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The solution of the one-dimensional unsteady flow
problem in the Lena river delta

A.I. Krylova, E.A. Antipova, D.V. Perevozkin

1. Introduction

The research into the hydrological regime of the river estuaries convention-
ally concerns the distribution of the flow across their channels and branches.

There is a known hydraulic method for calculating the hydrological
regimes in the river deltas [1]. It is based on a system of the balance equa-
tions for branching nodes and uses the hydraulic formulas to describe the
free surface level gradient in stationary conditions.

In [2–5] the complex river channel systems are simulated by the numeri-
cal solution of the Saint–Venant equation system using a variety of implicit
difference schemes. The unsteady flows in the channels are described using
a one-dimensional model. At the points of branching, the conjugation con-
ditions are formulated. To solve the arising equations, the authors employ
a stable sweeping algorithm which accounts for the tree-like graph struc-
ture. Altogether, these constitute the approach to solving the Saint–Venant
equation system.

It should be noted that to apply the numerical solution of the Saint–
Venant equation system to natural watercourses, one needs to prepare a
representative and consistent dataset. This would ensure the accuracy of
the solution to be.

This paper considers the mathematical model of the complexly braided
Lena estuary. The model describes the hydrological regime of the river
starting at the Kusur gauging station and ending at the outlets.

Also, this paper investigates the hydrological regime of the navigable
Bykovskaya branch. The digital terrain model required in the equations of
motion is obtained using the Google Earth Application.

2. Statement of the problem

We consider the Saint–Venant equations that describe a slowly changing
unsteady fluid flow in open channels. If we ignore the effects of the wind, the
pressure and the distributed inflow, these equations in the one-dimensional
case have the following form:
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where x is the coordinate taken alongside the channel axis, t is the time,
Q(x, t) is the discharge, Z(x, t) is the free surface level, h(x, t) is the flow
depth, B(x, h) is the width of the surface when the depth is equal to h, ω
is the cross-section area of the flow, K(x, h) is the discharge capacity, and
g is the free fall acceleration.

A complexly braided estuary can be described as a system consisting of
two types of elements, that is, open channels and conjugation points. This
system can be represented as a planar graph with its vertices corresponding
to conjugation points and graph edges (segments of the axis x) to open
channels.

In the graph, we consider the Saint–Venant equations (1), (2). We
choose the discharge Q(x, t) and the free surface level Z(x, t) as unknown
distributed parameters, and Q∗(t), Z∗(t)–– as unknown concentrated param-
eters.

The initial conditions for the distributed parameters are set on every
segment

Q(x, 0) = Q0(x), Z(x, 0) = Z0(x). (3)

For the concentrated parameters, the conjugation conditions are set. The
latter connect the values of the distributed parameters on the segment edges
and the values of the concentrated parameters in the vertices.

Let us enumerate the segments and vertices independent of each other.
Suppose that µj is a set of the indices of segments that are connected to the
jth vertex. Let µj+ and µj− denote the sets of the indices of segments that
are connected to the jth vertex by their right and left edges, respectively.

If we consider subcritical flows (the average flow velocity is less than the
velocity of small disturbance propagation), the conjugation conditions can
be presented in the following forms:

a) the balance of the discharge in a vertex∑
i∈µj+

Qi −
∑
i∈µj−

Qi = Qj∗; (4)

b) the free surface level coupling

Zi = Zj∗ , i ∈ µj ; (5)

c) if the inflow or the outflow is set in a vertex, a concentrated parameter
relation is needed:

Qj∗ = f j(t, Zj∗); (6)
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if a concentrated volume is set in a vertex,

Qj∗ = −Ω
∂Zj∗
∂t

, (6′)

where Ω = Ω(Z) is the surface area of the concentrated volume.

The boundary conditions in the starting and ending cross-sections of the
system are considered as a special case of the conjugation condition. For
example, if we set the boundary condition in the form of time dependence,
that is, Q = f(t) or Z = Z(t), then relations (6) will have the form Qj∗ =

f(t), Zj∗ = Z(t), respectively.

3. The numerical solution method

The problems related to the hydrological regime of complexly braided open
channels are best solved using the methods based on the implicit difference
schemes. The implicit schemes are absolutely stable with any relative scale
of grid parameters and allow us to choose grid steps only from considerations
of accuracy.

Let us formulate the system (1), (2) in the characteristic form. This will
allow us to represent the difference equations for both the inner and the
boundary segment points in a convenient and uniform manner

R
∂U

∂t
+ ΛR

∂U

∂x
= F, (7)

where
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F1,2 = gω

[
Fr · I − Q|Q|

K2

]
.

Here Fr =
v2

c2
is the Froude number; c =

√
gω

B
is the speed of small distur-

bance propagation; v =
Q

ω
is the cross-section average velocity.

In the implicit difference scheme used, the space and time derivatives are
approximated the following way:
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The coefficients in the difference equations are calculated based on the known
solution for t = tk. The right-hand side can be linearized and written in the
following form:

F k+1
n = F kn +

(
∂F

∂U

)k
n

(Uk+1
n − Ukn).

At the boundary points, where n = 0 and n = N , we use only the
difference relations that correspond to the characteristic directions. When
the second equation from (7) is approximated, that is, n = 0, we use

∂x

∂t
= v − c.

And when the first equation from (7) is approximated, that is, n = N , we
employ

∂x

∂t
= v + c.

Considering the above relations, the following system of difference equations
can be obtained for each segment:

An

(
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k+1
n−1

)
+BnU

k+1
n = Dn, (9)

n = 1, 2, . . . , N − 1,

where
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τ
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(
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n

, Dn = Bk
nU

k
n + τF kn . (10)

For the boundary points n = 0, n = N , the difference equations have the
following forms, respectively:
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where indices (1) and (2) mean that only the first or the second matrix row
is taken.

The system of equations (9), (11), (12) is not closed. In order to close
it we need the boundary conditions or the conjugation conditions that are
linearized as needed:

• if Q = f(Z) is set, then

Qk+1
∗ = f(Zk∗ ) +

(
∂f

∂Z

)k (
Zk+1
∗ − Zk∗

)
; (13)

• if concentrated volume is considered, then

Qk+1
∗ = −Ω(Zk∗ )

(
Zk+1
∗ − Zk∗

τ

)
. (14)

Solving the system of equations (9), (11), (12), (4)–(6), which are not
necessarily linear, can be computationally complex without taking the struc-
ture of the equations into account. The paper [5] offers a variation of the
sweep method that takes advantage of the tridiagonal matrix structure and
the structure of a system of open channels.

4. Investigation of numerical solution convergence to an
exact solution

With some restrictions on the channel parameters, the Saint–Venant equa-
tion system can be reduced to the parabolic diffusion-convection partial
differential equation (PDE).

If we ignore Qt and
(
Q2

ω

)
x

in (2) and assume that the width of an open

channel is constant, then it is possible, with some transformations, to derive
a second order PDE only with the dependent variable Q(x, t):

Qt −
K2

2B|Q|
Qxx +

KhQ

BK
Qx = 0. (15)

Equation (15) represents the convection-diffusion equation with the dif-

fusion coefficient a =
K2

2B|Q| and the convection speed b =
KhQ

BK
for the

discharge. With a and b being constant, the analytical solution can be ob-
tained with the help of the Fourier method (also known as separation of
variables). The solution satisfies the initial and boundary conditions for the
discharge in the open channel:
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Q(x, 0) = Q0(x), Q(0, t) = Q1(t), Q(L, t) = Q2(t). (16)

Furthermore, using the found solution and equation (1) it is possible to
deduce the depth of the flow.

In order to investigate the convergence and check the correctness of the
algorithm, the analytical solution is compared to the numerical one. For
this we repeat the experiment conducted in [6] which considers a part of the
Kuban mountain river. Its average bed inclination is assumed to be equal
to 1, 8 · 10−3, which allows one to describe the movement of a flood wave
with (15).

The following dependencies are taken as the given data:

Q0(x) = 4(6.0606 · 10−10x2 − 2.739 · 10−4x+ 100),

Q1(t) = 4(2.0552 · 10−15t3 − 7.663 · 10−10t2 + 1.4 · 10−4t+ 100), (17)

Q2(t) = 4(1.956 · 10−15t3 − 9.285 · 10−10t2 + 2.294 · 10−4t+ 80.2581).

The considered segment has the following characteristics: the length
L = 90 km, the width B = 70 m, the initial depth h0 = 2.5 m, the roughness
code n = 0.04. Its shape is to be considered rectangular. The integration
period is 5 days. The grid steps are ∆x = 0.5 km and ∆t = 1800 s. We also
set a = 11635 and b = 3.5759. These values are obtained by averaging their
values in the numerical solution over time.

Figure 1 depicts the exact solution of problem (15), (17). Figure 2
presents the results of the comparison of the numerical and analytical so-
lutions. For the beginning, the dependence of the discharge on time is
presented then subsequently the middle and the end of the segment. The

Figure 1. The analytical solution
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Figure 2. A comparison of the numerical and analytical solutions

last plot shows the numerical solution at every point of the segment. There,
the bold dashed lines indicate to the discharge in the segment ends, and the
solid lines correspond to the discharge at the inner points.

The results obtained demonstrate the convergence of the numerical so-
lution to the exact one for a chosen hydrological regime.

5. The numerical modeling of an unsteady water flow in
the Bykovskaya branch of the Lena river delta

As a real object of our research, one of the mainstream Lena channels is cho-
sen, namely, the Bykovskaya branch. It is currently the primary navigable
waterway of Lena river delta.

Figure 3 depicts the most affluent channels of this branch schematically
represented by a planar graph. The latter consists of 9 computational seg-
ments. The number near every segment denotes its length.

The Bykovskaya branch is situated in the eastern part of the delta. It is
directed south-eastward and flows into the Laptev sea near the Bykov cape
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a b

Figure 3. The Bykovskaya branch: a–– the primary channels,
b–– the computational graph depicting the segment lengths (m)

(see the 7th graph vertex in Figure 3a). Its length is 105 km and its sinuosity
coefficient is 1.14. Throughout its way, a large number of secondary channels
flow in and out of it. None of them are navigable except for the Sinitsyn
channel (the first half of the segment connecting the 5th and the 7th graph
vertices) and an unnamed channel near the Bykov cape.

It is assumed that the cross-sections of all channels in the branch are
triangular. Its width B(x, t) is considered to be a function of time and
space. The initial width was measured using the Google Earth program.
The time step is equal to 1800 s and the x-coordinate step being equal to
500 m on average.

The initial free surface level is assumed to be zero. The initial depth is
calculated using the hydrologic-morphometric formula proposed in [7]:

h = 0.42B1/3.

Figure 4 depicts a schematized profile of the channel bed obtained with the
formula Z0 = Z − h.

Due to the fact that the initial discharge is not in advance known, the
simulation is run in two stages. The first stage consists in running the sim-
ulation with the constant input discharge and the constant output levels for
a specified period of time. Namely, we set the input discharge at vertex 1
to 5,000 m3/s, the levels at vertices 3 and 8 are set to zero and the simu-
lation runs for 2 days. The initial discharge and level are set to zero. The
chosen period of time allows the process to reach a nearly-steady state. Fig-
ure 5 displays the distribution of the discharge across the branch individual
channels.

The results obtained are used for setting the initial state at the second
stage which simulates the unsteady flow in the branch.
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Figure 4. The schematized bed
profile

Figure 5. The distribution of the
discharge across the channels

The unsteady water flow in the Lena river delta is the result of two
factors. The first one is the runoff caused by rainfall and the second one is
the wind-induced water level fluctuations. In this paper, we account for the
first factor only. Therefore, the discharge at vertex 1 is a function of time
Q = f(t) and the levels at vertices 3 and 8 are zero.

To define f(t), we use the data collected at the Kusur gauging station
in 2008. The Kusur gauging station is located upstream of the Stolb island,
which is the main branching point of the delta. In [8], the distribution of
water flow among the delta parts is discussed over a period of 1953–1990.
Therein, the Bykovskaya branch is ≈ 25 % of the total flow.

We have simulated the main navigable period, that is, from the beginning
of May up to the end of October. The time dependence of the discharge in
vertex 1 is illustrated in Figure 6.

After imposing all boundary conditions, the problem can be solved. The
results of the modeling the unsteady flow in the Bykovskaya branch are
depicted in Figures 7, 8.

Figure 6. The discharge boundary
condition in vertex 1

Figure 7. The free surface levels in
vertices 1 and 5
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Figure 8. The discharge in selected vertices

6. Conclusion

This paper, among other objectives, aims at validation of the numerical
solution to the Saint–Venant equations. With some assumptions, the latter
can be reduced to the convection–diffusion equation, for which an analytical
solution can be easily built. In this paper, a comparison of these solutions
is presented. Moreover, the paper considers modeling the free surface level
and the discharge in the Bykovskaya branch of the Lena river delta. which
is one of the primary navigable watercourses in the delta. The numerical
solution allows us to obtain the qualitative depiction of the water movement
in the delta. The width of the channels is obtained from the Google Earth
Application, and the discharge data come from the measurements collected
at the Kusur gauging station in 2008.

The numerical simulation based of the hydrological regime in the delta
allows us to obtain the characteristics of the flow that are hard to measure
in reality.
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