several execution schemes.
An execution scheme is an element with the obligatory properties

ifpattern and context and the optional properties where, whereafter,
var, id, [macro] and then such that an element new:(match:P var:
S.ifpattern where:S.where), where P is the result of addition of the prop-
erty [!] to S.ifpattern, is a conditional search pattern. The property [!]
means that the matched element must have the properties defined by the
pattern and no other properties. An execution scheme must belong to the
context defined by the property context.

Let S be an execution scheme, CSP be a conditional search pattern for S.
The atoment S.id is called an identifier of S. It is used to refer to S. The

properties ifpattern, where, whereafter and var are used to check whether
an atoment satisfies S. The parameters of CSP specified by the property var

Introduction to the Atoment language 9

are called the parameters of S. They are used to store the values of the
properties of atoments which satisfy S.

The parameters of S are divided into executed and non-executed, and
their values are divided into preliminary and final.

The sequence of the preliminary values of the parameters is the result
of matching an atoment E and CSP. The final values of executed parameters
are the results of execution of preliminary values of these parameters. The
final values of non-executed parameters are the preliminary values of these
parameters. The executed parameter is defined in S.var as the value of the
property exec.

The properties where and whereafter define restrictions on the prelim-
inary and final values of parameters of S, respectively.

Matching an atoment and a scheme in a context ct returns either void
that means "matching is impossible", or the list of matched values of pa-
rameters of the scheme.

The properties where, whereafter and var can be absent. The absence
of the properties where and whereafter means that there are no restrictions
on the preliminary and final values of parameters of S, respectively. The
absence of the property var means that S has no parameters.

Schemes are divided into defined and predefined. The defined schemes
are schemes that have the property then. The properties then and [macro]
define the way of execution of atoments that satisfy the scheme. The pre-
defined schemes do not have the property then. The way of execution of
atoments that satisfy these schemes is defined externally.

If an atoment is a name of a variable that is accessible in the current
context, then execution of the atoment returns the value of this variable.
Otherwise, execution of an atoment in a current context consists in a choice
of an execution scheme that the action matches, execution of the body of the
scheme for matched values of its parameters in a new local context which is a
parent of the current context, and returning the result to the current context.
If there is no scheme that the action matches, then execution returns this
atoment itself. The property [macro] allows us to describe macros, mixing
variables of the current and local contexts.

Example.

ifpattern:f(x) [macro] var:$x then:(z := 5; eval:x);
z := 0;
f(z:=z+1)

Here x is the executed parameter of the pattern ifpattern:f(x) var:$x,
since x has the prefix $. The action f(z:=z+1) in the context ct is equivalent
to the action z := 5; z:=z+1 in a new context ct′, and the action z:=5
being executed in ct′ and the action z:=z+1 being executed in ct. The action

10 I. S. Anureev

eval:x from the standard library [2] of the Atoment language executes an
atoment that is the value of the action x.

7. Property declarations

There is a special kind of properties called functional properties. Functional
properties are defined by property declarations.

Property declarations are used to redefine the base operations for a con-
crete property: assign a value to the property, get the value of the property,
delete the property, check whether an atoment has the property. In addi-
tion, a property declaration defines a set of atoments, to which the redefined
operations are applicable.

An atoment A is called a property declaration, if it has the obligatory
property prop and optional properties var, set, get, where and [readonly].
The atoment A.prop defines a property P for which the base operations
are specialized. The atoment A.var defines the parameters for the base
operations and has the form (A B). The atoments A.set and A.get define
the base operations: assign a value B to the property P of the form A.P
:= B and get the value of the property P of the form A.P. The atoment
A.where defines a set of atoments, to which the base operations specified by
the properties set and get are applicable. The logic property [readonly]
means that the value of the property P does not change.

The base operation of deletion of the property P is expressed by A.P :=
void, and the base operation of checking whether the atoment A has the
property P is expressed by A.P 6=void.

Example. Let us define the property stack in the following way:

(prop:stack var:(A B) where:(A.[stack])
set:
(if:(B = void)
then:
(if:(A.max != void)
then:(x := A.max; A.max := x - 1; A.x := void))

else:
(if:(A.max = void)
then:(A.max := 0; A.0 := B)
else:(x := A.max + 1; A.max := x; A.x := B))

get:(if:(A.max != void) then:(x := A.max; return(A.x))

This property implements a stack on the sequence from 0 to +∞. The
property max defines the number of the up element of the stack, and the
ordinal properties 0, ..., max define the elements of the stack. An example of
creation, use and deletion of a stack is described below.

Introduction to the Atoment language 11

A.[stack] := true; // A = ([stack])
A.stack := 0; // A = ([stack] max:0 0:0)
A.stack; // returns 0
A.stack := 1; // A = ([stack] max:1 0:0 1:1)
A.stack; // returns 1
A.stack := void; // A = ([stack] max:0 0:0)
A.stack; // returns 0
A.stack := void; // A = ([stack])
A.stack; // returns void
A.stack := void; // A = ([stack])
A.stack; // returns void
A.[stack] := void; // A = ()
A.stack // returns void

8. Atoms and properties

Constructs of the Atoment language are built from the Unicode symbols.
Three groups of Unicode symbols play a special role. These are white spaces,
special symbols and brackets. A white space is defined as any character
with the Unicode class Zs (which includes the space character), as well as
the horizontal tab character, the vertical tab character, and the form feed
character. The set of special symbols includes

" ~ ‘ @ # $ % ^ & * - + : ; ′ . < > / , | \ = ? !

The set of brackets includes

() { } []

Constructs of the language include atoms, properties and expressions.
A sequence of the Unicode symbols is called an atom, if it has one of the

forms:

1) a sequence of the Unicode symbols, where each occurence of a bracket,
a white space, or a special symbol precedes the symbol \;

2) the symbol : or a sequence of special symbols, except " and \, that is
not ended by the symbol :;

3) A"B"CB", where A is a (maybe empty) sequence of the Unicode symbols
of the form (1), B is a nonempty sequence of the Unicode symbols that
does not contain the symbol ", C is a sequence of the Unicode symbols
that does not contain B" as a subsequence;

4) A""C", where A is a (maybe empty) sequence of the Unicode symbols
of the form (1), C is a sequence of the Unicode symbols, where each
occurence of the symbol " precedes the symbol \;

12 I. S. Anureev

5) an integer;

6) a real number;

7) {A1 ... An} or ’{A1 ... An}, where Ai are atoms of the form (1)-
(6);

8) [A1 ... An] or ’[A1 ... An], where Ai are atoms of the form (1)-
(6);

9) ’A, where A is an atom of the form (1)-(4).

Example. Let us consider different kinds of atoms used to define lexical
constructs of the C language. Atoms of the form с"’"B" or сL"’"B", (here B
is a sequence of special symbols and representable symbols of the C language
except ’, \ and new line) represent symbol constants of the C language.

Atoms of the form s""B" or sL"B", where B is a sequence of special
symbols and representable symbols of the C language except ", \ and new
line, represent string constants of the C language.

Atoms of the form сom"d"Bd", where B is any sequence of Unicode sym-
bols that does not contain the subsequence d", represent comments of the C
language.

Atoms have predefined properties that can be used in the search and
modification patterns and the operations ., ::= and :=. The set of predefined
properties depends on the kind of atoms.

Atoms of all kinds have the logic property [atom].
Let E be an atom of the form (1) represented by a sequence of the length

n. Then E has the logic property [pure atom], the labelled property length
with the value n and the ordinal properties 1, ..., n, the values of which are
the corresponding symbols of this sequence.

Example. The atom if matches the pattern ([pure atom] 1:i 2:f).
The action modify:if match:(1:o) replaces if by of.

Let E be an atom of the form (2) represented by a sequence of length
n. Then E has the logic property [special atom], the labelled property
length with the value n and the ordinal properties 1, ..., n, the values of
which are the corresponding symbols of this sequence.

Let E be an atom of the form (3). Then E has the logic property [text
atom], the labelled properties type, delimiter and text with the values
A, B′ and C′, where B′ and C′ are atoms of the form (1) that are the result
of replacement of each occurence of a bracket, a white space, or a special
symbol S in B and C by \S.

Example. The action new:([text atom] delimiter:\’ text:A) gen-
erates the atom "’"A’".

Example. The action

new:([text atom] type:MultilineComment delimiter:**

Introduction to the Atoment language 13

text:This\ is\ a\ multiline\ comment\,
that\ does\ not\ contain\ the\ sequence\ of\ symbols\ **.)

generates the atom

MultilineComment"**"This is a multiline comment
that does not contain the sequence of symbols **".

Let E be an atom of the form (4). Then E has the logic property [string
atom], the labelled properties type and text with the values A and C′, where
C′ is an atom of the form (1) that is the result of replacement of each oc-
curence of a bracket, a white space, or a special symbol S in C by \S.

Example. The action new:([string atom] text:green) generates the
atom ""green".

Example. The action new:([string atom] type:color text:green)
generates the atom color""green".

Let E be a sequence of the form (5) represented by a sequence of digits
of length n possibly with a sign. Then E has the obligatory logic property
[integer], the optional logic property [-] meaning that E has a sign, the
labelled property length with the value n and the ordinal properties 1, ...,
n, the values of which are the corresponding digits in the representation of
E.

Let E be an atom of the form (6). Then E has the obligatory logic property
[real], the optional logic property [-] meaning that E has a sign, and the
labelled properties int, frac and order, the values of which are atoms of the
form (5) representing integer, fractional and order parts of the real number.

Example. The atom 10.12E-15 matches the pattern ({˜[-] int:10
frac:12 order:-15}).

Let E be an atom of the form (7) represented by a sequence of length n.
Then E has the logic property [labelled property], the labelled property
length with the value n and the ordinal properties 1, ..., n, the values of
which are the corresponding atoms of the form (1)-(6).

Let E be an atom of the form (8) represented by a sequence of length
n. Then E has the logic property [logic property], the labelled property
length with the value n and the ordinal properties 1, ..., n, the values of
which are the corresponding atoms of the form (1)-(6).

An atom of the form ’A has the same properties that the atom A has and
has an additional logic property [hidden].

Atoms of the forms (1)-(4) and (6) have the additional logic property
[labelled property]. Atoms of the form (5) has the additional logic prop-
erty [ordinal property].

Thus properties are atoms of a special kind. Hidden properties have one
of the forms: (9), ’{A1 ... An} or ’[A1 ... An]. Thus only labelled and
logic properties can be hidden.

14 I. S. Anureev

9. Expressions

Expressions represent atoments. For each kind of expressions there is an
algorithm of translating them to atoments. According to the translation
way, expressions are divided into expressions of order 0, expresions of order
1, and so on. Expressions of order 0 are directly traslated to atoments.
Expressions of order k, where k>0, are translated to expressions of orders
less than k.

Note. Algorithms of translation can be nondeterministic.
An expression of order 0 has one of the forms:

1) an atom or ();
2) a logic property;
3) N:B, where N is a labelled or ordinal property, B is an expression of the

form 1 or 4;
4) (A1 ... An), where Ai are expressions of the form 2 or 3.

Let us consider translation of expressions of order 0.
Example. The expression (1:red 2:yellow 3:green) defines an ele-

ment with the ordinal properties 1, 2 and 3 with the values red, yellow and
green.

Example. The expression ([traffic light] colour:green) defines
an element with the logic property [traffic light] and the labelled prop-
erty colour with the value green.

Example. The expression (1:a 2:(3:b) 3:c) defines an element with
the ordinal properties 1, 2 and 3 with the values a, E and c, where D is an
element with the property 3 with the value b.

Expressions of higher orders provide more flexible and easy-to-use syntax
in comparison with expressions of order 0. Let us consider the main kinds
of these expressions.

List expressions have one of the forms:

1. an atom or ();
2. a logic property;
3. N:B, where N is a labelled or ordinal property, B is a list expression of

the form 1 or 4;
4. (A1 ... An), where Ai are list expressions.

They allow us to use the list notation, omitting ordinal properties.
Example. The list expression (red yellow green) is reduced to the

expression (1:red 2:yellow 3:green).
Prefix expressions F(X1, ..., Xn) are translated to expressions

(applyfun:F 1:X1 ... n:Xn). They allow us to write expressions in the
prefix form.

Introduction to the Atoment language 15

Example. The prefix expression sin(x) is reduced to the expression
(applyfun:sin 1:x).

The ambiguity between one-place prefix expressions and list expressions
is resolved depending on the presence of a white space before the bracket:

• (a (b)) is translated to (1:a (1:b));

• (a(b)) is translated to (1:(applyfun:a 1:b)).

Infix expressions (A1 op ... op An) are translated to (applyfun:x
1:A1 ... n:An). Infix expressions allow us to write binary operations in
the infix form and use associativity of operations. Binary operations are
divided into predefined (in the standard library of the Atoment language)
and defined (by execution schemes). The execution scheme for the binary
operation op has the pattern A op B with parameters A and B. Associativity
of the operation is defined by the property [assoc] of this scheme.

Binary operations have the priority that defines the order of their appli-
cation.

Example. The expression (x+y*z) is translated to the expression
(applyfun:+ 1:x 2:(applyfun:* 1:y 2:z)), since the priority of * is
greater than the priority of +.

Other kinds of expressions are defined in the standard library [2] of the
Atoment language.

Execution of an expression consists of translation of the expression to
an atoment and execution of this atoment. The auxiliary context is used to
store the results of traslation. This context is deleted, when execution of the
expression is terminated.

10. Conclusion

In this paper, we formulate the requirements that a domain-specific language
for development of program verification methods should meet and present
the verification-oriented language Atoment that meet all these requirements.
The main entities of this language are described and examples of their use
are given. We plan to use the Atoment language in the verification system
Spectrum for development of program models of programming languages
that are extensively used in practice (Java, C/C++, C# and so on), formal
executable specifications of these languages on the basis of operational on-
tological approach [11], and the methods of specification and verification of
program models and software systems.

References

[1] Anureev I.S. The Atoment Language: Syntax and Semantics. – Novosibirsk,
2010. – 47 p. – (Rep./RAS. Sib. branch. IIS; N 157) (in Russian).

16 I. S. Anureev

[2] Anureev I.S. The Atoment Language: Standard Library. – Novosibirsk, 2010.
– 47 p. – (Rep./RAS. Sib. branch. IIS; N 158) (in Russian).

[3] Nepomniashy V.A., Anureev I.S., Atuchin M.M., Maryasov I.V., Petrov A.A.,
Promsky A.V. C program verification in the multilanguage system Spectrum
// Modelling and Analysis of Information Systems. – 2010. – N 4. – (to appear,
in Russian).

[4] Shilov N.V., Anureev I.S., Bodin E.V. Generation of correctness conditions for
imperative programs // Programming and Computer Software. – 2008. – N 6.
– P. 307–321.

[5] Nepomniaschy V. A., Anureev I.S., Mikhailov I.N., Promsky A.V. Towards
verification of C programs: C-Light language and its formal semantics // Pro-
gramming and Computer Software. – 2002. – N 6. – P. 314–323.

[6] Nepomniaschy V. A., Anureev I.S., Promsky A.V. Towards verification of C
programs: axiomatic semantics of the C-kernel Language // Programming and
Computer Software. – 2003. – N 6. – P. 338–350.

[7] Nepomniaschy V. A., Anureev I.S., Dubranovsky I.V., Promsky A.V. Towards
verification of C# programs: A three-level approach // Programming and
Computer Software. – 2006. – N 4. – P. 190–202.

[8] Anureev I.S. A three-stage method of C program verification // Joint
NCC&IIS Bulletin. Ser. Comput. Sci. – 2008. – Vol. 28 – P. 1–30.

[9] Anureev I.S., Maryasov I.V., Nepomnyaschy V.A. C-programs verification on
basis of mixed axiomatic semantics // Modelling and analysis of information
systems. – 2010. – N 3. – P. 1–23 (in Russian).

[10] Anureev I.S. Data structure elimination method based on formula rewriting
systems // Programming and Computer Software. – 1999. – N 4. – P. 5–15.

[11] Anureev I.S. Operational ontological approach to formal programming lan-
guage specification // Programming and Computer Software. – 2009. – N 1. –
P. 35–42.

