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Performance evaluation of the generalized shared
memory system in dtsPBC∗

I. V. Tarasyuk

Abstract. The algebra dtsPBC is a discrete time stochastic extension of finite
Petri box calculus (PBC) enriched with iteration. In this paper, a method of
modeling and performance evaluation of concurrent systems in dtsPBC is outlined
based on the stationary behaviour analysis. The method is then applied to the
generalized shared memory system with a variable probability of activities.
Keywords: stochastic process algebra, Petri box calculus, discrete time, itera-
tion, stationary behaviour, performance evaluation, shared memory system, variable
probability.

1. Introduction

Algebraic process calculi are a recognized formal model for specification of
computing systems and analysis of their behaviour. In such process algebras
(PAs), systems and processes are specified by formulas, and verification of
their properties is accomplished at a syntactic level via equivalences, axioms
and inference rules. In the last decades, stochastic extensions of PAs were
proposed. Stochastic process algebras (SPAs) do not just specify actions
which can happen as usual process algebras (qualitative features), but they
associate some quantitative parameters with actions (quantitative charac-
teristics). The well-known SPAs are MTIPP [6], PEPA [5] and EMPA [4].

Petri box calculus (PBC) [2] is a flexible and expressive process algebra
developed as a tool for specification of Petri nets structure and their inter-
relations. Its goal was also to propose a compositional semantics for high
level constructs of concurrent programming languages in terms of elemen-
tary Petri nets. PBC has a step operational semantics in terms of labeled
transition systems. Its denotational semantics was proposed in terms of a
subclass of Petri nets (PNs) equipped with interface and considered up to
isomorphism called Petri boxes.

A stochastic extension of PBC, stochastic Petri box calculus (sPBC),
was proposed in [11]. Only a finite part of PBC was used for the stochastic
enrichment, i.e., sPBC has neither refinement nor recursion nor iteration
operations. The calculus has an interleaving operational semantics in terms
of labeled transition systems. Its denotational semantics was defined in
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terms of a subclass of labeled continuous time stochastic PNs (LCTSPNs)
called s-boxes. In [7], a computing system with n parallel processes and a
critical section, as well as the producer/consumer system with a producer, a
consumer and a buffer of capacity 1 or n, moreover, the alternating bit proto-
col with an emitter, a receptor and 2 channels, were described within sPBC.
In [8, 9], iteration was added to sPBC and the producer/consumer system
with a buffer of capacity n was specified within the calculus. In [10], special
multiactions with zero time delay were added to sPBC and a manufacturing
system with 3 machines and an assembler, as well as the AUY-protocol
with a sender, receiver and 2 channels, were modeled. The mentioned
example systems had an interleaving semantics, and no performance indices
were calculated for them.

In [12, 14], a discrete time stochastic extension dtsPBC of finite PBC
was presented. A step operational semantics of dtsPBC was constructed
via labeled probabilistic transition systems. Its denotational semantics was
defined with dts-boxes, a subclass of labeled discrete time stochastic PNs
(LDTSPNs). The probabilistic equivalences and their interrelations were
studied. In [13,15], the iteration operator was added to dtsPBC.

Since dtsPBC has a discrete time semantics and geometrically distributed
delays in the process states, unlike sPBC with continuous time semantics and
exponentially distributed delays, the calculi apply two different approaches
to the stochastic extension of PBC, in spite of some similarity of their syn-
tax and semantics inherited from PBC. The main advantage of dtsPBC is
that concurrency is treated naturally, like in PBC, whereas in sPBC paral-
lelism is simulated by interleaving, obliging one to collect the information on
causal independence of activities before constructing the semantics. Thus,
parallelism is preserved in the semantics of all example systems considered
as the case studies within dtsPBC.

In this paper, dtsPBC with iteration is a basic model. First, we present
syntax of the calculus. Second, we describe its operational semantics in
terms of labeled transition systems and denotational semantics based on
LDTSPNs. We improve the operational semantics from [13, 15] by moving
the empty loop rule (corresponding to one time unit stay in the current
process state) from the inaction rules, consuming no time, to the action
rules, requiring one time unit to apply. Then, we propose step stochastic
bisimulation equivalence used to reduce transition systems of expressions
and their underlying DTMCs. Further, the stationary behaviour of infinite
stochastic processes of dtsPBC is described and several performance indices
are defined based on the steady-state probabilities. We prove that the men-
tioned equivalence preserves the stationary behaviour. Finally, we present
a case study of the generalized shared memory system explaining how to
model and analyze performance of concurrent systems within dtsPBC, as
well as in which way to reduce the systems while preserving their perfor-
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mance indices, thus, making simpler their performance evaluation. We call
the shared memory system generalized, since it is specified by an expression
with a variable probability of activities. It is interpreted as a parameter
of the performance indices of the system. The resulting performance index
functions are then analyzed with a goal of performance optimization.

The paper is organized as follows. The syntax of dtsPBC extended with
iteration is presented in Section 2. Section 3 describes its operational se-
mantics and Section 4 presents its denotational semantics. In Section 5, step
stochastic bisimulation equivalence is defined and applied to reduce transi-
tion systems and Markov chains. The method of performance evaluation of
dtsPBC processes is outlined in Section 6. In Section 7, performance of the
generalized shared memory system is analyzed. The concluding Section 8
summarizes the results obtained and outlines research perspectives.

2. Syntax

In this section, we propose the syntax of discrete time stochastic PBC.

We denote a set of all finite multisets over X by INX
f . Let Act =

{a, b, . . .} be a set of elementary actions. Then Âct = {â, b̂, . . .} is a set

of conjugated actions (conjugates) such that a ̸= â and ˆ̂a = a. Let A =

Act ∪ Âct be a set of all actions, and L = INA
f be a set of all multiac-

tions. Note that ∅ ∈ L, this corresponds to the execution of a multiaction
that contains no visible action names. The alphabet of α ∈ L is defined as
A(α) = {x ∈ A | α(x) > 0}.

An activity (stochastic multiaction) is a pair (α, ρ), where α ∈ L and ρ ∈
(0; 1) is the probability of the multiaction α. The multiaction probabilities
are used to calculate probabilities of state changes (steps) at discrete time
moments. Let SL be a set of all activities. Let us note that the same
multiaction α ∈ L may have different probabilities in the same specification.
The alphabet of (α, ρ) ∈ SL is defined as A(α, ρ) = A(α). The alphabet of
Γ ∈ INSL

f is defined as A(Γ) = ∪(α,ρ)∈ΓA(α). For (α, ρ) ∈ SL, we define its
multiaction part as L(α, ρ) = α and its probability part as Ω(α, ρ) = ρ. The
multiaction part of Γ ∈ INSL

f is defined as L(Γ) =
∑

(α,ρ)∈Γ α.

Activities are combined into formulas by the next operations: sequential
execution ;, choice [], parallelism ∥, relabeling [f ] of actions, restriction rs
over a single action, synchronization sy on an action and its conjugate and
iteration [∗∗] with three arguments: initialization, body and termination.

Sequential execution and choice have a standard interpretation, like in
other process algebras, but parallelism does not include synchronization,
unlike the corresponding operation in the standard process calculi.

Relabeling functions f : A → A are bijections preserving conjugates, i.e.,

∀x ∈ A f(x̂) = f̂(x). Relabeling is extended to multiactions in a usual way:
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for α ∈ L we define f(α) =
∑

x∈α f(x). Relabeling is also extended to the

multisets of activities: for Γ ∈ INSL
f we define f(Γ) =

∑
(α,ρ)∈Γ(f(α), ρ).

Restriction over an action a means that, for a given expression, any
process behaviour containing a or its conjugate â is not allowed.

Let α, β ∈ L be two multiactions such that for some action a ∈ Act we
have a ∈ α and â ∈ β, or â ∈ α and a ∈ β. Then synchronization of α and

β by a is α⊕a β = γ, where γ(x) =

{
α(x) + β(x)− 1, x = a or x = â;
α(x) + β(x), otherwise.

In iteration, the initialization subprocess is executed first, then the body
is performed zero or more times, finally, the termination is executed.

Static expressions specify the structure of processes. The expressions
correspond to unmarked LDTSPNs (which are marked by definition).

Definition 1. Let (α, ρ) ∈ SL, a ∈ Act. A static expression of dtsPBC is

E ::= (α, ρ) | E;E | E[]E | E∥E | E[f ] | E rs a | E sy a | [E ∗ E ∗ E].

StatExpr denotes the set of all static expressions of dtsPBC.
To avoid inconsistency of the iteration operator, we do not allow any

concurrency in the highest level of the second argument of iteration. This is
not a severe restriction, since we can prefix parallel expressions by an activity
with the empty multiaction. The mentioned inconsistency can result in non-
safe nets [3].

Definition 2. Let (α, ρ) ∈ SL, a ∈ Act. A regular static expression of
dtsPBC is

E ::= (α, ρ) | E;E | E[]E | E∥E | E[f ] | E rs a | E sy a | [E ∗D ∗ E],
where D ::= (α, ρ) | D;E | D[]D | D[f ] | D rs a | D sy a | [D ∗D ∗ E].

RegStatExpr denotes the set of all regular static expressions of dtsPBC.
Dynamic expressions specify the states of processes. The expressions

correspond to LDTSPNs (which are marked by default). Dynamic expres-
sions are constructed from static ones which are annotated with upper or
lower bars and specify active components of the system at the current time
instant. E denotes the initial, and E denotes the final state of the process
specified by a static expression E. The underlying static expression of a
dynamic one is obtained by removing all the upper and lower bars from it.

Definition 3. Let E ∈ StatExpr, a ∈ Act. A dynamic expression of
dtsPBC is
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G ::= E | E | G;E | E;G | G[]E | E[]G | G∥G | G[f ] | G rs a | G sy a |
[G ∗ E ∗ E] | [E ∗G ∗E] | [E ∗ E ∗G].

DynExpr denotes the set of all dynamic expressions of dtsPBC.
A dynamic expression is regular if its underlying static expression is regular.
RegDynExpr denotes the set of all regular dynamic expressions of dtsPBC.

3. Operational semantics

In this section, we define the step operational semantics in terms of labeled
probabilistic transition systems.

3.1. Inaction rules

Inaction rules for dynamic expressions describe their structural transforma-
tions which do not change the states of the specified processes. As we will
see, the application of an inaction rule to a dynamic expression does not
lead to any discrete time step in the corresponding LDTSPN, hence, no
transitions are fired and its current marking remains unchanged. Thus, an
application of every inaction rule does not require any discrete time delay,
i.e., the dynamic expression transformation described by the rule is accom-
plished instantly.

In Table 1, we define inaction rules for regular dynamic expressions in
the form of overlined and underlined regular static ones. In this table,
E,F,K ∈ RegStatExpr and a ∈ Act.

Table 1. Inaction rules for overlined and underlined regular static expressions

E;F ⇒ E;F E;F ⇒ E;F E;F ⇒ E;F E[]F ⇒ E[]F

E[]F ⇒ E[]F E[]F ⇒ E[]F E[]F ⇒ E[]F E∥F ⇒ E∥F
E∥F ⇒ E∥F E[f ] ⇒ E[f ] E[f ] ⇒ E[f ] E rs a⇒ E rs a

E rs a⇒ E rs a E sy a⇒ E sy a E sy a⇒ E sy a

[E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

[E ∗ F ∗K] ⇒ [E ∗ F ∗K] [E ∗ F ∗K] ⇒ [E ∗ F ∗K]

[E ∗ F ∗K] ⇒ [E ∗ F ∗K]

In Table 2, we propose inaction rules for regular dynamic expressions in
the arbitrary form. In this table, E,F ∈ RegStatExpr, G,H, G̃, H̃ ∈
RegDynExpr and a ∈ Act.

A regular dynamic expression G is operative if no inaction rule can be
applied to it. OpRegDynExpr denotes the set of all operative regular dy-
namic expressions of dtsPBC. Any regular dynamic expression can be trans-
formed into a (not necessarily unique) operative one by using the inaction
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Table 2. Inaction rules for arbitrary regular dynamic expressions
G⇒G̃, ◦∈{;,[]}
G◦E⇒G̃◦E

G⇒G̃, ◦∈{;,[]}
E◦G⇒E◦G̃

G⇒G̃

G∥H⇒G̃∥H
H⇒H̃

G∥H⇒G∥H̃
G⇒G̃

G[f ]⇒G̃[f ]

G⇒G̃, ◦∈{rs ,sy}
G◦a⇒G̃◦a

G⇒G̃

[G∗E∗F ]⇒[G̃∗E∗F ]

G⇒G̃

[E∗G∗F ]⇒[E∗G̃∗F ]

G⇒G̃

[E∗F∗G]⇒[E∗F∗G̃]

rules. We shall consider regular expressions only and omit the word “regu-
lar”.

Definition 4. Let ≈ = (⇒ ∪ ⇐)∗ be a structural equivalence of dynamic
expressions in dtsPBC. Thus, two dynamic expressions G and G′ are struc-
turally equivalent, denoted by G ≈ G′, if they can be reached from each
other by applying the inaction rules in a forward or backward direction.

3.2. Action and empty loop rules

Action rules describe dynamic expression transformations due to execution
of non-empty multisets of activities. The rules represent possible state
changes of the specified processes, when some non-empty multisets of ac-
tivities are executed. As we shall see, the application of an action rule to
a dynamic expression leads to a discrete time step in the corresponding
LDTSPN at which some transitions are fired and the current marking is
changed, unless there is a self-loop produced by the iterative execution of
a non-empty multiset (which, additionally, should be one-element, i.e., a
single activity, since we do not allow concurrency at the highest level of the
second argument of iteration).

The empty loop rule G
∅→ G describes dynamic expression transfor-

mations due to execution of the empty multiset of activities at a discrete
time step. The rule reflects a non-zero probability to stay in the current
state at the next time moment, which is an essential feature of discrete time
stochastic processes. As we shall see, the application of the empty loop rule
to a dynamic expression leads to a discrete time step in the corresponding
LDTSPN at which no transitions are fired and the current marking is not
changed. This is a new rule that has no prototype among inaction rules

of PBC, since it represents a time delay. The PBC rule G
∅→ G from [3]

in our setting would correspond to the rule G ⇒ G describing the stay in
the current state when no time elapses, but it is not needed to transform
dynamic expressions into operative ones.

Thus, an application of every action rule or the empty loop rule requires
one discrete time unit delay, i.e., the execution of a (possibly empty) multiset
of activities resulting in the dynamic expression transformation described by
the rule is accomplished instantly after one unit of time elapses.
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In Table 3, we define the action and empty loop rules. In this table,
(α, ρ), (β, χ) ∈ SL, E, F ∈ RegStatExpr, G,H ∈ OpRegDynExpr, G̃, H̃
∈ RegDynExpr and a ∈ Act. Moreover, Γ,∆ ∈ INSL

f \ {∅} and Γ′ ∈ INSL
f .

Table 3. Action and empty loop rules

El G
∅→ G B (α, ρ)

{(α,ρ)}−→ (α, ρ) SC1 G
Γ→G̃, ◦∈{;,[]}
G◦E Γ→G̃◦E

SC2 G
Γ→G̃, ◦∈{;,[]}
E◦G Γ→E◦G̃

P1 G
Γ→G̃

G∥H Γ→G̃∥H
P2 H

Γ→H̃

G∥H Γ→G∥H̃

P3 G
Γ→G̃, H

∆→H̃

G∥HΓ+∆−→ G̃∥H̃
L G

Γ→G̃

G[f ]
f(Γ)−→G̃[f ]

Rs G
Γ→G̃, a,â ̸∈A(Γ)

G rs a
Γ→G̃ rs a

I1 G
Γ→G̃

[G∗E∗F ]
Γ→[G̃∗E∗F ]

I2 G
Γ→G̃

[E∗G∗F ]
Γ→[E∗G̃∗F ]

I3 G
Γ→G̃

[E∗F∗G]
Γ→[E∗F∗G̃]

Sy1 G
Γ→G̃

G sy a
Γ→G̃ sy a

Sy2 G sy a
Γ′+{(α,ρ)}+{(β,χ)}−−−−−−−−−−−−→G̃ sy a, a∈α, â∈β

G sy a
Γ′+{(α⊕aβ,ρ·χ)}−−−−−−−−−−−→G̃ sy a

In the rule Sy2, we multiply the probabilities of synchronized multiac-
tions, this corresponds somehow to the probability of the event intersection.
We do not allow self-synchronization, i.e., synchronization of an activity
with itself. The purpose is to avoid many technical difficulties, see [3].

3.3. Transition systems

Now we define labeled probabilistic transition systems associated with dy-
namic expressions and used to define their operational semantics.

Note that expressions of dtsPBC can contain identical activities. To
avoid technical difficulties, we must enumerate coinciding activities, for in-
stance, from left to right in the syntax of expressions. The new activities
resulting from synchronization will be annotated with concatenation of num-
berings of the activities they come from, hence, the numbering should have a
tree structure to reflect the effect of multiple synchronizations. The number-
ing below encodes a binary tree with the leaves labeled by natural numbers.

Definition 5. Let ι ∈ IN . The numbering of expressions is ι ::= ι | (ι)(ι).

Num denotes the set of all numberings of expressions.

The new activities resulting from applications of the second rule for
synchronization Sy2 in different orders should be considered up to per-
mutation of their numbering. In this way, we shall recognize different in-
stances of the same activity. If we compare the contents of different num-
berings, i.e., the sets of natural numbers in them, we shall be able to iden-
tify the mentioned instances. The content of a numbering ι ∈ Num is
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Cont(ι) =

{
{ι}, ι ∈ IN ;
Cont(ι1) ∪ Cont(ι2), ι = (ι1)(ι2).

After we apply the enumeration, the multisets of activities from the
expressions become the proper sets. In the following, we suppose that the
identical activities are enumerated when it is necessary to avoid ambiguity.
This enumeration is considered to be implicit.

Definition 6. Let G be a dynamic expression. Then [G]≈ = {H | G ≈ H}
is the equivalence class ofG w.r.t. the structural equivalence. The derivation
set DR(G) of a dynamic expression G is the minimal set such that [G]≈ ∈
DR(G) or, if [H]≈ ∈ DR(G) and ∃Γ H

Γ→ H̃, then [H̃]≈ ∈ DR(G).

Let G be a dynamic expression and s, s̃ ∈ DR(G).
The set of all multisets of activities executable in s is defined as

Exec(s) = {Γ | ∃H ∈ s ∃H̃ H
Γ→ H̃}.

The probability that the multiset of activities Γ ∈ Exec(s) \ {∅} is ready
for execution in s is

PF (Γ, s) =
∏

(α,ρ)∈Γ

ρ ·
∏

{{(β,χ)}∈Exec(s)|(β,χ)̸∈Γ}

(1− χ).

For Γ = ∅, we let PF (∅, s) =
{ ∏

{(β,χ)}∈Exec(s)(1− χ), Exec(s) ̸= {∅};
1, otherwise.

The definition of PF (Γ, s) (and those of other probability functions) is
based on the enumeration of activities which is considered implicit.

The probability to execute the multiset of activities Γ ∈ Exec(s) in s is

PT (Γ, s) =
PF (Γ, s)∑

∆∈Exec(s) PF (∆, s)
.

The probability to move from s to s̃ by executing any multiset of activities is

PM(s, s̃) =
∑

{Γ|∃H∈s ∃H̃∈s̃ H Γ→H̃}

PT (Γ, s).

Definition 7. Let G be a dynamic expression. The (labeled probabilistic)
transition system of G is a quadruple TS(G) = (SG, LG, TG, sG), where

• the set of states is SG = DR(G);

• the set of labels is LG ⊆ INSL
f × (0; 1];

• the set of transitions is TG = {(s, (Γ, PT (Γ, s)), s̃) | s ∈ DR(G),

∃H ∈ s ∃H̃ ∈ s̃ H
Γ→ H̃};

• the initial state is sG = [G]≈.
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The transition system TS(G) associated with a dynamic expression G de-
scribes all steps that happen at discrete time moments with some (one-step)
probability and consist of multisets of activities. Every step happens in-
stantly after one discrete time unit delay. The step can change the current
state to another one. The states are the structural equivalence classes of
dynamic expressions obtained by application of action rules starting from
the expressions belonging to [G]≈. A transition (s, (Γ,P), s̃) ∈ TG will be

written as s
Γ→P s̃. The interpretation is: the probability to change the

state s to s̃ in the result of executing Γ is P.

Note that Γ can be the empty multiset, and its execution does not change
the current state (i.e., the equivalence class), since we have a loop transition

s
∅→P s from a state s to itself in the result of executing the empty multiset.

This corresponds to application of the empty loop rule to expressions from
the equivalence class. We have to keep track of such executions, called
empty loops, because they have nonzero probabilities. This follows from the
definition of PF (∅, s) and the fact that multiaction probabilities cannot be
equal to 1 as they belong to the interval (0; 1). The step probabilities belong
to the interval (0; 1]. The step probability is 1 in the case when we cannot
leave a state s, hence, there exists only one transition from it, namely, the

empty loop transition s
∅→1 s.

We write s
Γ→ s̃ if ∃P s

Γ→P s̃ and s→ s̃ if ∃Γ s
Γ→ s̃.

Isomorphism is a coincidence of systems up to renaming. ≃ denotes the
isomorphism between transition systems that binds their initial states.

Definition 8. Let G be a dynamic expression. The underlying discrete
time Markov chain (DTMC) of G, denoted by DTMC(G), has the state
space DR(G) and the transitions s→P s̃, if s→ s̃ and P = PM(s, s̃).

For a dynamic expression G, a discrete random variable is associated
with every state of DTMC(G). The variable captures a residence time in
the state. One can interpret staying in a state in the next discrete time
moment as a failure and leaving it as a success of some trial series. It is easy
to see that the random variables are geometrically distributed, since the
probability to stay in the state s ∈ DR(G) for k−1 time moments and leave
it at the moment k ≥ 1 is PM(s, s)k−1(1 − PM(s, s)) (the residence time
is k in this case). The mean value formula for the geometrical distribution
allows us to calculate the average sojourn time in the state s as SJ(s) =

1
1−PM(s,s) . The average sojourn time vector of G, denoted by SJ , has the

elements SJ(s), s ∈ DR(G). The sojourn time variance in the state s is
V AR(s) = 1

(1−PM(s,s))2
. The sojourn time variance vector of G, denoted by

V AR, has the elements V AR(s), s ∈ DR(G).
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4. Denotational semantics

In this section, we define the denotational semantics in terms of a subclass
of LDTSPNs called discrete time stochastic Petri boxes (dts-boxes).

Definition 9. A discrete time stochastic Petri box (dts-box) is a tuple
N = (PN , TN ,WN ,ΛN ), where

• PN and TN are finite sets of places and transitions, such that PN∪TN ̸=
∅ and PN ∩ TN = ∅;

• WN : (PN ×TN )∪ (TN ×PN ) → IN is a function providing the weights
of arcs between places and transitions;

• ΛN is the place and transition labeling function such that

– ΛN |PN
: PN → {e, i, x} (specifies the entry, internal, exit places);

– ΛN |TN : TN → {ϱ | ϱ ⊆ INSL
f × SL} (it associates transitions

with the relabeling relations on activities).

Let t ∈ TN , U ∈ INTN
f . The precondition •t and the postcondition t• of t are

the multisets of places defined as (•t)(p) =WN (p, t) and (t•)(p) =WN (t, p).
The precondition •U and the postcondition U• of U are the multisets of
places defined as •U =

∑
t∈U

•t and U• =
∑

t∈U t
•. We require that ∀t ∈

TN
•t ̸= ∅ ̸= t•. In addition, for the set of entry places of N defined as

◦N = {p ∈ PN | ΛN (p) = e} and the set of exit places of N defined as
N◦ = {p ∈ PN | ΛN (p) = x}, it holds: ◦N ̸= ∅ ̸= N◦, •(◦N) = ∅ = (N◦)•.

A dts-box is plain if ∀t ∈ TN ΛN (t) ∈ SL, i.e., ΛN (t) is a constant
relabeling that will be defined later. In case of the constant relabeling, the
shorthand notation (by an activity) for ΛN (t) will be used. A marked plain

dts-box is a pair (N,MN ), where N is a plain dts-box and MN ∈ INPN
f is

the initial marking. We shall use the following notation: N = (N, ◦N) and
N = (N,N◦). Note that a marked plain dts-box (PN , TN ,WN ,ΛN ,MN )
could be interpreted as the LDTSPN (PN , TN ,WN ,ΩN , LN ,MN ), where
functions ΩN and LN are defined as follows: ∀t ∈ TN ΩN (t) = Ω(ΛN (t))
and LN (t) = L(ΛN (t)). Behaviour of the marked dts-boxes follows from the
firing rule of LDTSPNs.

To define a semantic function that associates a plain dts-box with ev-
ery static expression of dtsPBC, we shall propose the enumeration function
Enu : TN → Num which associates numberings with transitions of the plain
dts-box N according to those of activities. In the case of synchronization,
the function associates concatenation of the parenthesized numberings of
the synchronized transitions with a resulting new transition.

The structure of the plain dts-box corresponding to a static expression is
constructed like in PBC, see [3], i.e., we use a simultaneous refinement and
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Figure 1. The plain and operator dts-boxes

relabeling meta-operator (net refinement) in addition to the operator dts-
boxes corresponding to the algebraic operations of dtsPBC and featuring
transformational transition relabelings. In the definition of the denotational
semantics, we shall apply standard constructions used for PBC. Let Θ denote
an operator box and u denote a transition name from PBC setting.

The relabeling relations ϱ ⊆ INSL
f × SL are defined as follows:

• ϱid = {({(α, ρ)}, (α, ρ)) | (α, ρ) ∈ SL} is the identity relabeling keeping
the interface as it is;

• ϱ(α,ρ) = {(∅, (α, ρ))} is the constant relabeling identical to (α, ρ) ∈ SL;

• ϱ[f ] = {({(α, ρ)}, (f(α), ρ)) | (α, ρ) ∈ SL};

• ϱrs a = {({(α, ρ)}, (α, ρ)) | (α, ρ) ∈ SL, a, â ̸∈ α};

• ϱsy a is the least relabeling relation contained in ϱid such that if
(Γ, (α, ρ)), (∆, (β, χ)) ∈ ϱsy a and a ∈ α, â ∈ β, then
(Γ +∆, (α⊕a β, ρ · χ)) ∈ ϱsy a.

The plain and operator dts-boxes are presented in Figure 1. Note that
the symbol i is usually omitted.

Now we define the enumeration function Enu for every operator of
dtsPBC. Let Boxdts(E) = (PE , TE ,WE ,ΛE) be the plain dts-box corre-
sponding to a static expression E, and EnuE be the enumeration function
for TE . We shall use the analogous notation for static expressions F and K.

• Boxdts(E ◦F ) = Θ◦(Boxdts(E), Boxdts(F )), ◦ ∈ {; , [], ∥}. Since we do
not introduce any new transitions, we preserve the initial numbering:

Enu(t) =

{
EnuE(t), t ∈ TE ;
EnuF (t), t ∈ TF .
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• Boxdts(E[f ]) = Θ[f ](Boxdts(E)). Since we only replace the labels of
some multiactions by a bijection, we preserve the initial numbering:
Enu(t) = EnuE(t), t ∈ TE .

• Boxdts(E rs a) = Θrs a(Boxdts(E)). Since we remove all transitions
labeled with multiactions containing a or â, this does not change the
numbering of the remaining transitions: Enu(t) = EnuE(t), t ∈ TE ,
a, â ̸∈ L(ΛE(t)).

• Boxdts(E sy a) = Θsy a(Boxdts(E)). Note that ∀v, w ∈ TE such that
ΛE(v) = (α, ρ), ΛE(w) = (β, χ) and a ∈ α, â ∈ β, the new transition
t resulting from synchronization of v and w has the label Λ(t) =
(α ⊕a β, ρ · χ) and the numbering Enu(t) = (EnuE(v))(EnuE(w)).
Thus, the enumeration function is

Enu(t) =

 EnuE(t), t ∈ TE ;
(EnuE(v))(EnuE(w)), t results from synchronization

of v and w.

When we synchronize the same set of transitions in different orders,
we obtain several resulting transitions with the same label and prob-
ability, but with different numberings having the same content. In
this case, we shall consider only a single transition from the resulting
ones in the plain dts-box to avoid introducing redundant transitions.
For example, if the transitions t and u are generated by synchroniz-
ing v and w in different orders, we have Λ(t) = (α ⊕a β, ρ · χ) =
Λ(u), but Enu(t) = (EnuE(v))(EnuE(w)) ̸= (EnuE(w))(EnuE(v)) =
Enu(u), whereas Cont(Enu(t)) = Cont(Enu(v)) ∪ Cont(Enu(w)) =
Cont(Enu(u)). Then only one transition t (or, symmetrically, u) will
appear in Boxdts(E sy a).

• Boxdts([E ∗ F ∗K]) = Θ[∗∗](Boxdts(E), Boxdts(F ), Boxdts(K)).
Since we do not introduce any new transitions, we preserve the initial

numbering: Enu(t) =

 EnuE(t), t ∈ TE ;
EnuF (t), t ∈ TF ;
EnuK(t), t ∈ TK .

Now we can formally define the denotational semantics as a homomorphism.

Definition 10. Let (α, ρ) ∈ SL, a ∈ Act and E,F,K ∈ RegStatExpr.
The denotational semantics of dtsPBC is a mapping Boxdts from
RegStatExpr into the area of plain dts-boxes defined as follows:

1. Boxdts((α, ρ)ι) = N(α,ρ)ι ;

2. Boxdts(E ◦ F ) = Θ◦(Boxdts(E), Boxdts(F )), ◦ ∈ {; , [], ∥};
3. Boxdts(E[f ]) = Θ[f ](Boxdts(E));

4. Boxdts(E ◦ a) = Θ◦a(Boxdts(E)), ◦ ∈ {rs, sy};
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5. Boxdts([E ∗ F ∗K]) = Θ[∗∗](Boxdts(E), Boxdts(F ), Boxdts(K)).

The dts-boxes of static expressions can be defined as well. For E ∈
RegStatExpr, let Boxdts(E) = Boxdts(E) and Boxdts(E) = Boxdts(E).

Note that this definition is compositional in the sense that, for any arbi-
trary dynamic expression, we may decompose it in some inner dynamic and
static expressions, for which we may apply the definition, thus obtaining the
corresponding plain dts-boxes, which can be joined according to the term
structure (by definition of Boxdts), the resulting plain box being marked in
the places that were marked in the argument nets.

Let ≃ denote the isomorphism between transition systems or between
DTMCs and reachability graphs that binds their initial states. The names of
transitions of the dts-box corresponding to an expression could be identified
with the enumerated activities of the latter. For a dts-box N , we denote its
reachability graph by RG(N) and its underlying DTMC by DTMC(N).

Theorem 1. For any static expression E, TS(E) ≃ RG(Boxdts(E)).

Proof. For the qualitative behaviour, we have the same isomorphism as
in PBC. The quantitative behaviour is the same, since the activities of an
expression have probability parts coinciding with the probabilities of the
transitions belonging to the corresponding dts-box and, both in stochastic
processes specified by expressions and dts-boxes, conflicts are resolved via
the same probability functions.

Proposition 1. For any static expression E,
DTMC(E) ≃ DTMC(Boxdts(E)).

Proof. By Theorem 1 and definitions of underlying DTMC for dynamic
expressions and LDTSPNs, since transition probabilities of the DTMCs are
the sums of those belonging to transition systems or reachability graphs.

5. Step stochastic bisimulation equivalence

Bisimulation equivalences respect the particular points of choice in the be-
havior of a system. To define stochastic bisimulation equivalences, we have
to consider a bisimulation as an equivalence relation that partitions the states
of the union of the transition systems TS∗(G) and TS∗(G′) of two dynamic
expressions G and G′ to be compared. For G and G′ to be bisimulation
equivalent, the initial states of their transition systems, [G]≈ and [G′]≈, are
to be related by a bisimulation having the following transfer property: two
states are related if in each of them the same multisets of multiactions can
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occur, and the resulting states belong to the same equivalence class. In ad-
dition, the sums of probabilities for all such occurrences should be the same
for both states.

In the definition below, we consider L(Γ) ∈ INL
f for Γ ∈ INSL

f , i.e., the
(possibly empty) multisets of multiactions. The multiactions can be empty,
then L(Γ) contains the elements ∅, and it is not empty itself.

Let G be a dynamic expression and H ⊆ DR(G). Then, for any s ∈
DR(G) and A ∈ INL

f , we write s
A→P H, where P = PMA(s,H) is the

overall probability to move from s into the set of states H via steps with the
multiaction part A defined as

PMA(s,H) =
∑

{Γ|∃s̃∈H s
Γ→s̃, L(Γ)=A}

PT (Γ, s).

We write s
A→ H if ∃P s

A→P H. Further, we write s→P H if ∃A s
A→ H,

where P = PM(s,H) is the overall probability to move from s into the set
of states H via any steps defined as

PM(s,H) =
∑

{Γ|∃s̃∈H s
Γ→s̃}

PT (Γ, s).

To introduce a stochastic bisimulation between dynamic expressions G
and G′, we should consider the “composite” set of states DR(G)∪DR(G′),
since we have to identify the probabilities to come from any two equivalent
states into the same “composite” equivalence class (w.r.t. the stochastic
bisimulation). Note that, for G ̸= G′, transitions starting from the states of
DR(G) (or DR(G′)) always lead to those from the same set, since DR(G)∩
DR(G′) = ∅, and this allows us to “mix” the sets of states in the definition
of stochastic bisimulation.

Definition 11. Let G and G′ be dynamic expressions. An equivalence
relation R ⊆ (DR(G) ∪DR(G′))2 is a step stochastic bisimulation between
G and G′, denoted by R : G↔ssG

′, if:

1. ([G]≈, [G
′]≈) ∈ R.

2. (s1, s2) ∈ R ⇒ ∀H ∈ (DR(G) ∪DR(G′))/R ∀A ∈ INL
f

s1
A→P H ⇔ s2

A→P H.

Dynamic expressions G and G′ are step stochastic bisimulation equivalent,
denoted by G↔ssG

′, if ∃R : G↔ssG
′.

Let Rss(G,G
′) =

∪
{R | R : G↔ssG

′} be the union of all step stochastic
bisimulations between G and G′. The following proposition proves that
Rss(G,G

′) is also an equivalence and Rss(G,G
′) : G↔ssG

′.
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Proposition 2. Let G and G′ be dynamic expressions and G↔ssG
′. Then

Rss(G,G
′) is the largest step stochastic bisimulation between G and G′.

Proof. See Appendix A.

The equivalences which we proposed can be used to reduce transition
systems and DTMCs of expressions (reachability graphs and DTMCs of dts-
boxes). Reductions of graph-based models, like transition systems, reacha-
bility graphs and DTMCs, result in those with less states (the graph nodes).
The goal of the reduction is to decrease the number of states in the semantic
representation of the modeled system while preserving its important qualita-
tive and quantitative properties. Thus, the reduction allows one to simplify
the behaviour and performance analysis of systems.

An autobisimulation is a bisimulation between an expression and itself.
For a dynamic expression G and a step stochastic autobisimulation on it
R : G↔ssG, let K ∈ DR(G)/R and s1, s2 ∈ K. We have ∀K̃ ∈ DR(G)/R

∀A ∈ INL
f s1

A→P K̃ ⇔ s2
A→P K̃. The previous statement is valid for all

s1, s2 ∈ K, hence, we can rewrite it as K A→P K̃, where P = PMA(K, K̃) =

PMA(s1, K̃) = PMA(s2, K̃).

We write K A→ K̃ if ∃P K A→P K̃ and K → K̃ if ∃A K A→ K̃. The
similar arguments allow us to write K →P K̃, where P = PM(K, K̃) =

PM(s1, K̃) = PM(s2, K̃).
The average sojourn time in the equivalence class (w.r.t. R) of states K

is SJR(K) = 1
1−PM(K,K) . The average sojourn time vector for the equiva-

lence classes (w.r.t. R) of states of G, denoted by SJR, has the elements
SJR(K), K ∈ DR(G)/R. The sojourn time variance in the equivalence class
(w.r.t. R) of states K is V ARR(K) = 1

(1−PM(K,K))2
. The sojourn time vari-

ance vector for the equivalence classes (w.r.t. R) of states of G, denoted by
V ARR, has the elements V ARR(K), K ∈ DR(G)/R.

Let Rss(G) =
∪
{R | R : G↔ssG} be the union of all step stochastic au-

tobisimulations on G. By Proposition 2, Rss(G) is the largest step stochastic
autobisimulation on G. Based on the equivalence classes w.r.t. Rss(G), the
quotient (by ↔ss) transition systems and the quotient (by ↔ss) underlying
DTMCs of expressions can be defined. The mentioned equivalence classes
become the quotient states. Every quotient transition between two such
composite states represents all steps (having the same multiaction part in
case of the transition system quotient) from the first state to the second one.

Definition 12. Let G be a dynamic expression. The quotient (by ↔ss)
(labeled probabilistic) transition system of G is a quadruple
TS↔ss

(G) = (S↔ss
, L↔ss

, T↔ss
, s↔ss

), where

• S↔ss
= DR(G)/Rss(G);
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• L↔ss
⊆ INL

f × (0; 1];

• T↔ss
= {(K, (A,PMA(K, K̃)), K̃) | K ∈ DR(G)/Rss(G), K

A→ K̃};
• s↔ss

= {[G]≈}.

The transition (K, (A,P), K̃) ∈ T↔ss
will be written as K A→P K̃.

Definition 13. Let G be a dynamic expression. The quotient (by ↔ss)
underlying DTMC of G, denoted by DTMC↔ss

(G), has the state space

DR(G)/Rss(G) and the transitions K →P K̃, where P = PM(K, K̃).

The quotient (by ↔ss) average sojourn time vector of G is SJ↔ss
=

SJRss(G). The quotient (by ↔ss) sojourn time variance vector of G is
V AR↔ss

= V ARRss(G).
The quotients of both transition systems and underlying DTMCs are the

minimal reductions of the mentioned objects modulo ↔ss. The quotients
can be used to simplify analysis of system properties which are preserved
by ↔ss, since less states should be examined for it. The comprehensive
reduction example will be presented in Section 7.

6. Performance evaluation

Stationary distribution is used for performance evaluation. Performance
indices are calculated based on the steady-state probabilities. Let us describe
the stationary behaviour of infinite stochastic processes specified by dynamic
expressions whose underlined DTMCs contain one ergodic subset of states.

Let G be a dynamic expression. The elements Pij (1 ≤ i, j ≤ n =
|DR(G)|) of the (one-step) transition probability matrix (TPM) P for

DTMC(G) are defined as Pij =
{
PM(si, sj), si → sj ;
0, otherwise.

The transient (k-step, k ∈ IN) probability mass function (PMF) ψ[k] =
(ψ1[k], . . . , ψn[k]) for DTMC(G) is a solution of the equation system ψ[k] =
ψ[0]Pk, s.t. ψ[0] = (ψ1[0], . . . , ψn[0]) is the initial PMF

ψi[0] =

{
1, si = [G]≈;
0, otherwise.

Note also that ψ[k + 1] = ψ[k]P (k ∈ IN).

The steady-state PMF ψ = (ψ1, . . . , ψn) for DTMC(G) is a solution

of the equation system

{
ψ(P−E) = 0
ψ1T = 1

, where E is a unitary matrix of

dimension n and 0 is a vector with n values 0, 1 is that with n values 1.
When DTMC(G) has a single steady state, we have ψ = limk→∞ ψ[k].

Let s, s̃ ∈ DR(G), S, S̃ ⊆ DR(G) for a dynamic expression G. The following
performance indices are based on the steady-state PMF for DTMC(G).

• The average recurrence (return) time in the state s is 1
ψ(s) .
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• The fraction of residence time in the state s is ψ(s).

• The fraction of residence time in the set of states S ⊆ DR(G) or the
probability of the event determined by a condition that is true for all
states from S is

∑
s∈S ψ(s).

• The relative fraction of residence time in S w.r.t. that in S̃ is
∑

s∈S ψ(s)∑
s̃∈S̃

ψ(s̃) .

• The steady-state probability to perform a step with an activity (α, ρ) is∑
s∈DR(G) ψ(s)

∑
{Γ|(α,ρ)∈Γ} PT (Γ, s).

• The probability of the event determined by a reward function r on the
states is

∑
s∈DR(G) ψ(s)r(s).

The following proposition demonstrates that, for two dynamic expres-
sions related by ↔ss, the steady-state probabilities to come in an equiva-
lence class coincide. One can also interpret the result stating that the mean
recurrence time for an equivalence class is the same for both expressions.

Proposition 3. Let G,G′ be dynamic expressions with R : G↔ssG
′. Then

∀H ∈ (DR(G) ∪DR(G′))/R∑
s∈H∩DR(G)

ψ(s) =
∑

s′∈H∩DR(G′)

ψ′(s′).

Proof. Analogous to the proof of Proposition 3 from [15], but with the use
of the probability functions respecting empty loops.

By Proposition 3, ↔ss preserves the quantitative properties of the stationary
behaviour. Now we shall demonstrate that the qualitative properties of the
stationary behaviour based on the multiaction labels are preserved as well.

Definition 14. A derived step trace of a dynamic expression G is

Σ = A1 · · ·An ∈ (INL
f )

∗ s.t. ∃s ∈ DR(G) s
Γ1→ s1

Γ2→ · · · Γn→ sn, L(Γi) = Ai
(1 ≤ i ≤ n). The probability to execute the derived step trace Σ in s is

PT (Σ, s) =
∑

{Γ1,...,Γn|s=s0
Γ1→s1

Γ2→···Γn→sn, L(Γi)=Ai (1≤i≤n)}

n∏
i=1

PT (Γi, si−1).

The following theorem demonstrates that, for two dynamic expressions
related by ↔ss, the steady-state probabilities to come in an equivalence class
and start a step trace from it coincide.
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Figure 2. The diagram of the shared memory system

Theorem 2. Let G,G′ be dynamic expressions with R : G↔ssG
′ and Σ be

a derived step trace of G and G′. Then ∀H ∈ (DR(G) ∪DR(G′))/R∑
s∈H∩DR(G)

ψ(s)PT (Σ, s) =
∑

s′∈H∩DR(G′)

ψ′(s′)PT (Σ, s′).

Proof. Analogous to the proof of Theorem 4 from [15], but with the use of
the probability functions respecting empty loops.

7. The generalized shared memory system

Consider a model of two processors accessing a common shared memory
described in [1] in the continuous time setting on GSPNs. We shall analyze
this shared memory system in the discrete time stochastic setting of dtsPBC,
where concurrent execution of activities is possible. The model performs
as follows. After activation of the system (turning the computer on), two
processors are active, and the common memory is available. Each processor
can request an access to the memory. When a processor starts acquisition
of the memory, another processor should wait until the former one ends its
memory operations, and the system returns to the state with both active
processors and the available common memory. The diagram of the system
is depicted in Figure 2.

7.1. The concrete system

Let us explain the meaning of actions from the syntax of dtsPBC expressions
which will specify the system modules. The action a corresponds to the
system activation. The actions ri (1 ≤ i ≤ 2) represent the common memory
request of processor i. The actions bi and ei correspond to the beginning
and the end, respectively, of the common memory access of processor i. The
other actions are used for communication purposes only via synchronization,
and we abstract from them later using restriction.
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Figure 3. The transition system of the generalized shared memory system

Let us determine which is the influence of the multiaction probabilities
from specification of the shared memory system on its performance. Sup-
pose that all the multiactions have the same generalized probability ρ. The
resulting specification K is defined as follows.

The static expression of the first processor is
K1 = [({x1}, ρ) ∗ (({r1}, ρ); ({b1, y1}, ρ); ({e1, z1}, ρ)) ∗ Stop].

The static expression of the second processor is
K2 = [({x2}, ρ) ∗ (({r2}, ρ); ({b2, y2}, ρ); ({e2, z2}, ρ)) ∗ Stop].

The static expression of the shared memory is
K3 = [({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, ρ); ({ẑ1}, ρ))[](({ŷ2}, ρ); ({ẑ2}, ρ))) ∗ Stop].

The static expression of the generalized shared memory system with two
processors is K = (K1∥K2∥K3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1 rs x2
rs y1 rs y2 rs z1 rs z2.

DR(K) consists of 9 equivalence classes: s̃1 is the initial state, s̃2: the
system is activated and the memory is not requested, s̃3: the memory is
requested by the first processor, s̃4: the memory is requested by the second
processor, s̃5: the memory is allocated to the first processor, s̃6: the memory
is requested by two processors, s̃7: the memory is allocated to the second
processor, s̃8: the memory is allocated to the first processor and the memory
is requested by the second processor, s̃9: the memory is allocated to the
second processor and the memory is requested by the first processor.

Figure 3 presents the transition system TS(K).

The average sojourn time vector of K is
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S̃J =
(

1
ρ3
, 1
ρ(2−ρ) ,

1
ρ(1+ρ−ρ2) ,

1
ρ(1+ρ−ρ2) ,

1
ρ(1+ρ−ρ2) ,

1+ρ4

2ρ2
, 1
ρ(1+ρ−ρ2) ,

1
ρ2
, 1
ρ2

)
.

The sojourn time variance vector of K is

Ṽ AR =
(

1
ρ6
, 1
ρ2(2−ρ)2 ,

1
ρ2(1+ρ−ρ2)2 ,

1
ρ2(1+ρ−ρ2)2 ,

1
ρ2(1+ρ−ρ2)2 ,

(1+ρ4)2

2ρ4
,

1
ρ2(1+ρ−ρ2)2 ,

1
ρ4
, 1
ρ4

)
.

Let us denote χ = 1− ρ and θ = 1− ρ2. The TPM for DTMC(K) is

P̃ =



1− ρ3 ρ3 0 0 0 0 0 0 0
0 χ2 ρχ ρχ 0 ρ2 0 0 0
0 0 χθ 0 ρ2χ ρθ 0 ρ3 0
0 0 0 χθ 0 ρ2χ ρθ 0 ρ3

0 ρ2χ 0 ρ3 χθ 0 0 ρθ 0

0 0 0 0 0 θ2

1+ρ4
0 ρ2

1+ρ4
ρ2

1+ρ4

0 ρ2χ ρ3 0 0 0 χθ 0 ρθ
0 0 0 ρ2 0 0 0 θ 0
0 0 ρ2 0 0 0 0 0 θ


.

The steady-state PMF for DTMC(K) is

ψ̃ = 1
6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8

(0, 2ρ3(1− ρ)2, ρ(2− ρ)(1 + ρ− ρ2),

ρ(2− ρ)(1 + ρ− ρ2), ρ2(2− 3ρ+ ρ2), (1 + ρ4)(2 + ρ− 5ρ2 + ρ3 + ρ4),
ρ2(2− 3ρ+ ρ2), 2 + 3ρ− 6ρ2 + ρ3 + ρ4, 2 + 3ρ− 6ρ2 + ρ3 + ρ4).

We can now calculate the main performance indices.

• The average recurrence time in the state s̃2, where no processor re-
quests the memory, called the average system run-through, is 1

ψ̃2
=

6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8

2ρ3(1−ρ)2 .

• The common memory is available only in the states s̃2, s̃3, s̃4, s̃6. The
steady-state probability that the memory is available is

ψ̃2 + ψ̃3 + ψ̃4 + ψ̃6 =
2ρ3(1−ρ)2

6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8
+

ρ(2−ρ)(1+ρ−ρ2)
6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8

+ ρ(2−ρ)(1+ρ−ρ2)
6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8

+
(1+ρ4)(2+ρ−5ρ2+ρ3+ρ4)

6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8
= 2+5ρ−3ρ2−3ρ3+ρ4+3ρ5−5ρ6+ρ7+ρ8

6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8
.

Then the steady-state probability that the memory is used (i.e., not
available), called the shared memory utilization, is

1− 2+5ρ−3ρ2−3ρ3+ρ4+3ρ5−5ρ6+ρ7+ρ8

6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8
=

4+6ρ−8ρ2−4ρ3+4ρ4

6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8
.
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Figure 4. The marked dts-boxes of two processors, shared memory and the shared
memory system

• The common memory request of the first processor ({r1}, ρ) is only
possible from the states s̃2, s̃4, s̃7. In each of the states, the request
probability is the sum of the execution probabilities for all multisets
of activities containing ({r1}, ρ). Thus, the steady-state probability of
the shared memory request from the first processor is
ψ̃2

∑
{Γ|({r1},ρ)∈Γ} PT (Γ, s̃2) + ψ̃4

∑
{Γ|({r1},ρ)∈Γ} PT (Γ, s̃4) +

ψ̃7
∑

{Γ|({r1},ρ)∈Γ} PT (Γ, s̃7) =
2ρ3(1−ρ)2

6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8
(ρ(1− ρ) + ρ2) +

ρ(2−ρ)(1+ρ−ρ2)
6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8

(ρ(1− ρ2) + ρ3) +
ρ2(2−3ρ+ρ2)

6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8
(ρ(1− ρ2) + ρ3) =

ρ2(2+3ρ−4ρ2−2ρ3+2ρ4)
6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8

.

Figure 4(a) presents the marked dts-boxes corresponding to the dynamic
expressions of two processors and shared memory, i.e., Ni = Boxdts(Ki) (1 ≤
i ≤ 3). Figure 4(b) depicts the marked dts-box of the dynamic expression
of the shared memory system, i.e., N = Boxdts(K).
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7.2. The abstract system and its reduction

Let us consider a modification of the generalized shared memory system
with abstraction from identifiers of the processors. We call this system the
abstract generalized shared memory one.

The static expression of the first processor is
L1 = [({x1}, ρ) ∗ (({r}, ρ); ({b, y1}, ρ); ({e, z1}, ρ)) ∗ Stop].

The static expression of the second processor is
L2 = [({x2}, ρ) ∗ (({r}, ρ); ({b, y2}, ρ); ({e, z2}, ρ)) ∗ Stop].

The static expression of the shared memory is
L3 = [({a, x̂1, x̂2}, ρ) ∗ ((({ŷ1}, ρ); ({ẑ1}, ρ))[](({ŷ2}, ρ); ({ẑ2}, ρ))) ∗ Stop].

The static expression of the abstract shared memory generalized system
with two processors is L = (L1∥L2∥L3) sy x1 sy x2 sy y1 sy y2 sy z1 sy z2 rs x1
rs x2 rs y1 rs y2 rs z1 rs z2.

DR(L) resembles DR(K), and TS(L) is similar to TS(K). We have
DTMC(L) = DTMC(K). Thus, the TPMs and the steady-state PMFs for
DTMC(L) and DTMC(K) coincide.

The first and second performance indices are the same for the concrete
generalized system and its abstract modification. Let us consider the follow-
ing performance index based on non-identified viewpoint to the processors.

• The common memory request of a processor ({r}, ρ) is only possible
from the states s̃2, s̃3, s̃4, s̃5, s̃7. In each of the states, the request proba-
bility is the sum of the execution probabilities for all multisets of activi-
ties containing ({r}, ρ). Thus, the steady-state probability of the shared
memory request from a processor is ψ̃2

∑
{Γ|({r},ρ)∈Γ} PT (Γ, s̃2) +

ψ̃3
∑

{Γ|({r},ρ)∈Γ} PT (Γ, s̃3) + ψ̃4
∑

{Γ|({r},ρ)∈Γ} PT (Γ, s̃4) +

ψ̃5
∑

{Γ|({r},ρ)∈Γ} PT (Γ, s̃5) + ψ̃7
∑

{Γ|({r},ρ)∈Γ} PT (Γ, s̃7) =
2ρ3(1−ρ)2

6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8
(ρ(1− ρ) + ρ(1− ρ) + ρ2) +

ρ(2−ρ)(1+ρ−ρ2)
6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8

(ρ(1− ρ2) + ρ3) +
ρ(2−ρ)(1+ρ−ρ2)

6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8
(ρ(1− ρ2) + ρ3) +

ρ2(2−3ρ+ρ2)
6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8

(ρ(1− ρ2) + ρ3) +
ρ2(2−3ρ+ρ2)

6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8
(ρ(1− ρ2) + ρ3) =

2ρ2(2−ρ)(1+ρ−ρ2)2
6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8

.

We have DR(L)/Rss(L)
= {K̃1, K̃2, K̃3, K̃4, K̃5, K̃6}, where K̃1 = {s̃1}

(the initial state), K̃2 = {s̃2} (the system is activated and the memory is

not requested), K̃3 = {s̃3, s̃4} (the memory is requested by one processor),

K̃4 = {s̃5, s̃7} (the memory is allocated to a processor), K̃5 = {s̃6} (the

memory is requested by two processors), K̃6 = {s̃8, s̃9} (the memory is
allocated to a processor and the memory is requested by another processor).
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Figure 5. The quotient transition system of the abstract generalized shared mem-
ory system

Figure 5 presents the quotient transition system TS↔ss
(L).

The quotient average sojourn time vector of L is

S̃J
′
=

(
1

ρ3
,

1

ρ(2− ρ)
,

1

ρ(1 + ρ− ρ2)
,

1

ρ(1 + ρ− ρ2)
,
1 + ρ4

2ρ2
,
1

ρ2

)
.

The quotient sojourn time variance vector of L is

Ṽ AR
′
=

(
1

ρ6
,

1

ρ2(2− ρ)2
,

1

ρ2(1 + ρ− ρ2)2
,

1

ρ2(1 + ρ− ρ2)2
,
(1 + ρ4)2

4ρ4
,
1

ρ4

)
.

The TPM for DTMC↔ss
(L) is

P̃′ =


1− ρ3 ρ3 0 0 0 0

0 (1− ρ)2 2ρ(1− ρ) 0 ρ2 0
0 0 (1− ρ)(1− ρ2) ρ2(1− ρ) ρ(1− ρ2) ρ3

0 ρ2(1− ρ) ρ3 (1− ρ)(1− ρ2) 0 ρ(1− ρ2)

0 0 0 0
(1−ρ2)2

1+ρ4
2ρ2

1+ρ4

0 0 ρ2 0 0 1− ρ2

 .
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The steady-state PMF for DTMC↔ss
(L) is

ψ̃′ = 1
6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8

(0, 2ρ3(1− ρ)2,

2ρ(2− ρ)(1 + ρ− ρ2), 2ρ2(2− 3ρ+ ρ2),
(1 + ρ4)(2 + ρ− 5ρ2 + ρ3 + ρ4), 2(2 + 3ρ− 6ρ2 + ρ3 + ρ4)).

We can now calculate the main performance indices.

• The average recurrence time in the state K̃2, where no processor re-
quests the memory, called the average system run-through, is 1

ψ̃′
2

=

6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8

2ρ3(1−ρ)2 .

• The common memory is available only in the states K̃2, K̃3, K̃5. The
steady-state probability that the memory is available is ψ̃′

2+ ψ̃
′
3+ ψ̃

′
5 =

2ρ3(1−ρ)2
6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8

+ 2ρ(2−ρ)(1+ρ−ρ2)
6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8

+
(1+ρ4)(2+ρ−5ρ2+ρ3+ρ4)

6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8
= 2+5ρ−3ρ2−3ρ3+ρ4+3ρ5−5ρ6+ρ7+ρ8

6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8
.

Then the steady-state probability that the memory is used (i.e., not
available), called the shared memory utilization, is

1− 2+5ρ−3ρ2−3ρ3+ρ4+3ρ5−5ρ6+ρ7+ρ8

6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8
=

4+6ρ−8ρ2−4ρ3+4ρ4

6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8
.

• The common memory request of a processor {r} is only possible from

the states K̃2, K̃3, K̃4. In each of the states, the request probability is
the sum of the execution probabilities for all multisets of multiactions
containing {r}. Thus, the steady-state probability of the shared mem-

ory request from a processor is ψ̃′
2

∑
{A,K̃|{r}∈A, K̃2

A→K̃}
PMA(K̃2, K̃) +

ψ̃′
3

∑
{A,K̃|{r}∈A, K̃3

A→K̃}
PMA(K̃3, K̃) +

ψ̃′
4

∑
{A,K̃|{r}∈A, K̃4

A→K̃}
PMA(K̃4, K̃) =

2ρ3(1−ρ)2
6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8

(2ρ(1− ρ) + ρ2) +
2ρ(2−ρ)(1+ρ−ρ2)

6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8
(ρ(1− ρ2) + ρ3) +

2ρ2(2−3ρ+ρ2)
6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8

(ρ(1− ρ2) + ρ3) =
2ρ2(2−ρ)(1+ρ−ρ2)2

6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8
.

One can see that the performance indices are the same for the complete
and the quotient abstract generalized shared memory systems. The coinci-
dence of the first and second performance indices obviously illustrates the
result of Proposition 3. The coincidence of the third performance index
is due to Theorem 2: one should just apply its result in the step traces
{{r}}, {{r}, {r}}, {{r}, {b}}, {{r}, {e}} of the expression L and itself, and
then sum the left and right parts of the three resulting equalities.
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Let us consider what is the effect of quantitative changes of the parameter
ρ upon performance of the quotient abstract generalized shared memory
system in its steady state. Remember that ρ ∈ (0; 1) is the probability
of every multiaction of the system. The closer is ρ to 0, the less is the
probability to execute some activities at every discrete time step, hence, the
system will most probably stand idle. The closer is ρ to 1, the greater is the
probability to execute some activities at every discrete time step, hence, the
system will most probably operate.

Since ψ̃′
1 = 0, only ψ̃′

2=
2ρ3(1−ρ)2

6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8
,

ψ̃′
3=

2ρ(2−ρ)(1+ρ−ρ2)

6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8
, ψ̃′

4=
2ρ2(2−3ρ+ρ2)

6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8
,

ψ̃′
5=

(1+ρ4)(2+ρ−5ρ2+ρ3+ρ4)

6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8
, ψ̃′

6=
2(2+3ρ−6ρ2+ρ3+ρ4)

6+11ρ−11ρ2−7ρ3+5ρ4+3ρ5−5ρ6+ρ7+ρ8

depend on ρ. Figure 6 depicts the graphs of the steady-state probabilities
ψ̃′
2, ψ̃

′
3, ψ̃

′
4, ψ̃

′
5, ψ̃

′
6 as functions of ρ. Remember that we do not allow ρ = 0

or ρ = 1.

It is easy to see that ψ̃′
2, ψ̃

′
3, ψ̃

′
4 tend to 0, and ψ̃′

5, increasing, tends to
1
3 , and ψ̃

′
6, increasing, tends to

2
3 , when ρ approaches 0. Thus, the closer is ρ

to 0, the greater is the probability that two processors require the memory
or the memory is allocated to a processor and required by the other one,
hence, we get more unsatisfied memory requests.

Further, ψ̃′
2, ψ̃

′
4, ψ̃

′
5 tend to 0, and ψ̃′

3, growing, tends to 1
2 , and ψ̃′

6,

decreasing and slightly increasing, tends to 1
2 , when ρ approaches 1. Thus,

the closer is ρ to 1, the greater is the probability that the memory is allocated
to a processor (and not required by the other one), moreover, in general,
the less is the probability that the memory is allocated to a processor and
required by the other one, hence, we get less unsatisfied memory requests.

The maximal value of ψ̃′
2 is 0.0090 when ρ = 0.6380. In this case the

probability that the system is activated and the memory is not required is
maximal, i.e., the maximal shared memory availability is about 1%.

The maximal value of ψ̃′
4 is 0.0534 when ρ = 0.6855. In this case the

probability that the memory is allocated to a processor (and not required by
the other one) is maximal, i.e., the maximal probability that, during inter-
action of a processor with the memory, there are no memory requests from
the other processor (the maximal probability to have no unsatisfied memory
requests during interaction of a processor with the memory) is about 5%.

The minimal value of ψ̃′
6 is 0.4698 when ρ = 0.8543. In this case the

probability that the memory is allocated to a processor and required by the
other one is minimal, the minimal probability that, during interaction of a
processor with the memory, there are memory requests from the other pro-
cessor (the minimal probability to have unsatisfied memory requests during
interaction of a processor with the memory) is about 47%.

Figure 7 depicts the graph of the average system run-through 1
ψ̃′
2

as

a function of ρ. One can see that the run-through tends to ∞ when ρ



152 I. V. Tarasyuk

0.2 0.4 0.6 0.8 1.0
Ρ

0.1

0.2

0.3

0.4

0.5

0.6

Ψ
�

6

¢

Ψ
�

5

¢

Ψ
�

4

¢

Ψ
�

3

¢

Ψ
�

2

¢

Figure 6. Steady-state probabilities ψ̃′
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′
3, ψ̃

′
4, ψ̃

′
5, ψ̃

′
6 as functions of ρ
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Figure 7. Average system run-through 1
ψ̃′

2

as a function of ρ

approaches 0 or 1. Its minimal value 111.6834 is reached when ρ = 0.6380.
To speed up operation of the system, one should take ρ closer to 0.6380.

The first graph in Figure 8 represents the shared memory utilization
1− ψ̃′

2 − ψ̃′
3 − ψ̃′

5 as a function of ρ. It is clear that the utilization tends to
1
3 when ρ approaches 0, and it tends to 1

2 when ρ approaches 1. Thus, the
minimal shared memory utilization is about 33%. To increase the utilization,
one should take ρ closer to 1.

The second graph in Figure 8 represents the steady-state probability of
the shared memory request from a processor ψ̃′

2Σ̃
′
2 + ψ̃′

3Σ̃
′
3 + ψ̃′

4Σ̃
′
4, where

Σ̃′
i =

∑
{A,K̃|{r}∈A, K̃i

A→K̃}
PMA(K̃i, K̃), i ∈ {2, 3, 4}, as a function of ρ. One

can see that the probability tends to 0 when ρ approaches 0 and it tends to
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Figure 8. Some performance indices as functions of ρ

1
2 when ρ approaches 1. To increase the mentioned probability, one should
take ρ closer to 1.

8. Conclusion

In this paper, within dtsPBC with iteration, a method of modeling, per-
formance evaluation and performance preserving reduction of concurrent
stochastic systems was proposed based on steady-state probabilities anal-
ysis. The transition systems and underlying DTMCs of expressions were
reduced w.r.t. step stochastic bisimulation equivalence that guarantees iden-
tity of the stationary behaviour and thus preserves performance measures.
The method was applied to the generalized shared memory system with a
variable probability of activities. This probability was interpreted as a pa-
rameter of the performance index functions. The influence of the parameter
value to the system’s performance was analyzed with a goal of optimization.

We plan to investigate stochastic equivalences of dtsPBC which allow one
to identify stochastic processes with similar behaviour that are differentiated
by too strict notion of the semantic equivalence. Moreover, we would like to
extend dtsPBC with recursion to enhance specification power of the calculus.
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A. Proof of Proposition 2

Like it has been done for strong equivalence in [5], we shall prove the fol-
lowing fact about step stochastic bisimulation. Let ∀j ∈ J Rj : G↔ssG

′ for
some index set J . Then the transitive closure of the union of all relations
R = (∪j∈JRj)

∗ is also an equivalence and R : G↔ssG
′.

Since ∀j ∈ J Rj is an equivalence, by definition of R, we get that R
is also an equivalence. Let j ∈ J , then, by definition of R, (s1, s2) ∈ Rj

implies (s1, s2) ∈ R. Hence, ∀Hjk ∈ (DR(G)∪DR(G′))/Rj ∃H ∈ (DR(G)∪
DR(G′))/R Hjk ⊆ H. Moreover, ∃J ′ H = ∪k∈J ′Hjk.

We denote R(n) = (∪j∈JRj)
n. Let (s1, s2) ∈ R, then, by definition of

R, ∃n > 0 (s1, s2) ∈ R(n). Let us prove R : G↔ssG
′ by induction on n.

It is clear that ∀j ∈ J Rj : G↔ssG
′ implies ∀j ∈ J ([G]≈, [G

′]≈) ∈ Rj

and we have ([G]≈, [G
′]≈) ∈ R by definition of R.

It remains to prove that (s1, s2) ∈ R implies ∀H ∈ (DR(G)∪DR(G′))/R
∀A ∈ INL

f PMA(s1,H) = PMA(s2,H).

• n = 1

In this case, (s1, s2) ∈ R implies ∃j ∈ J (s1, s2) ∈ Rj . Since
Rj : G↔ssG

′, we get ∀H ∈ (DR(G) ∪DR(G′))/R ∀A ∈ INL
f

PMA(s1,H) =
∑

k∈J ′ PMA(s1,Hjk) =∑
k∈J ′ PMA(s2,Hjk) = PMA(s2,H).

• n→ n+ 1

Suppose that ∀m ≤ n (s1, s2) ∈ R(m) implies ∀H ∈ (DR(G) ∪
DR(G′))/R ∀A ∈ INL

f PMA(s1,H) = PMA(s2,H).

Then (s1, s2) ∈ R(n + 1) implies ∃j ∈ J (s1, s2) ∈ Rj ◦ R(n), i.e.,
∃s3 ∈ (DR(G)∪DR(G′)) such that (s1, s3) ∈ Rj and (s3, s2) ∈ R(n).

Then, like for the case n = 1, we get PMA(s1,H) = PMA(s3,H). By
the induction hypothesis, PMA(s3,H) = PMA(s2,H). Thus,
∀H ∈ (DR(G) ∪DR(G′))/R ∀A ∈ INL

f

PMA(s1,H) = PMA(s3,H) = PMA(s2,H).

By definition, Rss(G,G
′), is at least as large as the largest step stochas-

tic bisimulation between G and G′. It follows from mentioned above that
Rss(G,G

′) : G↔ssG
′.
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