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ALC for CLA:
Towards description logic on concept lattices∗

J.V. Grebeneva, N.V. Shilov, N.O. Garanina

Abstract. In this paper, we start with a motivation of the study of modal and/or
description logics with values in concept lattices. Then we give a brief survey of
approaches to lattice-valued modal and/or description logics. After that we study
some methods of context symmetrization, because in our approach the descrip-
tion logic on concept lattices is defined for symmetric contexts only. We conclude
with a list of problems related to the comparison of different lattice-valued modal
and/or description logics, different variants of context symmetrization and resulting
description logics, decidability and axiomatization of these logics.

Keywords: description logic, lattice-valued modal logics, modal logic, distributive
lattice, concept lattice.

1. Introduction

Let us start with an example that can explain our interest in the study of
polymodal and/or description logics with values in concept lattices.

Let us fix a moment of time and let

• URL be the set of all Uniform Resource Locators that are valid (exist)
at this moment,

• Key be the set of all Key-words in any existing language that are
conceivable in this time,

• F , S and T be binary relations on URL×Key that are implemented
in some (non-real we assume) search engines First, Second and Third
at the moment of time fixed above.

Then let Sh+Ga be the set of all web-sites (represented by their URL’s)
that a search engine First finds by two key-words Shilov and Garanina. In
terms of Formal Concept Analysis (FCA) [5, 15] Sh+Ga = {Shilov,Gara-
nina}′ in the formal context F = (URL, Key, F ).

Similarly, let Gr be the set of all web-sites that Second finds by search-
ing for a single key-word Grebeneva. In FCA terms one can write Gr =
{Grebeneva}′ in the formal context S = (URL, Key, S).

Assume that we would like to know the set (Sh+Ga)−Gr consisting of

∗ALC, Attribute Language with Complements, one of the most simple description logic;
CLA, Concept Lattices and Their Applications, the International conference series.
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all sites that are found by First
for key-words Shilov and Garanina

but which (according to Third) do not contain any word
common for all sites found by Second

for the key-word Grebeneva.

In terms of set theory expanded by FCA-derivatives, the desired set can be
written as (Sh + Ga) \ Gr′′, where prime ‘ ′’ represents a derivative in the
formal context T = (URL, Key, Third).

Recall that Sh + Ga = {Shilov,Garanina}′ in F, Gr = {Grebeneva}′
in S. Since we use three different contexts F, S and T, it is not correct to
write

(Sh+Ga)−Gr = {Shilov,Garanina}′ \ {Grebeneva}′′′,

but we have to write

(Sh+Ga)−Gr = {Shilov,Garanina}↓F \ {Grebeneva}↓S↑T ↓T ,

where ↓F represents the lower derivative in the context F, ↓S — the lower
derivative in the context S, and ↓T and ↑T — the lower and upper derivatives
in the context T.

We believe that queries similar to the above are quite natural, meaningful
and useful. However, processing and solving such complicated queries is
above the abilities of modern search engines. This inability is partially
attributed to the lack of formal semantics of such multi-context queries.

At the same time, polymodal and/or descriptive logics (DL) [1, 2] provide
a language for presentation of queries as above. In particular, if we denote
by T d the inverse of the binary relation T , then (Sh + Ga) − Gr may be
represented in the syntax of a polymodal logic by the following formula

[F ](Shilov&Garanina) & ¬[T ][T d][S]Grebeneva

or in the syntax of a description logic as the following concept term

∀F.(Shilov ⊓Garanina) ⊓ ¬∀T.∀T d.∀S.Grebeneva.

The interpretation of FCA constructs in DL was studied in [11, 13].
In these studies, DL was extended by FCA-derivatives and provided with
Kripke semantics, concept terms were interpreted by sets of objects, but not
as elements of a concept lattice.

A variant of a negation-free description logic (namely, the negation-free
ALC, the Attribute Language with Complements) with values in concept
lattices was defined in [12]. It turns out that this lattice-valued semantics can
be extended for complete ALC in symmetric contexts (i.e. in contexts where
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sets of objects and attributes are equal and the binary relation is symmetric).
This implies that if we wish to extend the lattice semantics defined in [12] to
more expressive description logics than the positive fragment of ALC, then
we have to study ways to symmetrise contexts, i.e. how to build a symmetric
context from a given one and how to embed this given context into it (the
built symmetric context). In this paper, we present some preliminary results
of our studies into the ways of context symmetrisation, formulate and discuss
some topics needing more research.

2. Lattice-valued modal and description logics

Modal and Description Logic are closely related but have different research
paradigms: they have different syntax and pragmatic, but very closely re-
lated semantics (in spite of different terminology).

2.1. Lattice-valued modal logics

Lattice-valued modal logics were introduced in [4, 3] by M.C. Fitting. They
were studied in the cited papers from a proof-theoretic point of view. Later
several authors attempted a study of these logics from the algebraic per-
spective [7, 8, 14]. Basic definitions related to modal logics on lattices follow
below.

Let L be a fixed finite distributive lattice, where ⊥ and ⊤ denote the
smallest and the greatest elements, and →L denotes the relative pseudo-
complement (where the subscript L may be omitted when L is implicit).

Definition 1.
For for all a ∈ L let λx ∈ L.Ta(x) be a unary operation on L such that for
all b ∈ L (1) Ta(b) = ⊤ (if b = a) and (2) Ta(b) = ⊥ (if b ̸= a).

Definition 2.

• The set of formulas Form of the L-valued logic (L-VL) is defined by
induction in a usual way by using the set of propositional variables
PV, the logical connectives ∧, ∨, →, 0, 1 and Ta for each a ∈ L.

• L-valuation is any total function v from Form to L that satisfies the
following properties:

– v(Ta(x)) = Ta(v(x));

– v(x ∧ y) = inf(v(x), v(y));

– v(x ∨ y) = sup(v(x), v(y));

– v(x → y) = v(x) →L v(y);

– v(0) = ⊥ and v(1) = ⊤.
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Then, a formula x is said to be a valid formula of L-VL iff v(x) = ⊤
for all L-valuations v. If L is the two-element Boolean algebra, the valid
formulas of L-VL coincide with the tautologies of the classical propositional
logic. Since L is finite, the L-VL validity problem is decidable.

Definition 3.

• The syntax of L-valued modal logic L-ML extends the syntax of L-VL
by modality �. Form� denotes the set of formulas of L-ML.

• Let (M,R) be a Kripke frame. Then, v is a Kripke L-valuation on
(M,R) if v is a function from M×Form� to L that satisfies the fol-
lowing properties for each w ∈ M :

– v(w,�x) =
∧

wRw′ v(w′, x);

– v(w, Ta(x)) = Ta(v(w, x));

– v(w, x ∧ y) = inf(v(w, x), v(w, y));

– v(w, x ∨ y) = sup(v(w, x), v(w, y));

– v(w, x → y) = v(w, x) →L v(w, y);

– v(0) = ⊥ and v(1) = ⊤.

Then (M,R, v) is called L-valued (modal) Kripke model.

Again, a formula x is said to be a valid L-ML formula if v(w, x) = ⊤
for every L-valued Kripke model (M,R, v) and every w ∈ M . Completeness
and the finite model property for L-ML are proved in [7].

If L is the two-element Boolean algebra, the valid formulas of L-ML
coincide with those of the classical modal logic K.

If we consider the class of Kripke frames with a reflexive and transitive
relation R, then we get L-valued S4-type modal logic L-S4. For this logic
the completeness theorem is proved also in [7].

2.2. ALC with values in concept lattices

Description Logic (DL) is a logic for reasoning about concepts. Also there
is an algebraic formalism developed around concepts in terms of concept
lattices, namely Formal Concept Analysis (FCA). In this section we recall
in brief the definition of the description logic ALC on concept lattices of
(symmetric) contexts and some properties that follow from this definition1.
We use notation and definitions for Description Logics from [1]2. For the
basics and notation of Formal Concept Analysis, please refer to [5].

1Please refer to [12] for full details.
2For the sake of readability, we use Υ instead of ‘·’ for the terminological interpretation

function.
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Semantics of description logics on concept lattices comes from lattice-
theoretic characterization of positive (i.e. without negation) concept con-
structs (for close world semantics) given in the following proposition [12].

Proposition 1. Let (∆,Υ) be a terminological interpretation and P (∆) =
(2∆, ∅, ⊆, ∆, ∪, ∩) be the complete lattice of subsets of ∆. Then semantics
of the ALC positive concept constructs ⊤, ⊥, ⊔, ⊓, ∀, and ∃ enjoys the
following properties in P (∆):

• Υ(⊤) = supP (∆), and Υ(⊥) = inf P (∆);

• Υ(X ⊔ Y ) = sup(Υ(X),Υ(Y )), and Υ(X ⊓ Y ) = inf(Υ(X),Υ(Y ));

• Υ(∀R. X) = sup{S ∈ P (∆) : ∀s ∈ S∀t ∈ ∆((s, t) ∈ Υ(R) ⇒ t ∈
Υ(X))},
Υ(∃R. X) = sup{S ∈ P (∆) : ∀s ∈ S∃t ∈ ∆((s, t) ∈ Υ(R) & t ∈
Υ(X))}.

Conceptual interpretation is a formal context provided by an interpreta-
tion function.

Definition 4. Conceptual interpretation is a four-tuple (G,M, I,Υ), where
(G, M, I) is a formal context and an interpretation function Υ = ICS ∪ IRS ,
where CS and RS are standard concept and role symbols, and

• ICS : CS → B(G,M, I) maps concept symbols to formal concepts,

• IRS : RS → 2(G×G)∪(M×M) maps role symbols to binary relations.

A formal context (G,M, I) or conceptual interpretation (G,M, I,Υ) is said
to be homogeneous (symmetric) if G = M (respectively, the binary relation
I is symmetric).

Semantics of the ALC positive concept constructs ⊤, ⊥, ⊔, ⊓, ∀, and
∃, as well as semantics of the negative construct ¬, are defined in [12] as
follows.

Definition 5. Let (G,M, I,Υ) be a conceptual interpretation, K be a for-
mal context (G,M, I), and B = B(K) be the concept lattice of K. The
interpretation function Υ can be extended to all role terms in a termino-
logical interpretation ((G ∪ M),Υ) in the standard manner so that Υ(R)
is a binary relation on (G ∪ M) for every role term R. The interpretation
function Υ can be extended to all positive ALC concept terms as follows.

• Υ(⊤) = supB and Υ(⊥) = infB;

• Υ(X ⊔ Y ) = sup(Υ(X),Υ(Y )), and Υ(X ⊓ Y ) = inf(Υ(X),Υ(Y ));

• Let Υ(X) = (Ex′, In′) ∈ B. Then
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– Υ(∀R. X) = supK{(Ex, In) ∈ B :
∀o ∈ Ex ∀a ∈ In ∀o′ ∈ G ∃a′ ∈ M

((o, o′) ∈ Υ(R) ⇒ o′ ∈ Ex′, (a, a′) ∈ Υ(R), and a′ ∈ In′)},
– I(∃R. X) = supK{(Ex, In) ∈ B :

∀o ∈ Ex ∀a ∈ In ∃o′ ∈ G ∀a′ ∈ M
((a, a′) ∈ Υ(R) ⇒ (o, o′) ∈ Υ(R), o′ ∈ Ex′, and a′ ∈ In′)}.

In addition, if K is a symmetric context and Υ(X) = (Ex, In) ∈ B, then
Υ(¬X) can be defined as (In,Ex).

The following proposition [12] states that for any conceptual interpre-
tation every positive ALC concept term is an element of a concept lattice;
in addition, if an interpretation is symmetric, this fact holds for all ALC
concept terms.

Proposition 2.

1. For any conceptual interpretation (G,M, I,Υ), for every positive ALC
concept term X, semantics Υ(X) is an element of B(G,M, I).

2. For any symmetric conceptual interpretation (D,D, I,Υ), for every
ALC concept term X, semantics Υ(X) is an element of B(D,D, I).

(Due to the lack of space, examples illustrating Proposition 2 and Propo-
sition 3 below will be given in the full paper.)

Let (∆,Υ) be a terminological interpretation. It is well-known that the
powerset lattice P (∆) = (2∆,⊆,∅,∆,∪,∩) is isomorphic to the concept

lattice of a homogeneous formal context K ̸=
∆ = (∆,∆, ̸=). A particular iso-

morphism is a function ι : 2∆ → B(K ̸=
∆) that maps every subset S ⊆ ∆ to a

formal concept (S, S). This isomorphism defines conceptual interpretation
(B(∆,∆, ̸=), ιI), where (ιI) equals Υ on all object symbols and on all role
symbols, and on concept symbols it is ‘induced’ by ι: (ιI)(p) = (Υ(p),Υ(p))
for every concept symbol p. The following proposition (also borrowed from
[12]) demonstrates that semantics of ALC in terminological interpretation
(∆,Υ) and in conceptual interpretation (B(∆,∆, ̸=), ιI) are closely con-
nected. The following proposition is proved in [12] by induction on the
structure of concept terms.

Proposition 3. For every ALC concept term Z and every terminological
interpretation (∆,Υ), the following equality holds: (ιI)(Z) = ι(Υ(Z)).

Informally speaking, the above proposition states that semantics of ALC
on concept lattices, defined in Definition 5, is compatible with the standard
Kripke set-theoretic semantics of ALC. Due to this interpretation of the
proposition, we would like to refer to the proposition as the compatibility
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property, and consider it as a strong evidence for naturalness and soundness
of our definition.

3. Ways to build a symmetric context

The above Proposition 2 leads to the following idea: to define the seman-
tics of ALC with values in a concept lattice by isomorphic embedding of
the background context into a symmetric one in such a way that for the
positive fragment of ALC the original semantics and the induced semantics
equal each other. Below we examine some opportunities to symmetrize a
given context (i.e. to build a symmetric context from an arbitrarily given
background context) by set-theoretic and algebraic manipulations with the
binary relation of the context. Without loss of generality, we may assume
that the background context is reduced [5] and has disjoint sets of objects
and attributes.

Let K := (G,M, I) be a reduced context where G ∩ M = ∅ and Kd =
(M,G, Id) be its dual context. Let us also use the following notation for
binary relations (on M and/or G):

• ∅ is an empty binary relation,

• × is a total binary relation,

• E is an identity binary relation,

• Ec is a complement for E.

We would like to combine the cross-tables of K and the dual context Kd into
the symmetric one in the following way:

G M
G ? I
M Id ?

Let us represent the above cross-table in a shorter form as

? K
Kd ?

and denote the corresponding symmetric context by K◦ := (G◦,M◦, I◦).
Recall that B(G,M, I) is the concept lattice of the context K, B(G◦,M◦, I◦)
is the concept lattice of the context K◦. Let us use the standard notation ‘′’
for derivatives in the background context K and, for distinction, the notation
‘◦’ for derivatives in the symmetric context.

We are going to fill free quadrants (i.e. with question marks) with dif-
ferent combinations of ∅, ×, E and Ec. In total, there are 24 = 16 combi-
nations. Below we study 9 of these 16 combinations.

Case 1 (∅,∅). Let us consider the case
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∅ K
Kd ∅

It is the disjoint union of K and Kd. The concept lattice B(K◦) = B(K
.
∪Kd)

is a horizontal sum [5], i.e. the union of two sublattices B(K) and B(Kd)
such that B(K) ∩B(Kd) = {⊥,⊤}.

Case 2 (×,∅). Let us consider the case

× K
Kd ∅

The concept lattice of this context is isomorphic to the vertical sum [5] of
the concept lattices B(Kd) and B(K) (where the concept lattice B(Kd) is
over B(K)).

Case 3 (∅,×). This case is like the previous one, but we have to swap
components of the vertical sum.

Case 4 (×,×). Let us consider the case

× K
Kd ×

We have here the direct sum K + Kd of the contexts K and Kd [5], and
the concept lattice of the sum is isomorphic to the product of the concept
lattices B(K)×B(Kd). A pair (A,B) is a concept of the direct sum (K+Kd)
iff (A ∩ G,B ∩ M) is a concept of K and (A ∩ M,B ∩ G) is a concept of
Kd. It implies that isomorphism is given by (A,B) 7→ ((A∩G,B∩M), (A∩
M,B ∩G)).

Case 5 (E,E). Let us consider the case:

E K
Kd E

Let (X,Y ) ∈ B(K◦) be a concept and let X = A
.
∪B, where A ⊆ G, B ⊆ M .

We have to consider the following 4 subcases:

1. B = ∅,

2. A = ∅,

3. |B| = 1 and A ̸= ∅,

4. |B| > 1 and A ̸= ∅.

Subcase 1. Let X = A. Then

X◦ = A◦ = A′ ∪ (if |A| = 1 then {a} else ∅) = Y,

i.e. if |A| = 1, then (X,Y ) = ({a}, {a}∪A′), and (X,Y ) = (A,A′) otherwise.
Subcase 2. Let X = B. Then
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X◦ = B◦ = B′ ∪ (if |B| = 1 then {b} else ∅) = Y,

i.e. if |B| = 1, then (X,Y ) = ({b}, {b}∪B′), and (X,Y ) = (B,B′) otherwise.
Subcase 3. Let X = A ∪ {b}. Then we have

X◦ =

= A◦ ∩ {b}◦ = (A′ ∪ (if |A| = 1 then {a} else ∅)) ∩ ({b}′ ∪ {b}) =
= (A′ ∩ {b}′) ∪ ((if . . . ) ∩ {b}′) ∪ (A′ ∩ {b}) ∪ ((if . . . ) ∩ {b}) =
= ((if . . . ) ∩ {b}′) ∪ (A′ ∩ {b}) =
= if ({b} ∈ A′) then (if |A| = 1 then {a, b} else {b}) else ∅ =

= Y

Hence, if {b} ∈ A′ and |A| = 1, then (X,Y ) = ({a} ∪ {b}, {a} ∪ {b}), and if
{b} ∈ A′ |A| > 1, then (X,Y ) = (A ∪ {b}, {b}).
Subcase 4. Let |B| > 1, then X = A ∪B. Then we have

X◦ =

= A◦ ∩B◦ = (A′ ∪ (if |A| = 1 then {a} else ∅)) ∩B′ =

= (if . . . ) ∩B′ = if (|A| = 1) then ({a} ∩B′) else ∅ =

= if (|A| = 1) and B ⊆ {a}′ then {a} else ∅ =

= Y

Hence, if B ⊆ {a}′ and |A| = 1, then (X,Y ) = ({a} ∪B, {a}).
Case 6 (∅,E):

∅ K
Kd E

This case is very similar to the previous one. Immediately we can present
the result in each subcase of Case 5:
Subcase 1 (B = ∅). (X,Y ) = (A,A′).
Subcase 2 (A = ∅). If |B| = 1 then (X,Y ) = ({b}, {b} ∪ B′) else (X,Y ) =
(B,B′).
Subcase 3 (|B| = 1). If {b} ∈ A′, we have (X,Y ) = (A ∪ {b}, {b}).
Subcase 4 (|B| > 1). All the concepts in this case will be either ⊤ or ⊥.

Case 7 (E,∅). This case is similar to the previous one.
Case 8 (×,E). Now let us consider the case

× K
Kd E

Let us use subcases as in Case 5.
Subcase 1 (B = ∅). (X,Y ) = (A,G ∪A′).
Subcase 2 (A = ∅). If |B| = 1, then (X,Y ) = ({b}, {b} ∪B′), and (X,Y ) =
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(B,B′) otherwise.
Subcase 3 (|B| = 1). If {b} ∈ A′, then (X,Y ) = (A ∪ {b}, {b} ∪ {b}′), else
(X,Y ) = (A ∪ {b}, {b}′).
Subcase 4 (|B| > 1). (X,Y ) = (A ∪B,B′).

Case 9 (E,×). This case is similar to Case 8.

4. Conclusion

As we have already stated in the abstract, this paper is devoted to our
progress in the studies of description logic with values in concept lattices.
These studies are based on the approach presented in [12], the only definition
(to the best of our knowledge) of a description logic with values in concept
lattices.

The background motivation of this research is to expand web-search
query languages from “googling” by key-words (i.e. computing the lower
derivative) to more expressive language that admits the lower and upper
derivatives in multiple contexts as well as Boolean combinations of queries.
(Please refer to the Introduction for the example and discussion.)

Now we are ready to formulate some topics and problems that we con-
sider natural and important for further research.

1. In Subsection 2.1, we represented the definition for modal logics with
values in a given finite distributive lattice L; this definition is easy
to extend to polymodal logics. In Subsection 2.2, we represented the
definition for the description logic ALC (which can be considered as a
polymodal version of K) with values in concept lattices of symmetric
contexts. Assume that K is a finite symmetric context; then B(K) is
a finite lattice, but it may not be a distributive lattice.
Question: Assuming that B(K) is a finite distributive lattice, is ALC
with values in B(K) a polymodal B(K)-ML?

2. In Subsection 2.2, we represented the definition for the description
logic ALC with values in concept lattices of symmetric contexts and
for the positive fragment of ALC with values in arbitrary concept
lattices.
Questions:

(a) Is the positive fragment of ALC with values in concept lattices
decidable/axiomatizable?

(b) Is ALC with values in concept lattices of symmetric contexts de-
cidable/axiomatizable?

3. In Section 3, we examine 9 of 16 variants of context symmetrization.
Topics for further research are the following:
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(a) to study the remaining seven cases of context symmetrization and
isomorphic embedding with Ec in one or two free quadrants, and

(b) to examine under which embedding out of these sixteen the in-
duced semantics of the positive fragment of ALC is equal to the
original semantics.

4. One more topic: to investigate when an isomorphic embedding of a
context to a symmetric context induces semantics for the positive frag-
ment of ALC equal to the original semantics.

We also would like to study relations of the so-called twist structures (which
are in use for the completeness of the algebraic semantics of Nelson logic)
[10, 9] with ALC with values in concept lattices.

An extended abstract of this paper has been presented at the Tenth
International Conference on Concept Lattices and Their Applications (La
Rochelle, France, October 15–18, 2013) [6].
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