
Bull. Nov. Comp.Center, Comp. Science, 40 (2016), 53–74
c⃝ 2016 NCC Publisher

An approach to context-dependent lexical and
syntactic ambiguity resolution in ontology

population∗

N.O. Garanina, E.A. Sidorova

Abstract. We suggest an approach to the resolution of context-dependent lexical
and syntactic ambiguity in a framework of ontology population from natural lan-
guage texts. We show that a set of maximally determined ontology instances can
be represented as a Scott information system with an entailment relation as a col-
lection of information connections. Moreover, consistent primary lexical instances
form FCA-concepts. These representations are used to justify the correctness of
lexical disambiguation and to define syntactic ambiguity and its resolution. This
information system generates a multi-agent system in which agents resolve the am-
biguity of both types.

Keywords: ambiguity resolution, lexical ambiguity, syntactic ambiguity, ontol-
ogy population, information retrieval, Scott information systems, formal concept
analysis, multiagent systems.

1. Introduction

Currently, ontological databases are widely used for storing information ob-
tained from a great number of sources. To complete such ontologies, for-
malisms and methods that allow one to automate the process are developed.
Features of automatic information retrieval cause ontology population am-
biguities. In linguistics, several kinds of ambiguities are considered: lexical,
syntactic, semantic, and pragmatic [2]. In the process of ontology popu-
lation from natural language texts, we use our algorithms [5] in which the
following ambiguity types appear: (1) several ontology instances or data at-
tributes correspond to the same text fragment, (2) some value is incorrectly
assigned to some attribute of some instance, (3) some value is incorrectly
assigned to attributes of several instances, (4) some value is incorrectly as-
signed to several attributes of some instance, (5) several values are assigned
to a one-valued attribute of some instance. The first type corresponds to
lexical ambiguity, and the other types are syntactic ambiguity. An algorithm
for lexical disambiguation was represented in [6]. In this work, we suggest a
modified algorithm for resolving lexical ambiguity and a new algorithm for
syntactic disambiguation, and we justify the correctness of them both.

∗Supported by Russian Foundation for Basic Research under Grant 15-07-04144 and
Siberian Branch of Russian Academy of Science (Integration Grant n.15/10 “Mathematical
and Methodological Aspects of Intellectual Information Systems”).

54 N.O. Garanina, E.A. Sidorova

In [6], we demonstrated that the process of information retrieval repre-
sented in the form of a set of ontology instances can be presented as a Scott
information system [13]. This process produces maximally determined in-
stances for ontology population. In this paper, we prove that consistent
sets of instances and lexical objects whose values assign attributes of these
instances form FCA concepts [3]. This fact guarantees that information
states of ambiguous conflicting agents do not intersect. This implies the
correctness of lexical disambiguation.

Besides, now we use a representation of ontologies which does not con-
sider ontology relations as special structures. In these ontologies, only classes
are allowed and relations are represented as special attributes of classes. The
well-known ontology representation language OWL uses this kind of nota-
tion. This representation is a good solution for the specification of polyadic
relations. It makes the algorithms for ontology population simpler because
class and relation instances are packed in the same item.

Automatic techniques of disambiguation do not usually use an input
data context in full. This can lead to incomplete and incorrect ambiguity
resolution [1, 7, 8, 9, 11]. Our approach tries to get around these drawbacks.
We use a distributed approach for disambiguation. Every retrieved instance
is related to an agent. These agents detect and resolve ambiguities with the
help of a special master agent. This approach takes polynomial time for
disambiguation.

The rest of the paper is organized as follows. In Section 2, an approach
to ontology population in the framework of information systems is discussed.
Section 3 describes lexical and syntactic disambiguation in terms of the sys-
tem defined in the previous section. The next section gives definitions for
a multi-agent system of context-dependent ambiguity resolution. Section 5
describes agents of our systems, their action protocols, and the main con-
flict resolution algorithm. In the concluding Section 6, directions of future
research are discussed.

2. Scott information systems in ontology population

Let us have an ontology of a subject domain, the ontology population rules,
semantic and syntactic models for a sublanguage of the subject domain
and a data format, and input data as a finite natural language text with
information for the population of the ontology. We consider an ontology O
of a subject domain which includes (1) a finite nonempty set CO of classes
for the concepts of the subject domain, (2) a finite set of attributes with
names in DatO ∪RelO, each of which has values in some data domain (data
attributes inDatO) or is some instance of the ontology (relation attributes in
RelO, which model relations), and (3) a finite set DO of data types. Every
class c ∈ CO is defined by a tuple of typed attributes: c = (Datc, Relc),

An approach to context-dependent lexical and syntactic ambiguity resolution 55

where every data attribute α ∈ Datc ⊆ DatO has a type dα ∈ DO with
values in Vdα and every relation attribute ρ ∈ Relc ⊆ RelO is of a class
cρ ∈ CO. Let a set of all values of all attributes be VO = ∪dα∈DO

Vdα . An
information content ICO of the ontology O is a set of class instances, where
every instance a ∈ ICO is of the form (ca, Data, Rela), where ca is a class
of the instance, every data attribute in Data has a name α ∈ Datca with
values in Vdα and every relation attribute in Rela has a name ρ ∈ Relca
with a value as an instance of a class cρ. The ontology population problem
is to compute an information content for a given ontology from given input
data. Input data for the ontology population process are natural language
texts. These data are finite and our algorithms for ontology-oriented text
analysis can generate a finite set of ontology instances [5]. The finiteness
of the set is guaranteed by the prohibition for the rules to generate infinite
information items by one position. We suggest considering this process of
forming ontology instances as working with Scott information systems. A
Scott information system T is a triple (T,Con,⊢), where

• T is a set of tokens and Fin(T) is a set of finite subsets;

• Con is a consistency predicate such that Con ⊆ Fin(T), and

1. Y ∈ Con and X ⊆ Y ⇒ X ∈ Con,

2. a ∈ T ⇒ {a} ∈ Con;

• ⊢ is an entailment relation such that ⊢⊆ Con \ {∅} × T and

3. X ⊢ a ⇒ X ∪ {a} ∈ Con,

4. X ∈ Con and a ∈ X ⇒ X ⊢ a,

5. ∀b ∈ Y : X ⊢ b and Y ⊢ c ⇒ X ⊢ c.

The information retrieval system based on an ontology, finite input data,
and on rules of the ontology population and data processing is defined as a
triple R = (A,Con,⊢). The set of tokens A consists of a set of all (under-
determined) ontology p-instances formed by the rules in the determination
process of initial p-instances which are retrieved from an input text by spe-
cial preprocess. Every p-instance a ∈ A has the form (ca, Data, Rela, Pa),
where

• the class ca ∈ CO, and

• every data p-attribute αa ∈ Data is of the form (α, IVα), where

– the name α ∈ Datca , where

– its information values v̄ ∈ IVα has the form (vv̄, gv̄, sv̄) with

∗ the data value vv̄ ∈ dα, a set of all values of α is V alαa =
{vv̄ | v̄ ∈ IVα},

56 N.O. Garanina, E.A. Sidorova

∗ gv̄ is grammar information (morphological and syntactic fea-
tures), and

∗ sv̄ is structural information (position in input data);

• every relation p-attribute ρa ∈ Rela is of the form (ρ,Oρa), where

– the name ρ ∈ Relca , and

– every relation object ō ∈ Oρa has the form (o, po), where

∗ o is an instance of a class cρa , and
∗ po ∈ Po is its position,

a set of all relation instances of a is O(Rela) = {a}∪ρa∈Rela {o|ō ∈
Oρa};

• Pa is structural information (a set of positions in input data).

We consider a special set of tokens: a set of lexical objects LO corresponding
to the values of data attributes retrieved from input data. Every lexical
object is a p-instance which has only a single data attribute with a single
information value. Every non-lexical p-instance is an information object in
a set IO: A = LO ∪ IO. P-instances correspond to ontology instances
in a natural way. Let a = (ca, Data, Rela, pa) be a p-instance, then its
corresponding ontology instance is a′ = (ca, Data′ , Rela′), where every α ∈
Data′ has its value(s) in V alαa and every ρ ∈ Rela′ has its value o with
(o, po) ∈ Oρa . Further we omit the prefix “p-” if there is no ambiguity. An
information order relation ≺ is defined on ontology instances. Let a, a′ ∈ A:
a ≺ a′, if a = a′ everywhere except for at least one attribute, with the
number of values of this attribute in a being strictly less than that in a′.
For x, x′ ∈ A: if x ≺ x′, then x′ is an information extension of x.

Rules of ontology population and data processing Rules = {rule1, . . . ,
rulen} map the finite sets of instances of ontology classes to an instance
which is an informational extension of some instance of the domain set or a
new instance. These sets must be linguistically and ontologically compatible:
specified sets of their attributes and some instances have to satisfy conditions
on values, grammatical and structural information [10]:
rulei : Domi 7→ A, Domi ⊆ 2A, such that
∀X ∈ Domi : LingConsi(∪x′∈XDatx′ ∪ Relx′) = true ∧ ∀x′ ∈ X : cx′ ∈
Classi,
where the predicate LingConsi and the set of classes Classi ⊆ CO detect the
linguistic and ontological compatibility of the instance set, correspondingly.
Let for X ∈ Domi, x ∈ A:
rulei(X) = x iff ((∃y ∈ X : y ≺ x ∧ cx = cy) ∨ (∀y ∈ X : y ⊀ x ∧ cx =
geni(X))) ∧
(Datx = ∅ ∨Datx = ∪α(α,∪{(fi(V̄α), gi(V̄α), si(V̄α)) |

∃Yα ⊆ X : datα ⊆ ∩y∈YαDaty ∧ V̄α = ∪β∈datα{v̄|v̄ ∈ IVβ}})) ∧

An approach to context-dependent lexical and syntactic ambiguity resolution 57

(Relx = ∅ ∨ ∀o ∈ O(Relx) : o ∈ X ∪y∈X O(Rely)),
where geni(X) generates a new class for a new instance, fi(V̄) produces a
value based on values in (V̄) for an attribute of the instance x, and gi(V̄)
and si(V̄) inherit grammatical and structural information from the set of
information values V̄ .

The consistency predicate Con and entailment relation ⊢ correspond
to the rules of ontology population and data processing. Let x, x′ ∈ A and
X ⊆ A. The entailment relation connects informationally associated tokens:

– X ⊢ x, iff x ∈ X, or x /∈ X ∧
((∃X ′ ⊆ X,X ′′ ⊆ A, rulei ∈ Rules : rulei(X

′ ∪X ′′) = x) ∨
(∃x′ ∈ A,X ′′ ⊆ A, rulei ∈ Rules : X ⊢ x′ ∧ rulei({x′} ∪X ′′) = x)),

i.e., the instance x is entailed from X if it is in this set or information from
tokens of this set is used for evaluating the attributes of x.

The consistency predicate defines informationally consistent sets of to-
kens:

– X ∈ Con, iff for some rulei ∈ Rules the following holds
∀X ′ ⊆ X(∪x′∈X′cx ⊆ Classi) ⇒ (∃x ∈ A,X ′′ ⊆ A : rulei(X

′ ∪X ′′) = x),
i.e., if there exists some rule which can find in a set of tokens some in-
stances satisfying its class compatibility then these instances should be con-
sistent with some other set of tokens with respect to the rule. The sets that
are class compatible but linguistically incompatible cannot be processed by
rules, hence we do not consider them consistent.

Let us prove the following theorem for the system R:

Theorem 1. The triple R = (A,Con,⊢) is a Scott information system.

Proof. Let us show that the consistency predicate Con and the entail-
ment relation ⊢ satisfy properties 1–5 of information systems.

1. Y ∈ Con and X ⊆ Y ⇒ X ∈ Con. This fact follows from the
definition of the consistency predicate directly because the condition of the
definition should hold for every subset of a consistent set.

2. a ∈ A ⇒ {a} ∈ Con. By the definition, for every rulei ∈ Rules the
class of a is not included in Classi or a single {a} can be complemented by
some set of tokens in such a way that the rulei produces a new token.

3. X ∈ Con and X ⊢ a ⇒ X ∪{a} ∈ Con. X ∪{a} is consistent because
a ∈ X or lexical information of a is inherited from X by definitions of the
entailment relation and process rules.

4. X ∈ Con and a ∈ X ⇒ X ⊢ a by the definition of the entailment
relation.

5. ∀b ∈ Y : X ⊢ b and Y ⊢ c ⇒ X ⊢ c. Let Yb = Y \ {b}. X ⊢ c iff
(∃b ∈ Y, Yb ⊆ A, rule ∈ Rules : X ⊢ b∧rule({b}∪Yb) = c)) by the definition
of the entailment relation.�

58 N.O. Garanina, E.A. Sidorova

The proposition below directly follows from the monotonicity of the en-
tailment relation and finiteness of input data.

Proposition 1. Information retrieval process of ontology population ter-
minates.

For a token x ∈ A: x↑ = {x}∪{x′ | x ≺ x′} and x↓ = {x}∪{x′ | x′ ≺ x}
are upper and down cones of x. Let a set of maximally determined instances
in a set X (maximal instances or tokens) be X↑ = {x ∈ X | x↑ = {x}}. We
consider the tokens from LO to be always maximally determined: LO =
LO↑. The result of the analysis of input data is A↑. These instances may
populate an ontology. The following proposition is obvious.

Proposition 2. The triple I = (A↑, Con,⊢) is a Scott information system.

Information descendants of a token a ∈ A↑ are all maximal tokens (all in-
formation) that can be obtained from this token by the entailment relation:
Ds(a) = {x ∈ A↑|{a} ⊢ x}. Information ancestors of a token a ∈ A↑ are all
maximal tokens from which a can be obtained: An(a) = {x ∈ A↑|{x} ⊢ a}.
In our framework, the following equality holds for lexical objects: An(a) =
{a} because ontology instances are based on retrieved lexical objects. In-
formation descendants are a particular case of Scott information states [14].
Like in the cited paper, we show that tokens from LO and their information
descendants form a concept lattice.

Proposition 3. Consistent sets of lexical objects form FCA concepts. Ev-
ery consistent set of instances is a base for FCA concepts.

Proof. Let every set x of information descendants of LO be an object
and every l ∈ LO be an attribute. A lexical object l is an attribute of x iff
l ∈ x. The extension of a set of attributes L ⊆ LO is the set L′ = {x|L ⊆ x}
and the intension of L′ is the set {l|∀x ∈ L′, l ∈ x}. L is a concept iff the
condition on the intension of the extension of L holds: L = {l|∀x ∈ L′, l ∈ x}
iff L is an information state of the information system I iff L is a consistent
set. The intension of a set of infostates X is the set X ′ = {l|∀x ∈ X, l ∈ x}
and the extension of X ′ is the set {x|X ′ ⊆ x}. X is a concept iff the
condition on the extension of the intension of X holds: X = {x|X ′ ⊆ x}
iff a set of all instances in the set of infostates X forms an infostate too:
Xi = {a | a ∈ x ∈ X}, hence Xi is a consistent set. Hence, every consistent
set of instances is a base for FCA concepts.�

3. Ambiguity and resolution

(1) Lexical ambiguity.
Let l, l′ ∈ LO be in conflict l ! l′ iff s(l) ∩ s(l′) ̸= ∅. Let AmbLO be a

An approach to context-dependent lexical and syntactic ambiguity resolution 59

set of conflict lexical objects and Lex be a set of their descendants. We
consider that the rules in Rules cannot generate instances which include
inconsistent information. That is, for every rulei ∈ Rules it holds that
∀X ∈ Domi, a, a

′ ∈ X, l, l′ ∈ An(a) ∩ An(a′) ∩ LO : ¬(l ! l′). Hence, for
the lexical objects l and l′ in conflict: Ds(l) ∩Ds(l′) = ∅.

For the lexical disambiguation of two conflicting lexical objects, we pre-
fer a lexical object which is more incorporated in an input text than its
competitor. For l, l′ ∈ LO, if |Des(l)| > |Des(l′)|, we take l for evaluating
attributes of ontology instances and ignore l′.

(2) Syntactic ambiguity.
Detecting syntactic ambiguity frequently requires the analysis of homoge-
neous groups. Syntactic ambiguity is defined for ontology instances, not for
lexical objects. Our types of syntactic ambiguity can depend on an ontology
specification, hence here we actually consider syntactic-semantic ambiguity.
We omit “-semantic” for brevity. Syntactic ambiguity usually can be ex-
pressed by corresponding a single lexical object to several ontology items in
various ways. For disambiguation, it is necessary to find in an input text
an evidence of correctness of the correspondence. This could be performed
using the following inequalities. Let us define several useful abbreviations.

• For every instance a and its data attribute α ∈ Data, a set of infor-
mation values equal to v ∈ dα is EQ(a, α, v) = {v̄ ∈ IVα | vv̄ = v}.

• For every instance a and its relation attribute ρ ∈ Rela, a set of
relation objects with an instance equal to e ∈ cρa is EQ(a, ρ, e) =
{(o, po) ∈ Oρ | o = e}.

• The power of these sets is an evidence power.

• A triple (a, α, v̄) denotes the information value v̄ ∈ IVα of the data
attribute α ∈ Data of the instance a.

• A couple (a, ρ) denotes a value of the relation attribute ρ ∈ Rela of
the instance a.

• A set of information values which effects
(a, α, v̄) is V (a, α, v̄) = {(c, γ, w̄)| ∃rulei ∈ Rules,X ⊆ A↑ : rulei(X) =
a ∧ c ∈ X ∧ γ ∈ datα ∩Datc ∧ w̄ ∈ IVγ ∧ v̄ = (f(V̄α), g(V̄α), s(V̄α))}.

• A set of instances which effects (a, ρ) is I(a, ρ) = {e ∈ A↑ | ∃rule ∈
Rules,X ⊆ A↑ : rule(X) = a ∧ e ∈ X ∧Oρ ∩O(Rele) ̸= ∅}.

Now we define a method of syntactic disambiguation.
(1) Some value is incorrectly assigned to some attribute of an instance
(Synt11).
An example: “The old men and woman sat on the bench.” The woman may
or may not be old. Hence, the attribute “age” of the instance “woman”

60 N.O. Garanina, E.A. Sidorova

may not have the value “old”. Let the set of instances with the ambiguity
of this type be denoted as Synt11. Let in an instance a an information value
(c, γ, w̄) effect (a, α, v̄): (c, γ, w̄) ∈ V (a, α, v̄). Then, in the case of this am-
biguity, (c, γ, w̄) is declared as effecting (a, α, v̄) iff |EQ(a, α, vv̄)| > 1. Let in
an instance a an instance e effect (a, ρ): e ∈ I(a, ρ). Then, in the case of the
ambiguity, the instance e is declared as effecting (a, ρ) iff |EQ(a, ρ, e)| > 1.

(2) Some value is incorrectly assigned to attributes of several instances
(Synt12).
An example: “Someone shot the maid of the actress who was on the bal-
cony.” Either the actress or the maid was on the balcony. Hence, either
the attribute “place” of the instance “actress” or the attribute “place”
of the instance “maid” may have the value “balcony.” Let the set of in-
stances with ambiguity of this type be denoted as Synt12. Let in in-
stances a and b an information value (c, γ, w̄) effect (a, α, v̄) and (b, β, ū):
(c, γ, w̄) ∈ V (a, α, v̄) ∩ V (b, β, ū). Then, in the case of this ambiguity,
(c, γ, w̄) is declared as effecting (a, α, v̄) and not (b, β, ū) iff |EQ(a, α, vv̄)| >
|EQ(b, β, ū)|. Let in instances a and b, an instance e effect (a, ρ) and (b, o):
e ∈ I(a, ρ) ∩ I(b, o). Then, in the case of the ambiguity, the instance e is
declared as effecting (a, ρ) and not (b, o) iff |EQ(a, ρ, e)| > |EQ(b, o, e)|.
(3) A value is incorrectly assigned to several attributes of an instance
(Synt112).
An example: “Cuban jazz band.” A group of Cuban musicians perform-
ing jazz music or a group of musicians performing Cuban jazz. Hence, the
attribute “country” or the attribute “style” of the instance “band” may
have the value “Cuban”. Let the set of instances with the ambiguity of
this type be denoted as Synt112. Let in an instance a an information value
(c, γ, w̄) effect (a, α, v̄) and (a, β, ū): (c, γ, w̄) ∈ V (a, α, v̄)∩V (a, β, ū). Then,
in the case of this ambiguity, (c, γ, w̄) is declared as effecting (a, α, v̄) and
not (a, β, ū) iff |EQ(a, α, vv̄)| > |EQ(a, β, vū)|. Let in an instance a an in-
stance e effect (a, ρ) and (a, o): e ∈ I(a, ρ) ∩ I(a, o). Then, in the case of
the ambiguity, the instance e is declared as effecting (a, ρ) and not (a, o) iff
|EQ(a, ρ, e)| > |EQ(a, o, e)|.
(4) Several values are assigned to a one-valued attribute of an instance
(Synt211).
An example: “Shakespeare is the author of the piece.” The gender of
Shakespeare may be either male or female. Hence, the one-valued attribute
“gender” of the instance “person” may have the value either “male” or
“female.” Let the set of instances with the ambiguity of this type be de-
noted as Synt211. Let in an instance a information values (b, β, ū) and
(c, γ, w̄) effect (a, α, v̄) and (a, α, v̄′), respectively: (b, β, ū) ∈ V (a, α, v̄) and
(c, γ, w̄) ∈ V (a, α, v̄′). Then, in the case of this ambiguity, (b, β, ū) is de-
clared as effecting (a, α, v̄), and (c, γ, w̄) is declared as not effecting α iff
|EQ(a, α, vv̄)| > |EQ(a, α, vv̄′)|. Let in an instance a instances e and e′ ef-

An approach to context-dependent lexical and syntactic ambiguity resolution 61

fect (a, ρ): e, e′ ∈ I(a, ρ). Then, in the case of the ambiguity, the instance
e is declared as effecting (a, ρ) and e′ is declared as not effecting (a, ρ) iff
|EQ(a, ρ, e)| > |EQ(a, ρ, e′)|.

In the case of equal evidence powers, the conflict is not resolved. We con-
sider systems in which all these ambiguities are independent, i.e., the pair-
wise intersections of the sets Lex, Synt11, Synt12, Synt112 and Synt211 are
empty. The following informal descriptions of action protocols for instance
agents present resolution of independent lexical and syntactic ambiguities.
These protocols work correctly if the coreference resolution and detection of
syntactic ambiguities are correct.

4. Multi-agent ambiguity resolution

Let a set of lexical objects which effect some information value of a data
attribute α of an instance a be L(a, α) = {l ∈ LO | ∃rulei ∈ Rules,X ⊆
A↑ : rulei(X) = a∧(∃x ∈ X : x ∈ Ds(l)∧(∃β ∈ datα∩Datx : l ∈ L(x, β)))}.
For every x /∈ A↑, the corresponding maximally determined instance is x̃
such that x̃ ∈ A↑ ∧ x ≺ x̃. The entailment relation ⊢ generates information
connections between maximally determined instances. Let X ⊢ x and y ∈
X ∧ y /∈ x↓. Then an information connection between ỹ and x̃ is ỹ

ω̃−→ x̃ iff
(∃α ∈ Datx, β ∈ Daty : ω ∈ L(x, α) ∩ L(y, β)) ∨ (ω ∈ O(Relx) ∩O(Rely)

– of an updating type ỹ
ω̃u

−→ x̃ iff ∃x′ ∈ X : x′ ≺ x,

– of a generating type ỹ
ω̃g

−→ x̃ iff @x′ ∈ X : x′ ≺ x.
The information system of information retrieval R generates a multi-

agent system with typed connections. Agents of the system resolve the am-
biguities by computing and comparing the context cardinalities and evidence
powers. The information system (A,Con,⊢) generates the Multi-agent Sys-
tem of Ambiguity Resolution (MASAR) as a tuple S = (A,C, I, T), where

• A = {ax | x ∈ A↑} is a finite set of agents corresponding to maximally
determined instances;

• C = {ω̃ | ∃x, y ∈ A : x̃
ω̃−→ ỹ} is a finite set of connections;

• a mapping I : C −→ 2A×A is an interpretation function of ordered
connections between agents: I(c) = (ax, ay) iff x̃

c−→ ỹ;

• a mapping T : C × A × A −→ {gen, upd} determines types of con-

nections: T (c, ax, ay) = gen iff I(c) = (ax, ay) → (x̃
cg−→ ỹ), and

T (c, ax, ay) = upd iff I(c) = (ax, ay) → (x̃
cu−→ ỹ).

Let information agents IA correspond to information objects from IO↑ and
lexical agents LA correspond to lexical objects from LO.

Not every instance from IO↑ is used for ontology population. There is a
set of utility instances Utl. They do not resolve ambiguities or populate an

62 N.O. Garanina, E.A. Sidorova

ontology. They just transfer information to its descendants. Hence IO↑ =
Ont ∪ Utl, where only instances from Ont may populate an ontology.

For every agent a ∈ A, we define the following sets of agents and con-
nections. We omit symmetric definitions of ancestors Anc∗ (for Des∗) and
utility predecessors UtP∗ (for UtS∗) for brevity:

• Ca = {c ∈ C|∃a′ ∈ A : (a, a′) ∈ IC(c)
∨
(a′, a) ∈ IC(c)} is the connec-

tions of a;

• Cga = {c ∈ C|∃a′ ∈ A : (a′, a) ∈ IC(c) ∧ T (c, a, a′) = gen} is the
generating connections of a;

• Cua = {c ∈ C|∃a′ ∈ A : (a′, a) ∈ IC(c) ∧ T (c, a, a′) = upd} is the
updating connections of a;

• Scgca = {a′ ∈ A | (a, a′) ∈ IC(c) ∧ c ∈ Cga′} is a set of generated
successors by the connection c;

• Scuca = {a′ ∈ A | (a, a′) ∈ IC(c) ∧ c ∈ Cua′ = upd} is a set of updated
successors by the connection c;

• Scca = Scgca ∪ Scuca is a set of all successors by the connection c;

• Prca = {a′ ∈ A | (a′, a) ∈ IC(c)} is a set of predecessors by the connec-
tion c;

• UtSc
a = {a′ ∈ Utl | (a, a′) ∈ IC(c)} is a set of utility successors by the

connection c; and

• Desca = Scca ∪
∪

a′∈Scca Desca′ is descendants by the connection c.

MASAR is a multiagent system of information dependencies. In these sys-
tems, agents can use information from predecessors and can pass the pro-
cessed information to successors. Hence Desca ∩ Ancca = ∅, i.e., every con-
nection has no cycle because of information transfer.

A weight of an agent corresponds to the number and quality (in the case
of generation) of its non-utility ancestors and descendants. For every a ∈ A

• wtaPr(c) = 1 +
∑

a′∈Prca
wta

′
Pr(c) is the weight of connection ancestors,

• wtaSc(c) = 1+
∑

a′∈Scgca wt(a
′)+

∑
a′∈Scuc

a
wta

′
Sc(c) is the weight of con-

nection descendants,

• wtaUtP (c) = 1 +
∑

a′∈UtP c
a
wta

′
UtP (c) is the weight of connection utility

ancestors,

• wtaUtS(c) = 1 +
∑

a′∈UtSc
a
wta

′
UtS(c) is the weight of connection utility

descendants, and

• wt(a) = 1 +
∑

c∈Ca
(wtaPr(c) + wtaSc(c)− (wtaUtP (c) + wtaUtS(c))) is the

weight of information agents.

An approach to context-dependent lexical and syntactic ambiguity resolution 63

The weight of the system S is wt(S) =
∑

a∈Ontwt(a).
The problem of conflict resolution in MASAR is to obtain a conflict-free

MASAR of the maximal weight. A multiagent algorithm below produces
such a system.

5. Conflict resolution in MASAR

In this paper, we consider independent ambiguities only. In this case, order
of their resolution is irrelevant. It is expedient, however, to resolve lexical
ambiguity first, because this disambiguation effects the existence of ontology
instances. Syntactic disambiguation refines information distribution among
instances.

Action protocols for conflict resolution used by MASAR agents form a
multi-agent system of conflict resolution MACR. The system MACR in-
cludes the set of MASAR agents and the agent-master. Note that a fully
distributed version of our algorithm could be developed but it would be very
ineffective. The result of agents’ interactions by protocols described below is
the conflict-free MASAR. All agents execute their protocols in parallel until
the master detects termination. The system is dynamic because MASAR
agents can be deleted from the system. The agents are connected by syn-
chronous duplex channels. The master agent is connected with all agents,
MASAR agents are connected with their successors and predecessors, and
conflict lexical agents are connected too. Messages are transmitted via a
reliable medium and stored in channels until they are read.

For correct lexical disambiguation, it is necessary to find the groups
of lexical agents which impact the weights of each other in case one of
them is removed. Let us denote these groups of relatives as Relatives.
The agents of the groups from Relatives have common generated descen-
dants: ∀Rlt ∈ Relatives(∀aω ∈ Rlt(∃aν ∈ Rlt : Ds(aω, aν) ̸= ∅ ∧ ∃b ∈
Ds(aω, aν) : (ω ∈ Cgb ∨ ν ∈ Cgb) ∧ ∀a ∈ AmbLO \ Rlt : Ds(aω, a) = ∅)),
where Ds(x, y) = Ds(x) ∩ Ds(y) for x, y ∈ LO. Due to the mutual effect
of relatives on their weights, it is necessary to resolve conflicts between the
groups of relatives. Note that due to Proposition 3 the set AmbLO can be
disjoined to nonintersecting subsets of relatives. Let Frn = ∪n

i=1Rlti (Rlti ∈
Relatives for i ∈ [1..n]) be a group of friends iff ∀a, b ∈ Frn : ¬(a ! b).
The groups of friends Frn1 and Frn2 are in conflict Frn1 ! Frn2 iff
(∀a ∈ Frn1∃b ∈ Frn2 : a ! b) ∧ (∀b ∈ Frn2∃a ∈ Frn1 : b ! a). The
conflict is resolved for the benefit of the group with a greater weight, i.e.,
if
∑

a∈Frn1
wt(a) >

∑
b∈Frn2

wt(b), then the agents of the group Frn2 are
removed from the system and their descendants delete their inherited val-
ues of attributes or the descendant removes itself if the lexical value from a
lexical agent in Frn2 is generating for this descendant.

Hence, for resolving all conflicts in the system, it is necessary to perform

64 N.O. Garanina, E.A. Sidorova

the following steps: (1) to compute the weights of agents, (2) to detect
relative groups, (3) to compute independent conflict groups of friends, (4)
to resolve lexical conflicts between the groups, (5) to make the corresponding
change in the system, and (6) to resolve all kinds of syntactic ambiguity. The
agent-master coordinates MASAR agents. It computes conflict groups and
detects agents to be removed. All other activities are performed by MASAR
agents asynchronously. Due to parallel execution, all computations take
polynomial time.

Let A = {a1, ..., an} be the MASAR agents set, and M be the master
agent. Let Ai be an interface protocol of the agent ai and M be the protocol
of actions of the agent-master M . Then the multi-agent conflict resolution
algorithm MACR can be presented in pseudocode as follows:
MACR:: parallel {A1} ...{An} {M}

Below we give informal descriptions of protocols of the system agents.

(1) An interface protocol for system agents
This protocol specifies agent’s reactions to incoming messages. These mes-
sages include information about which actions should be performed by the
agent:
(1) Start: to start;
(2) CompWeight: to compute its weight;
(3) SendRlt and FindRlt: to find relatives;
(4) Remove: to remove connections or itself;
(5) Synt* and Res*: to resolve some syntactic ambiguity.
Until an input message causes an agent to react, the agent stays in the
wait mode. Messages for an agent are stored in the input channel Input.
They include information about the names of actions act and informa-
tion for performing these action inf: msgA = act × inf, where act =
{start, stop, Comp, Find, Rem, Synt} and parameters inf are defined in the
corresponding protocol descriptions. Let function get(Set) choose an arbi-
trary element of a nonempty set Set and remove it.

The interface protocol of a system agent a.

a.Ai ::

set of msgA Input; msgA mess = (start, ∅);
1. while (mess.act != stop)

2. if (Input != ∅) then {
3. mess = get(Input);

4. if (mess.act = Comp) then a.CompWeight;
5. if (mess.act = Find) then

if(a ∈ IO) a.SendRlt;
if(a ∈ LO) a.FindRlt;

6. if (mess.act = Rem) then a.Remove(mess.inf);
7. if (mess.act = Synt11) then a.Synt11;

An approach to context-dependent lexical and syntactic ambiguity resolution 65

8. if (mess.act = Res11) then a.Res11(mess.inf);
9. if (mess.act = Synt12) then a.Synt12;
10. if (mess.act = Res12) then a.Res12(mess.inf);
11. if (mess.act = Synt112) then a.Synt112;
12. if (mess.act = Synt211) then a.Synt211;}

(2) The main algorithm for conflict resolution
Let us give an informal description of the protocol Master. First, the agent-
master computes the set of lexical agents LO (line 1) choosing for this set
the agents without information predecessors. Then the master finds a set of
conflict lexical agents AmbLO (line 2), using information about their posi-
tion in the input text: agents are in conflict if their positions intersect. This
set is stored as a structure AgConfs {agent ag; set of agent CoList;},
where ag is an agent in conflict and CoList is a set of its conflict partners.
After that it sends Start to all agents and launches parallel computing of
the agents’ weights (line 4) and search for lexical agents’ relatives (line 5).
After all agents finish their job, the master computes conflict pairs of friend
groups using the method ConfGroups described below (line 6). By compar-
ing the weights of the conflict groups of friends, it forms a list of agents to
be removed (line 7). After finishing this resolution of group conflicts, the
master launches the corresponding system changes (line 8). After the ter-
mination of these changes, it initiates all kinds of syntactic disambiguation
for instance agents (lines 10-17).
The protocol of the master agent for conflict resolution.

Master ::

agent a, b;

set of agent LexAgs, ToRem, F1, F2;

AgConfs LexAmb;

list of array [2] of set of agent ConfGroups;

1. LexAgs = FindLex();

2. LexAmb = FindLexAmb();

3. forall a∈ A send (start) to a;

4. forall a∈LexAgs send (Comp) to a; wait Finish;

5. forall a∈ A send (Find) to a; wait Finish;

6. ConfGroups = FindConfGroups();

7. while (ConfGroups ̸= ∅){
F1 = head(ConfGroups)[1];

F2 = head(ConfGroups)[2];

if (
∑

a∈F1
a.wt <

∑
b∈F2

b.wt) then ToRem = ToRem ∪ F1;

if (
∑

a∈F1
a.wt >

∑
b∈F2

b.wt) then ToRem = ToRem ∪ F2;

recalculate(ConfGroups);}
8. forall a∈ToRem send (Rem, ∅) to a; wait Finish;

9. A = A \RemA;

66 N.O. Garanina, E.A. Sidorova

10. forall a∈ A send (Synt11) to a; wait Finish;

11. A = A \RemA;

12. forall a∈ A send (Synt12) to a; wait Finish;

13. A = A \RemA;

14. forall a∈ A send (Synt112) to a; wait Finish;

15. A = A \RemA;

16. forall a∈ A send (Synt211) to a; wait Finish;

17. A = A \RemA;

18. forall a∈ A send (stop) to a;

When the master computes the conflict pairs of friend groups, it re-
ally constructs pair groups relative agents closed under the conflict relation.
First, the master defines a set of current conflicts as a set of all conflict lex-
ical agents (line 1). Next, all conflict agents detect the sets of their conflict
relatives a.Amb (line 2). At the beginning, the group of friends G1 consists
of the conflict relatives of the first conflict lexical agent, including this agent
(line 3). At the same time, its conflict group G2 consists of the agents from
the conflict list of the first agent and their conflict relatives (lines 4–5). Here
we consider agents having only a one-element conflict list. In another case,
comparing conflict groups is more difficult. Then, while the current con-
flict set is not empty, the master detects whether the groups G1 and G2
are in conflict using the predicate IsConf (line 7). If they are in conflict,
it removes them from the current Conf, stores this pair in the list of such
pairs ConfGroups, and forms the next pair of groups for conflict checking in
the same way as in lines 3–5. If the groups G1 and G2 are not in conflict
yet, i.e., they include lonely agents which do not have a conflict partner in
the opposite group, the master extends the corresponding group with the
conflict partners of lonely agents (line 8). After that, it checks them for
conflictness again.

Master.FindConfGroups() ::

agent a, b;

set of agent A2, G1, G2;

AgConfs Conf;

1. Conf = LexAmb;

2. forall a∈LexAmb a.Amb = Amb(a.Rlt);

3. G1 = Conf[1].ag.Amb;

4. A2 = Conf[1].CoList;

5. forall a∈A2 G2 = G2∪a.Amb;
6. while(Conf != ∅)
7. if (IsConf(G1, G2)) then

Conf = Conf.Rem(G1, G2);

ConfGroups.Add(G1, G2);

An approach to context-dependent lexical and syntactic ambiguity resolution 67

G1 = Conf[1].ag.Amb;

A2 = Conf[1].CoList;

forall a∈A2 G2 = G2∪a.Amb;
8. else forall a∈notConf(G2)

A2 = Conf[a].CoList;

forall b∈A2 G2 = G2∪b.Amb;
forall a∈notConf(G1)

A2 = Conf[a].CoList;

forall b∈A2 G1 = G1∪b.Amb;
9. return ConfGroups;

(3) Computing the agents’ weight
Following the definitions of the weights, a system agent a computes in paral-
lel the weights of the descendants a.Sc(c) and ancestors a.Pr(c) by every
connection c ∈ Ca, launching the corresponding subprocesses for each c ∈ Ca

(line 2 of a.CompWeight). These subprocesses send the integer weights of
their descendants (ancestors) increased by 1 to predecessors (successors), re-
spectively (line 4 of a.Pr(c) and lines 4,5 of a.Sc(c)). Utility subprocesses
do not increase the weights (line 1 of a.Pr(c) and a.Sc(c)). If a parent
connection c is of the type gen, then the corresponding descendants’ sub-
processes send the whole weight of a to the predecessors (line 5 of a.Sc(c)).
When these parallel computations are finished, the agent computes its own
weight (line 4 of a.CompWeight). The protocol of weights computing belongs
to the class of wave echo algorithms [12].
The protocol of a system agent a for weight computing.

a.CompWeight ::

array [Ca] of int: wPr, wSc;

// The own weight a.wt
1. a.wt = null;

2. parallel forall ci ∈ Ca {Pr(ci)} {Sc(ci)}
3. wait Finish;

4. a.wt = 1 +
∑

ci∈Ca
(wPr[ci] + wSc[ci];

// Ancestors

a.Pr(ci) ::

set of int Input; int wght;

int NumP = |Prcia |;
1. if (a.ut=true) wPr[ci] = 0; else wPr[ci] = 1;

2. while(NumP != 0)

3. if (Input != ∅) then {
wght = get(Input);

wPr[ci] = wPr[ci] + wght;

NumP = NumP - 1;}

68 N.O. Garanina, E.A. Sidorova

4. forall (b∈ Sccia)

send (wPr[ci]) to b.Pr(ci);
// Descendants

a.Sc(ci) ::

set of int Input; int wght;

int NumS = |Sccia |;
1. if (a.ut=true) wSc[ci] = 0; else wSc[ci] = 1;

2. while(NumS != 0)

3. if (Input != ∅) then {
wght = get(Input);

wSc[ci] = wSc[ci] + wght;

NumS = NumS - 1;}
4. if (ci.type = upd) then

forall (b∈ Prcia) send (wSc[ci]) to b.Sc(ci);
5. if (ci.type = gen) then

wait (a.wt != null);

forall (b∈ Prcia) send (a.wt) to b.Sc(ci);

(4) Computing the agents’ relatives
In this algorithm, the agents construct a reflexive-transitive closure of the
relative relation. Computing relatives consists of two stages. Agents act
asynchronously.
(1) Preliminary search. Since the connections between the information
agents from IA are labeled, they know some groups of relatives (possibly
incomplete groups). In the protocol SendRel they share this knowledge with
lexical agents.
(2) Merging. Lexical agents take relative lists from information agents until
the latter stop sending them. Since the relative relation is transitive, lexical
agents have to interchange their relative lists for constructing a reflexive-
transitive closure of the relation. The interchange goes on until all relative
lists become stable. Termination of all list transfers can be detected by the
AB-algorithm from [4].
The protocol of an information agent a for the preliminary search.

a.SendRel ::

int id;

1. forall(id∈ Cga) send(Rlt:Cga ∪ Cua) to ag(id);

2. forall(id∈ Cua) send(Rlt:Cga) to ag(id);

The protocol of a lexical agent a for relatives computing.

a.FindRlt (Rlt) ::

int id, nOld, nNew;

An approach to context-dependent lexical and syntactic ambiguity resolution 69

mess msg;

set of mess Input;

1. rltOld = {a.id};
2. while(FromAgents)

3. if(Input != ∅) then {
4. msg = get(Input);

5. a.Rlt = a.Rlt∪msg.Rlt; }
6. forall(id∈a.Rlt) send(Rlt: a.Rlt) to ag(id);

7. while(FromLex)

8. if(Input != ∅) then {
9. msg = get(Input);

10. nOld = |a.Rlt|;

11. a.Rlt = a.Rlt∪msg.Rlt;
12. nNew = |a.Rlt|;

13. if(nNew > nOld) then

14. forall(id∈a.Rlt) send(Rlt: a.Rlt) to ag(id);}

(5) Removing LO-agents from the system
If an agent a has to be removed from the system, then

1. all its predecessors remove all connections with it and delete a from
the sets of successors;

2. its descendants remove

(a) all connections with it,

(b) the corresponding predecessors and

(c) the corresponding attribute value;

(d) if the removing connection is of the generating type, then the
descendant has to be removed from the system.

An agent has a local variable a.Rmvd, which is true if a has performed an
action Remove and is false otherwise. Let the method a.RemVal(c) remove
attribute values corresponding to the connection c. In the protocol, after the
agent checks the presence status if it detects that its successor has provoked
it into changing, it removes the successor from the corresponding list (line
2). If changes come with a generating connection or from the master (line
3), the agent has to be removed from the system. If the connection is of
the updating type, the agent just removes its corresponding data (line 4).
After its own changes, the agent induces the corresponding changes of the
connected agents (lines 5–7).
The protocol of a system agent a for changing the system.

a.Remove(x, c) :: {

70 N.O. Garanina, E.A. Sidorova

agent b;

connection e;

set of connections Con;

1. if(a.Rmvd) then return;

2. if(x ∈ Scca) then Scca = Scca \ {x}; return;

3. if(T (c, x, a) = gen | x = ∅) then

Con = Ca;

RemA = RemA ∪ {a};
a.Rmvd = true;

4. if(T (c, x, a) = upd) then

Con = {c};
Ca = Ca \ {c};
Prca = ∅;
Scca = ∅;
a.RemVal(c);

5. forall e∈Con {
6. if(a.Rmvd) for b∈ Prea send(Rem, a, e) to b;

7. forall b∈ Scea send(Rem, a, e) to b; } }

Let for every agent a and every connection c ∈ Ca the set of part-
ners by the c-connection Scca be ordered by positions in input data: Scca =
{sc1, . . . , scm}. For simplicity, we also suggest that attribute values are not
computed, i.e., they are just equal to effecting lexical objects. Protocols
below can be easily generalized for computable attribute values. Resolution
of syntactic ambiguities Synt11 and Synt12 consists of two steps.

(6) Synt11 resolution.
(1) Ambiguity detection. Every agent using the set of its successors checks
if some attribute value effects values of several instances. If it is so and
these instances form a homogeneous group and satisfy a predefined grammar
condition (line 2), it sends a message with the type of the conflict and conflict
value to every agent in the group excluding the first agent in the group (line
3).

The protocol of an agent a for detecting Synt11.

a.Synt11() :: {
1. forall c∈ Ca {
2. if(|Scca| > 1 & Hom(Scca) & GramHom(Scca)) then

3. forall b∈ Scca\sc1 send(Res11, a, c) to b; } }

(2) Ambiguity resolution. The agents in the group resolve the ambiguities
following the resolving formulas for Synt11. For this purpose, they compute
the evidence power of the ambiguous value. If the value is not valid, the
agent removes it from the system (line 2).

An approach to context-dependent lexical and syntactic ambiguity resolution 71

The protocol of an agent a for resolving Synt11.

a.Res11(x, c) :: {
1. forall ω ∈ Data ∪Rela
2. if(|EQ(a, ω, c)| ≤ 1)) then

send(Rem, x, c) to a;

(7) Synt12 resolution.
(1) The ambiguity detection a.Synt12(). Every agent, using the set of its
successors, checks if some attribute value effects values of several instances.
If it is so and these instances satisfy a predefined grammar condition and
do not form a homogeneous group, it sends a message with the type of the
conflict, conflict value, and ids of the competitors Com to the first agent in
the group.
The protocol of an agent a for detecting Synt12.

a.Synt12() :: {
array of agents Com;

1. forall c∈ Ca {
2. Com = Scca;
3. if(|Com| > 1 & NotHom(Com) & GramNotHom(Com) then

send(Synt12, a, c, Com, 1) to Com[1];}}

(2) The ambiguity resolution a.Res12(x, c, Com, i). Agents resolve the
ambiguities following the resolving formulas for Synt12. The resolving agent
compares its evidence power with the evidence power of the nearest unex-
plored neighbor (line 6) after the neighbor has sent the power msg.ep in the
message msg (line 5). If the agent’s power is greater than the neighbor’s
power, then the neighbor removes its ambiguous value from the system and
the agent moves to the next neighbor (line 6). In the other case, the neigh-
bor continues to resolve the ambiguity and the agent removes its ambiguous
value from the system (line 7).
The protocol of an agent a for resolving Synt12.

a.Res12(x, c, Com, i) :: {
int ep; j = i+1;

messEP msg;

1. forall ω ∈ Data ∪Rela
2. ep = |EQ(a, ω, c)|;
3. if(ep ≥ 1) then

while(j < |Com|+1)

4. send(GiveEP, a, c) to Com[j];

5. wait(msg.act = TakeEP);

6. if(msg.ep < ep) then

send(Rem, x, c) to Com[j];

j = j+1;

72 N.O. Garanina, E.A. Sidorova

7. if(msg.ep > ep) then

send(Res12, x, c, Com, j) to Com[j];

send(Rem, x, c) to a;
return;}

(8) Synt112 resolution.
If an agent finds attributes ω1 and ω2 with a value w (lines 2–4), then it
compares the evidence powers EQ(a, ω1, w) and EQ(a, ω2, w) (lines 6, 7).
The attribute value is removed from the values of the attribute with less
power. Let the type IIV denote informational values and relation objects.

The protocol of an agent a for detecting and resolving Synt112.

a.Synt112() :: {
IIV iv; set of IIV ivs;

1. forall ω1, ω2 ∈ Data ∪Rela
2. ivs = IVω1 ∩ IVω2; dat = true;

3. if(|ivs| = 0) ivs = Oω1 ∩ Oω2; dat = false;

4. if(|ivs| > 0) then

5. forall iv∈ivs
if(dat) then w = viv; else w = oiv;

6. if(|EQ(a, ω1, w)| > |EQ(a, ω2, w|)) then

send (Rem, x, cω2) to a;
7. if(|EQ(a, ω1, w)| < |EQ(a, ω2, w)|)) then

send (Rem, x, cω1) to a;

(9) Synt211 resolution.
If an agent finds a one-valued attribute ω with different values w1 and w2

(line 3), it compares the evidence powers EQ(a, ω, w1) and EQ(a, ω1, w2)
(lines 5, 6). The attribute value with less power is removed from the values
of the attribute. Let the type VO denote data values and relation instances.

The protocol of an agent a for detecting and resolving Synt211.

a.Synt112() :: {
VO w1,w2; set of VO Set;

1. forall ω ∈ Data ∪Rela
2. if(ω ∈ Data) then Set = V alω; else Set = Oω;

3. if(|Set| > 1 & OneVld(ω)) then

4. forall w1,w2∈Set
5. if(|EQ(a, ω, w1)| > |EQ(a, ω, w2)|)) then

send (Rem, x, w1) to a;
6. if(|EQ(a, ω, w1)| < |EQ(a, ω, w2)|)) then

send (Rem, x, w2) to a;

An approach to context-dependent lexical and syntactic ambiguity resolution 73

6. Conclusion

In this paper, we show that the maximal instances of the ontology classes
taking part in the process of population together with the rules of data
processing and ontology population form a Scott information system. This
result justifies the resolution of the context-dependent lexical ambiguity by
calculating context cardinalities. The Scott information system is also a
basis for our approach to syntactic context-dependent ambiguity resolution.
This system generates a multi-agent system in which agents resolve the
ambiguities by computing the cardinality of their contexts and evidence
powers. The suggested algorithm of lexical ambiguity resolution chooses the
most powerful group of agents and removes competitors. The choice is based
on agents’ weights and their impact on the system.

We have considered only independent lexical and syntactic ambiguities.
In the near future, we plan to study the disambiguation of a combination of
various types of syntactic and lexical ambiguities. In this work, it is useful
to introduce a membership probability of attribute ambiguity values and a
degree of their effect on other instances. Other direction of research is the
study of non-binary conflict relations and development of various types of
disambiguation corresponding to these relations.

References

[1] Alfawareh H.M., Jusoh S. Resolving ambiguous entity through context knowl-
edge and fuzzy approach // Intern. J. on Comput. Sci. and Eng. (IJCSE). –
2011. – Vol. 3, No. 1. – P. 410–422. ISSN: 0975-3397.

[2] Berry, D.M., Kamsties, E., Krieger, M.M. From contract drafting
to software specification: Linguistic sources of ambiguity. [2003].
URL: http://se.uwaterloo.ca/d̃berry/handbook/ambiguityHandbook.pdf
(31.01.2016)

[3] Ganter B., Wille R. Formal Concept Analysis. Mathematical Foundations. –
Springer Verlag, 1996.

[4] N. O. Garanina, E. V. Bodin. Distributed termination detection by counting
agent // Proc. 23nd Intern. Workshop on Concurrency, Specification and Pro-
gramming / CS&P 2014, Chemnitz, Germany. September 29–October 1, 2014.
– Humboldt-Universitat zu Berlin, 2014. – P. 69–79.

[5] Garanina N., Sidorova E., Bodin E. A Multi-agent approach to unstructured
data analysis based on domain-specific onthology // Proc. 22nd Intern. Work-
shop on Concurrency, Specification and Programming / CS&P 2013, Warsaw,
Poland, Sept. 25–27, 2013. – CEUR Workshop Proc., 2013. – Vol. 1032. –
P. 122–132.

74 N.O. Garanina, E.A. Sidorova

[6] Garanina N., Sidorova E. An approach to ambiguity resolution for ontology
population // Proc. 24th Intern. Workshop CS&P / Rzeszow, Poland, Sep.
28-30, 2015. – Univ. of Rzeszow, 2015. – Vol. 1. – P. 134–145.

[7] Gleich B., Creighton O., Kof L. Ambiguity detection: towards a tool explain-
ing ambiguity sources // Proc. 16th Intern. Working Conf. Requirements En-
gineering: Foundation for Software Quality / REFSQ 2010, Essen, Germany,
June 30–July 2, 2010. – Lect. Notes Comput. Sci., 2010. – Vol. 6182. – P. 218–
232.

[8] Kim D.S., Barker K., Porter B.W. Improving the quality of text understanding
by delaying ambiguity resolution // Proc. 23rd Intern. Conf. on Computational
Linguistics, Beijing, 2010. – P. 581–589.

[9] Navigli R. Word sense disambiguation: a survey // ACM Computing Surveys.
– 2009. – Vol. 41, No. 2. – P. 1–69.

[10] Sidorova E., Kononenko I., Zagorulko Yu. Knowledge-based approach to doc-
ument analysis // Intern. J. “Information Technologies and Knowledge”. –
2008. – Vol. 2, No. 1. – P. 17–22.

[11] Spasic I., Zhao B., Jones C., Button K. KneeTex: an ontology-driven system
for information extraction from MRI reports // J. Biomedical Sem. – 2015. –
Vol. 6. – P. 6–34.

[12] Tel G. Introduction to Distributed Algorithms. – Cambridge University Press,
2000.

[13] Winskel G. The Formal Semantics of Programming Languages: An Introduc-
tion. – MIT Press, 1993.

[14] Zhang G.-Q. Chu spaces, concept lattices, and domains // Electronic Notes in
Theor. Comput. Sci. (ENTCS). – 2013. – Vol. 83. – P. 287–302.

