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Iteration in discrete time stochastic
Petri box calculus

I. V. Tarasyuk

Abstract. In the last decades, a number of stochastic enrichments of process al-
gebras was constructed to specify stochastic processes within the well-developed
framework of algebraic calculi. In [26], a continuous time stochastic extension of fi-
nite Petri box calculus (PBC) was proposed and called sPBC. The algebra sPBC
has interleaving semantics due to the properties of continuous time distributions.
The iteration operator was added to sPBC in [24] to specify infinite processes.
Since PBC has step semantics, it could be more natural to propose its concurrent
stochastic enrichment based on discrete time distributions. In [28], a discrete time
stochastic extension dtsPBC of finite PBC was constructed. In this paper, we
construct an enrichment of dtsPBC with iteration. A step operational semantics
is defined in terms of labeled transition systems based on action and inaction rules.
A denotational semantics is defined in terms of a subclass of labeled discrete time
stochastic Petri nets (LDTSPNs) called discrete time stochastic Petri boxes (dts-
boxes). Consistency of both semantics is demonstrated.

Keywords: stochastic Petri nets, stochastic process algebras, Petri box calculus,
iteration, discrete time, transition systems, operational semantics, dts-boxes, deno-
tational semantics.

1. Introduction

Stochastic Petri nets (SPNs) are a well-known model for quantitative analy-
sis of discrete dynamic event systems proposed initially in [20]. A stochastic
process corresponding to this formal model is a Markov chain generated
and analyzed by well-developed algorithms and methods. Firing probabili-
ties distributed along continuous or discrete time scale are associated with
transitions of an SPN. Thus, there exist SPNs with continuous [20, 13] and
discrete [21] time. Markov chains of the corresponding types are associated
with the SPNs. As a rule, for SPNs with continuous time (CTSPNs), expo-
nential or phase distributions of transition probabilities are used. For SPNs
with discrete time (DTSPNs), geometric distributions or their combinations
are usually used. Transitions of CTSPNs fire one by one at continuous time
moments. Hence, the semantics of this model is an interleaving one, where
parallel computations are modeled by all possible execution sequences of
their components. Transitions of DTSPNs fire concurrently in steps at dis-
crete time moments. Hence, this model has a step semantics, where parallel
computations are modeled by sequences of concurrent occurrences (steps) of
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their components. In [10, 11], a labeling for transitions of CTSPNs with ac-
tion names was proposed. The labeling allows SPNs to model processes with
functionally similar components: the transitions corresponding to the simi-
lar components are labeled by the same action. Therefore, one can compare
both functional and performance properties, and labeled SPNs turn into a
formalism for quantitative and qualitative analysis.

Algebraic calculi occupy a special place among formal models for spec-
ification of concurrent systems and analysis of their behavioral properties.
In such process algebras (PAs), a system or a process is specified by an
algebraic formula. Verification of the properties is accomplished at a syn-
tactic level by means of well-developed systems of equivalences, axioms and
inference rules. One of the first PAs was CCS (Calculus of Communicating
Systems) [19]. Process algebras have been acknowledged to be very suit-
able formalism to operate with real time and stochastic systems as well.
In the last years, stochastic extensions of PAs called stochastic process al-
gebras (SPAs) became very popular as a modeling framework. SPAs do
not just specify actions that can happen (qualitative features) as usual pro-
cess algebras, but they associate some quantitative parameters with actions
(quantitative characteristics). The most popular SPAs proposed so far are
PEPA [14], TIPP [15] and EMPA [4]. The papers [5, 9, 12, 27] propose
a variety of other SPAs.

Process algebras allow one to specify processes in a compositional way
via an expressive formal syntax. On the other hand, Petri nets provide
one with an ability for visual representation of a process structure and ex-
ecution. Hence, the relationship between SPNs and SPAs is of particular
interest, since it allows one to combine advantages of both models. For this,
a semantics of algebraic formulas in terms of Petri nets is usually defined.
In the stochastic case, the Markov chain of the stochastic process speci-
fied by an SPA formula is built based on the state transition graph of the
corresponding SPN.

As a rule, stochastic process calculi proposed in the literature are based
on interleaving. As a semantic domain, the interleaving formalism of transi-
tion systems is often used. Therefore, investigation of a stochastic extension
for more expressive and powerful algebraic calculi is an important issue.
At present, the development of step or “true concurrency” (such that paral-
lelism is considered as a causal independence) SPAs is in the very beginning.
At the same time, there does not yet exist an algebra of infinite concurrent
stochastic processes.

Petri box calculus (PBC) is a flexible and expressive process algebra
based on calculi CCS [19] and AFP0 [18]. PBC was introduced more than
10 years ago [1], and it was well explored since that time [16, 2, 3]. Its
goal was to propose a compositional semantics for high level constructs of
concurrent programming languages in terms of elementary Petri nets. For-
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mulas of PBC are combined not from single actions and variables, as in
CCS, but from multisets of actions called multiactions which are the basic
formulas of the calculus. In contrast to CCS, concurrency and synchro-
nization are different operations, they form the concurrent constructs. The
sequential constructs are sequence and choice. The abstraction constructs
include restriction and relabeling operations. To specify infinite processes,
the hierarchical constructs such as refinement, recursion and iteration were
added. Thus, unlike CCS, the algebra PBC has an additional iteration
construction to specify infiniteness in the cases when finite Petri nets can be
used as the semantic interpretation. For PBC, a denotational semantics was
proposed in terms of Petri boxes which are a subclass of Petri nets equipped
with interface and considered up to isomorphism. The calculus PBC has a
step operational semantics in terms of labeled transition systems based on
the structural operational semantics (SOS) rules.

A stochastic extension of PBC called stochastic Petri box calculus
(sPBC) was proposed in [26, 22]. In sPBC, multiactions have stochastic
durations that follow negative exponential distribution. Each multiaction
is instantaneous and equipped with a rate that is a parameter of the corre-
sponding exponential distribution. The execution of a multiaction is possible
only after the corresponding stochastic time delay. Only a finite part of PBC
was used for the stochastic enrichment. This means that sPBC has neither
refinement nor recursion nor iteration operations. A denotational seman-
tics was defined in terms of a subclass of labeled CTSPNs called stochastic
Petri boxes (s-boxes). Calculus sPBC has interleaving operational seman-
tics in terms of labeled transition systems. Note that we have interleaving
behaviour here because of the fact that a simultaneous firing of any two tran-
sitions has zero probability in accordance with the properties of continuous
time distributions. Current research in this branch has an aim to extend the
specification abilities of sPBC and to define an appropriate congruence re-
lation over algebraic formulas. The results on constructing the iteration for
sPBC were reported in [24]. In the paper [23], a number of new equivalence
relations were proposed for regular terms of sPBC to choose later a suitable
candidate for a congruence. In [25], the special multiactions with zero time
delay were added to sPBC. A denotational semantics of such an sPBC
extension was defined via a subclass of labeled generalized SPNs (GSPNs).
The subclass is called generalized stochastic Petri boxes (gs-boxes).

Nevertheless, there were no stochastic extension of PBC with step se-
mantics until recent times. It can be done with the use of labeled DTSPNs
as a semantic domain, since discrete time models allow for concurrent action
occurrences. The enrichment based of DTSPNs is natural because PBC has
a step operational semantics.

We did some work on the development of concurrent discrete time SPNs
and SPAs. In [6], labeled weighted DTSPNs (LWDTSPNs) were proposed
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that is a modification of DTSPNs by transition labeling and weights. In [8],
labeled DTSPNs (LDTSPNs) were introduced. In [7, 8], a stochastic algebra
of finite nondeterministic processes StAFP0 was constructed with seman-
tics in terms of a subclass of LWDTSPNs and LDTSPNs called stochastic
acyclic nets (SANs). The calculus defined is a stochastic extension of the
algebra AFP0 introduced in [17]. StAFP0 specifies concurrent stochastic
processes and possesses a net semantics allowing one to preserve the level
of parallelism. An axiomatization for the semantic equivalence of StAFP0

was proposed. In [28], a discrete time stochastic extension dtsPBC of finite
PBC was constructed. A step operational and a net denotational seman-
tics of dtsPBC were defined, and their consistency was demonstrated. In
addition, a variety of probabilistic equivalences were proposed to identify
stochastic processes with similar behaviour which are differentiated by the
semantic equivalence. The interrelations of all the introduced equivalences
were studied.

In this paper, we construct an enrichment of dtsPBC with the iteration
operator to be able to specify infinite processes. First, we present the syntax
of the extended dtsPBC. Each multiaction of the initial calculus PBC is
associated with probability. Such a pair is called stochastic multiaction or
activity. Second, we propose semantics of dtsPBC. A step operational
semantics is constructed in terms of labeled transition systems based on
action and inaction rules. A denotational semantics is defined in terms of a
subclass of LDTSPNs called discrete time stochastic Petri boxes (dts-boxes).
Consistency of operational and denotational semantics is proved.

The paper is organized as follows. In the next Section 2, the syntax of the
extended calculus dtsPBC is presented. Then, in Section 3, we construct
operational semantics of the algebra in terms of labeled transition systems.
In Section 4, we propose denotational semantics based on a subclass of
LDTSPNs. The concluding Section 5 summarizes the results obtained and
outlines research perspectives in this area.

2. Syntax

In this section, we propose the syntax of discrete time stochastic extension
of finite PBC enriched with iteration called discrete time stochastic Petri
box calculus dtsPBC.

First, we recall a definition of a multiset that is an extension of the set
notion by allowing several identical elements.

Definition 1. Let X be a set. A finite multiset (bag) M over X is a
mapping M : X → IN such that |{x ∈ X | M(x) > 0}| < ∞.

We denote the set of all finite multisets over X by INX
f . When ∀x ∈

X M(x) ≤ 1, M is a proper set. The cardinality of a multiset M is defined
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as |M | =
∑

x∈X M(x). We write x ∈ M if M(x) > 0 and M ⊆ M ′ if
∀x ∈ X M(x) ≤ M ′(x). We define (M + M ′)(x) = M(x) + M ′(x) and
(M −M ′)(x) = max{0,M(x)−M ′(x)}.

Let Act = {a, b, . . .} be the set of elementary actions. Then
Âct = {â, b̂, . . .} is the set of conjunctive actions (conjugates) such that a 6= â

and ˆ̂a = a. Let A = Act ∪ Âct be the set of all actions, and L = INA
f be

the set of all multiactions. Note that ∅ ∈ L, this corresponds to an internal
activity, i.e., the execution of a multiaction that contains no visible action
names. The alphabet of α ∈ L is defined as A(α) = {x ∈ A | α(x) > 0}.

An activity (stochastic multiaction) is a pair (α, ρ), where α ∈ L and
ρ ∈ (0; 1) is the probability of the multiaction α. Let SL be the set of all
activities. Let us note that the same multiaction α ∈ L may have different
probabilities in the same specification. The alphabet of (α, ρ) ∈ SL is defined
as A(α, ρ) = A(α). For (α, ρ) ∈ SL, we define its multiaction part as
L(α, ρ) = α and its probability part as Ω(α, ρ) = ρ.

Activities are combined into formulas by the following operations: se-
quential execution ;, choice [], parallelism ‖, relabeling [f ], synchronization
sy, restriction rs and iteration [∗∗].

Relabeling functions f : A → A are bijections preserving conjugates,
i.e., ∀x ∈ A f(x̂) = f̂(x). Let α, β ∈ L be two multiactions such that for
some action a ∈ Act we have a ∈ α and â ∈ β or â ∈ α and a ∈ β. Then
synchronization of α and β by a is defined as α⊕a β = γ, where

γ(x) =
{

α(x) + β(x)− 1, x = a or x = â;
α(x) + β(x), otherwise.

Static expressions specify the structure of a system. As we shall see,
they correspond to unmarked SPNs.

Definition 2. Let (α, ρ) ∈ SL and a ∈ Act. A static expression of dtsPBC
is defined as

E ::= (α, ρ) | E; E | E[]E | E‖E | E[f ] | E rs a | E sy a | [E ∗E ∗E].

Let StatExpr denote the set of all static expressions.
To avoid inconsistency of the iteration operator, we should not allow

any concurrency in the highest level of the second argument of iteration.
This is not a severe restriction though, since we can always prefix parallel
expressions by an activity with the empty multiaction and an appropriate
probability.

Definition 3. Let (α, ρ) ∈ SL, a ∈ Act and E ∈ StatExpr. A regular
static expression of dtsPBC is defined as
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D ::= (α, ρ) | D;E | D[]D | D[f ] | D rs a | D sy a | [D ∗D ∗ E],
E ::= (α, ρ) | E; E | E[]E | E‖E | E[f ] | E rs a | E sy a | [E ∗D ∗ E].

Let RegStatExpr denote the set of all regular static expressions.
Dynamic expressions specify the states of a system. As we shall see, they

correspond to marked SPNs. Note that if an underlying static expression of
a dynamic one is not regular, the corresponding marked SPN can be unsafe
(though, it is 2-bounded in the worst case, see [2]).

Definition 4. Let (α, ρ) ∈ SL, a ∈ Act and E ∈ RegStatExpr. A regular
dynamic expression of dtsPBC is defined as

G ::= E | E | G; E | E; G | G[]E | E[]G | G‖G | G[f ] | G rs a | G sy a |
[G ∗ E ∗ E] | [E ∗G ∗ E] | [E ∗E ∗G].

Let RegDynExpr denote the set of all regular dynamic expressions.
We shall consider regular expressions only and omit the word “regular”.

3. Operational semantics

In this section, we construct the step operational semantics in terms of
labeled transition systems.

3.1. Inaction rules

First, we define inaction rules for overlined and underlined static expressions.
Let E, F, K ∈ RegStatExpr and a ∈ Act.

E; F ∅→ E; F E;F ∅→ E;F E; F ∅→ E; F

E[]F ∅→ E[]F E[]F ∅→ E[]F E[]F ∅→ E[]F

E[]F ∅→ E[]F E‖F ∅→ E‖F E‖F ∅→ E‖F
E[f ] ∅→ E[f ] E[f ] ∅→ E[f ] E rs a

∅→ E rs a

E rs a
∅→ E rs a E sy a

∅→ E sy a E sy a
∅→ E sy a

[E ∗ F ∗K] ∅→ [E ∗ F ∗K] [E ∗ F ∗K] ∅→ [E ∗ F ∗K]

[E ∗ F ∗K] ∅→ [E ∗ F ∗K] [E ∗ F ∗K] ∅→ [E ∗ F ∗K]

[E ∗ F ∗K] ∅→ [E ∗ F ∗K]

Second, we propose inaction rules for arbitrary dynamic expressions. Let
E, F ∈ RegStatExpr, G, H, G̃, H̃ ∈ RegDynExpr and a ∈ Act.
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G
∅→ G G

∅→G̃, ◦∈{;,[]}
G◦E ∅→G̃◦E

G
∅→G̃, ◦∈{;,[]}

E◦G ∅→E◦G̃
G
∅→G̃

G‖H ∅→G̃‖H
H
∅→H̃

G‖H ∅→G‖H̃
G
∅→G̃

G[f ]
∅→G̃[f ]

G
∅→G̃, ◦∈{rs ,sy}
G◦a ∅→G̃◦a

G
∅→G̃

[G∗E∗F ]
∅→[G̃∗E∗F ]

G
∅→G̃

[E∗G∗F ]
∅→[E∗G̃∗F ]

G
∅→G̃

[E∗F∗G]
∅→[E∗F∗G̃]

Note that the rule G
∅→ G is intentionally included in the set of rules

above. It reflects a non-zero probability to stay in a state at the next time
moment that is an essential feature of discrete time stochastic processes.

A regular dynamic expression G is operative if no inaction rule can be ap-
plied to it, with the exception of G

∅→ G. Note that any dynamic expression
can be always transformed into a (not necessarily unique) operative one
using inaction rules. Let OpRegDynExpr denote the set of all operative
regular dynamic expressions of dtsPBC.

Definition 5. Let ' = ( ∅→ ∪ ∅←)∗ be dynamic expression isomorphism in
dtsPBC. Two dynamic expressions G and G′ are isomorphic, denoted by
G ' G′, if they can be reached from each other by applying inaction rules.

3.2. Action rules

Now we propose action rules which describe expression transformations due
to the execution of multisets of activities. Let (α, ρ), (β, χ) ∈ SL, E, F ∈
RegStatExpr, G, H ∈ OpRegDynExpr, G̃, H̃ ∈ RegDynExpr and a ∈
Act. Moreover, let Γ,∆ ∈ INSL

f . The alphabet of Γ ∈ INSL
f is defined as

A(Γ) = ∪(α,ρ)∈ΓA(α).

(α, ρ)
{(α,ρ)}−→ (α, ρ) G

Γ→G̃

G;E
Γ→G̃;E

G
Γ→G̃

E;G
Γ→E;G̃

G
Γ→G̃

G[]E
Γ→G̃[]E

G
Γ→G̃

E[]G
Γ→E[]G̃

G
Γ→G̃

G‖H Γ→G̃‖H
H

Γ→H̃

G‖H Γ→G‖H̃
G

Γ→G̃, H
∆→H̃

G‖HΓ+∆−→ G̃‖H̃
G

Γ→G̃

G[f ]
f(Γ)−→G̃[f ]

G
Γ→G̃, a,â 6∈A(Γ)

G rs a
Γ→G̃ rs a

G
Γ→G̃

G sy a
Γ→G̃ sy a

G
Γ→G̃

[G∗E∗F ]
Γ→[G̃∗E∗F ]

G
Γ→G̃

[E∗G∗F ]
Γ→[E∗G̃∗F ]

G
Γ→G̃

[E∗F∗G]
Γ→[E∗F∗G̃]

G sy a
Γ+{(α,ρ)}+{(β,χ)}−→ G̃ sy a, a ∈ A(α), â ∈ A(β)

G sy a
Γ+{(α⊕aβ,ρ·χ)}−→ G̃ sy a

Note that in the last rule above we multiply the probabilities of syn-
chronized multiactions since this corresponds to the probability of event
intersection.
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3.3. Transition systems

Now we define transition systems associated with dynamic expressions.
The expressions of dtsPBC can contain identical activities. To avoid

technical difficulties, such as those with proper calculation of the state
change probabilities for multiple transitions, we can always enumerate co-
inciding activities from left to right in the syntax of expressions. In the
following, we suppose that all identical activities are enumerated. The new
activities resulted from synchronization will be annotated with concatena-
tion of the numbering of the activities they come from. Such new activities
will be considered up to the permutation of their numbering resulting from
the applications of the second rule for synchronization. After such an enu-
meration, the multisets of activities over arrows in the action rules will be
the proper sets.

Definition 6. Let G be a dynamic expression. Then [G]' = {H | G ' H}
is the equivalence class of G with respect to isomorphism (isomorphism
class). The derivation set of a dynamic expression G, denoted by DR(G),
is the minimal set such that

• [G]' ∈ DR(G);

• if [H]' ∈ DR(G) and ∃Γ H
Γ→ H̃ then [H̃]' ∈ DR(G).

Let G be a dynamic expression and [H]' ∈ DR(G).
The set of all multisets of activities executable from H is defined as

Exec(H) = {Γ | ∃J ∈ [H]' ∃J̃ J
Γ→ J̃}.

Let Γ ∈ Exec(H). The probability that the activities from Γ try to
happen in H is

PF (Γ,H) =
∏

(α,ρ)∈Γ

ρ ·
∏

{{(β,χ)}∈Exec(H)|(β,χ)6∈Γ}
(1− χ).

When Exec(H) = ∅, we define PF (∅,H) = 1, since we stay in H in
this case. Thus, PF (Γ,H) could be interpreted as a joint probability of
independent events. Each such an event is interpreted as trying or not
trying to occur of a particular activity from Γ.

The probability that the activities from Γ happen in H is

PT (Γ,H) =
PF (Γ,H)∑

∆∈Exec(H) PF (∆, H)
.

Thus, PT (Γ,H) is the probability that the multiset Γ tries to happen
normalized by the probability to occur for any multiset executable from H.

The probability that the execution of any activities changes H to H̃ is
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PM(H, H̃) =
∑

{Γ|∃J∈[H]',J̃∈[H̃]' J
Γ→J̃}

PT (Γ, J).

Since PM(H, H̃) is the probability for any multiset of activities to change
H to H̃, we use summation in the definition.

Definition 7. Let G be a dynamic expression. The (labeled probabilistic)
transition system of G is a quadruple TS(G) = (SG, LG, TG, sG), where

• the set of states is SG = DR(G);

• the set of labels is LG ⊆ INSL
f × (0; 1];

• the set of transitions is TG = {([H]', (Γ, PT (Γ,H)), [H̃]') | [H]' ∈
DR(G), H

Γ→ H̃};
• the initial state is sG = [G]'.

Thus, the transition system TS(G) associated with a dynamic expres-
sion G describes all steps that happen at discrete moments of time with
some (one-step) probability and consist of multisets of activities. These
steps change states, and the states are the isomorphism classes of dynamic
expressions obtained by application of action rules starting from the expres-
sions belonging to [G]'. A transition (s, (Γ,P), s̃) ∈ TG will be written as
s

Γ→P s̃. It is interpreted as follows: the probability to change the state s to
s̃ as a result of executing Γ is P. We write s

Γ→ s̃ if ∃P s
Γ→P s̃.

Note that Γ could be the empty set, and its execution does not change
isomorphism classes. This corresponds to the application of inaction rules
to the expressions from the isomorphism classes. We have to keep track of
such executions called empty loops, because they have nonzero probabilities
by the definition of PF (∅,H) and the fact that multiaction probabilities
cannot be equal to 1.

Definition 8. Let G,G′ be dynamic expressions and

TS(G) = (SG, LG, TG, sG), TS(G′) = (SG′ , LG′ , TG′ , sG′)

be their transition systems. A mapping β : SG → SG′ is an isomorphism
between TS(G) and TS(G′), denoted by β : TS(G) ' TS(G′), if β is a
bijection such that β(sG) = β(sG′) and ∀s, s̃ ∈ SG ∀Γ s

Γ→P s̃ ⇔ β(s) Γ→P
β(s̃). Two transition systems TS(G) and TS(G′) are isomorphic, denoted
by TS(G) ' TS(G′), if ∃β : TS(G) ' TS(G′).

Transition systems of static expressions can be defined as well. For
E ∈ RegStatExpr let TS(E) = TS(E).
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Figure 1. The transition system and the underlying DTMC of E for E =
[(({a}, ρ)1[]({a}, ρ)2) ∗ ({b}, χ) ∗ ({c}, θ)]

Definition 9. Two dynamic expressions G and G′ are isomorphic with
respect to transition systems, denoted by G =ts G′, if TS(G) ' TS(G′).

Definition 10. Let G be a dynamic expression. The underlying discrete
time Markov chain (DTMC) of G, denoted by DTMC(G), has the state
space DR(G) and transitions [H]' →PM(H,H̃)

[H̃]', if ∃Γ [H]'
Γ→ [H̃]'.

Underlying DTMCs of static expressions can be defined as well. For
E ∈ RegStatExpr, let DTMC(E) = DTMC(E).

Example 1. Let E1 = ({a}, ρ)[]({a}, ρ), E2 = ({b}, χ), E3 = ({c}, θ)
and E = [E1 ∗ E2 ∗ E3]. The identical activities of the composite static
expression are enumerated as follows: E = [(({a}, ρ)1[]({a}, ρ)2) ∗ ({b}, χ) ∗
({c}, θ)]. In Figure 1 the transition system TS(E) and the underlying
DTMC DTMC(E) are presented. Note that, for simplicity of the graphical
representation, states are depicted by expressions belonging to the corre-
sponding isomorphism classes, and singleton multisets of activities are writ-
ten without braces.

4. Denotational semantics

In this section, we construct the denotational semantics in terms of a sub-
class of labeled DTSPNs called discrete time stochastic Petri boxes (dts-
boxes).
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4.1. Labeled DTSPNs

Now we introduce a class of labeled discrete time stochastic Petri nets.

Definition 11. A labeled DTSPN (LDTSPN) is a tuple
N = (PN , TN ,WN ,ΩN , LN ,MN ), where

• PN and TN are finite sets of places and transitions, respectively, such
that PN ∪ TN 6= ∅ and PN ∩ TN = ∅;

• WN : (PN ×TN )∪(TN ×PN ) → IN is a function describing the weights
of arcs between places and transitions;

• ΩN : TN → (0; 1) is the transition probability function;

• LN : TN → Actτ is the transition labeling function assigning labels
from a finite set of visible actions Act or an invisible action τ to tran-
sitions (i.e., Actτ = Act ∪ {τ});

• MN ∈ INPN
f is the initial marking.

A graphical representation of LDTSPNs is like that for standard labeled
Petri nets but with probabilities written near the corresponding transitions.
If the probabilities are not depicted, they are considered to be of no impor-
tance in the corresponding examples. The names of places and transitions
are depicted near them when needed. If the names are omitted but used, it
is supposed that the places and transitions are numbered from left to right
and from top to down.

Let N be an LDTSPN and t ∈ TN , U ∈ INTN
f . The precondition •t

and the postcondition t• of t are the multisets of places defined as (•t)(p) =
WN (p, t) and (t•)(p) = WN (t, p). The precondition •U and the postcondition
U• of U are the multisets of places defined as •U =

∑
t∈U

•t and U• =∑
t∈U t•.
A transition t ∈ TN is enabled in a marking M ∈ INPN

f of LDTSPN
N if •t ⊆ M . Let Ena(M) be the set of all transitions such that each
of them is enabled in a marking M . A set of transitions U ⊆ Ena(M) is
enabled in a marking M if •U ⊆ M . Firings of transitions are atomic oper-
ations, and transitions may fire concurrently in steps. We assume that all
transitions participating in a step should differ, hence, only the sets (not
multisets) of transitions may fire. Thus, we do not allow self-concurrency,
i.e., firing of transitions concurrently to themselves. This restriction is intro-
duced because we would like to avoid technical difficulties while calculating
probabilities for multisets of transitions.

Let M be a marking of an LDTSPN N . A transition t ∈ Ena(M)
fires with probability ΩN (t) when no other transitions conflicting with it are
enabled. Let •U ⊆ M . The probability that the transitions from U try to
fire in M is
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PF (U,M) =
∏

t∈U

ΩN (t) ·
∏

u∈Ena(M)\U
(1− ΩN (u)).

In the case U = ∅ we define

PF (∅,M) =
{ ∏

u∈Ena(M)(1− ΩN (u)), Ena(M) 6= ∅;
1, Ena(M) = ∅.

Thus, PF (U,M) could be interpreted as a joint probability of indepen-
dent events. Each such an event is interpreted as trying or not trying to fire
of a particular transition from U . When no transitions are enabled in M ,
we have PF (∅,M) = 1, since we stay in M in this case.

Let U be a transition set that is enabled in M . Concurrent firing of the
transitions from U changes the marking M to M̃ = M − •U + U•, denoted
by M

U→PT (U,M) M̃ , where the probability of this step is

PT (U,M) =
PF (U,M)∑

{V |•V⊆M} PF (V, M)
.

In the case U = ∅ we have M = M̃ and

PT (∅,M) =
PF (∅,M)∑

{V |•V⊆M} PF (V, M)
.

Thus, PT (U,M) is the probability that the set U tries to fire normalized
by the probability to fire for any set enabled in M .

We write M
U→ M̃ if ∃P M

U→P M̃ .

Definition 12. Let N be an LDTSPN.

• The reachability set of N , denoted by RS(N), is the minimal set of
markings such that

– MN ∈ RS(N);

– if M ∈ RS(N) and ∃U M
U→ M̃ then M̃ ∈ RS(N).

• The reachability graph of N , denoted by RG(N), is a directed labeled
graph with the set of nodes RS(N) and an arc labeled with (U,P)
between nodes M and M̃ if M

U→P M̃ .

• The underlying discrete time Markov chain (DTMC) of N , denoted by
DTMC(N), has the state space RS(N) and transitions M →

PM(M,M̃)

M̃ , if ∃U M
U→ M̃ , where the transition probability is
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PM(M, M̃) =
∑

{U |M U→M̃}

PT (U,M).

Thus, PM(M, M̃) is the probability for any transition set to change
marking M to M̃ , hence we use summation in the definition.

4.2. Algebra of dts-boxes

Now we propose discrete time stochastic Petri boxes and associated algebraic
operations to define a net representation of dtsPBC expressions.

Definition 13. A plain discrete time stochastic Petri box (plain dts-box) is
a tuple N = (PN , TN ,WN ,ΛN ), where

• PN and TN are finite sets of places and transitions, respectively, such
that PN ∪ TN 6= ∅ and PN ∩ TN = ∅;

• WN : (PN ×TN )∪(TN ×PN ) → IN is a function describing the weights
of arcs between places and transitions;

• ΛN is the place and transition labeling function such that ΛN : PN →
{e, i, x} (it specifies entry, internal and exit places, respectively) and
ΛN : TN → SL (it associates activities with transitions).

Moreover, ∀t ∈ TN
•t 6= ∅ 6= t•, •t ∩ t• = ∅. In addition, if we define the

set of entry places of N as ◦N = {p ∈ PN | ΛN (p) = e}, and the set of exit
places of N as N◦ = {p ∈ PN | ΛN (p) = x}, then the following is required
to hold: ◦N 6= ∅ 6= N◦, •(◦N) = ∅ = (N◦)•.

A marked plain dts-box is a pair (N, MN ), where N is a plain dts-box
and MN ∈ INPN

f is the initial marking. We shall use the following nota-
tion: N = (N, ◦N) and N = (N, N◦). Note that a marked plain dts-box
(PN , TN ,WN , ΛN ,MN ) could be interpreted as the LDTSPN
(PN , TN ,WN , ΩN , LN ,MN ), where functions ΩN and LN are defined as fol-
lows: ∀t ∈ TN ΩN (t) = Ω(ΛN (t)), LN (t) = L(ΛN (t)). In this case, the la-
bel τ of silent transitions from the LDTSPN corresponds to the multiaction
part ∅ of activities which label unobservable transitions of the corresponding
dts-box. The behaviour of marked dts-boxes follows from the firing rule of
LDTSPNs. A plain dts-box N is safe, if N is so, i.e., ∀M ∈ RS(N) M ⊆ PN .
A plain dts-box N is clean if N◦ ⊆ M ⇒ M = N◦, i.e., if there are tokens
in exit places, then all exit places and only they have tokens.

To define a semantic function that associates a plain dts-box with every
static expression of dtsPBC, we need to propose the enumeration function
Enu : TN → IN∗. It associates the numbers with transitions of a plain
dts-box N in accordance with the enumeration of activities from left to
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right in the syntax of the underlying static expression. In the case of syn-
chronization, the function associates concatenation of the numbering of the
transitions it comes from with the resulting new transition. The transi-
tions resulting from synchronization are considered up to the permutation
of their numbering resulting from the applications of the second rule for
synchronization to the corresponding expression.

The structure of the plain dts-box corresponding to a static expression
is constructed as in PBC, see [2]. I.e., we use simultaneous refinement and
relabeling meta-operator (net refinement) in addition to the operator dts-
boxes corresponding to the algebraic operations of dtsPBC and featuring
transformational transition relabelings. Thus, the resulting plain dts-boxes
are safe and clean. In the definition of denotational semantics, we shall use
standard constructions used for PBC. For convenience, we only use slightly
different notation: %,Θ and u stand for ρ (relabeling), Ω (operator box) and
v (transition name) from PBC setting, respectively.

The relabeling relations % ⊆ INSL
f × SL are defined as follows:

• %id = {({(α, ρ)}, (α, ρ) | (α, ρ) ∈ SL} is the identity relabeling keeping
the interface as it is;

• %[f ] = {({(α, ρ)}, (f(α), ρ) | (α, ρ) ∈ SL};
• %rs a = {({(α, ρ)}, (α, ρ) | (α, ρ) ∈ SL, a, â 6∈ A(α)};
• %sy a is the least relabeling relation contained in %id such that if

(Γ, {(α + {a}, ρ)} ∈ %sy a and (∆, {(β + {â}, χ)} ∈ %sy a then (Γ +
∆, {(α + β, ρ · χ)} ∈ %sy a.

The plain and operator dts-boxes are presented in Figure 2. The symbol
i is usually omitted.

Now we define the enumeration function Enu for every operator of
dtsPBC. Let Boxdts(E) = (PE , TE , WE , ΩE , LE) be the plain dts-box cor-
responding to a static expression E, and EnuE be the enumeration function
for TE .

• Boxdts(E ◦ F ) = Θ◦(Boxdts(E), Boxdts(F )), ◦ ∈ {; , [], ‖}. Since we
do not introduce new transitions, we preserve the enumeration:

Enu(t) =
{

EnuE(t), t ∈ TE ;
EnuF (t), t ∈ TF .

• Boxdts(E[f ]) = Θ[f ](Boxdts(E)). Since we only change the labels of
some multiactions by a bijection, we preserve the enumeration:
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Figure 2. The plain and operator dts-boxes

Enu(t) = EnuE(t), t ∈ TE .

• Boxdts(E rs a) = Θrs a(Boxdts(E)). Since we remove all transitions
labeled with a multiaction containing a or â, this does not change the
enumeration of the remaining transitions:

Enu(t) = EnuE(t), t ∈ TE , a, â 6∈ LE(t).

• Boxdts(E sy a) = Θsy a(Boxdts(E)). Note that ∀v, w ∈ TE such that
LE(v) = α + {a}, LE(w) = β + {â}, the new transition t resulting
from synchronization of v and w has the label L(t) = α+β, probability
Ω(t) = ΩE(v) ·ΩE(w) and enumeration Enu(t) = EnuE(v) ·EnuE(w).
Thus, the enumeration is defined as

Enu(t) =





EnuE(t), t ∈ TE ;
EnuE(v) · EnuE(w), t results from synchronization

of v and w.

To avoid introducing redundant transitions generated by synchronizing
the same transition set in a different order, we only consider a single
one of them in the plain dts-box.

• Boxdts([E ∗ F ∗K]) = Θ[∗∗](Boxdts(E), Boxdts(F ), Boxdts(K)). Since
we do not introduce new transitions, we preserve the enumeration:
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Enu(t) =





EnuE(t), t ∈ TE ;
EnuF (t), t ∈ TF ;
EnuK(t), t ∈ TK .

Now we can formally define the denotational semantics as a homomor-
phism.

Definition 14. Let (α, ρ) ∈ SL, a ∈ Act and E, F,K ∈ RegStatExpr.
The denotational semantics of dtsPBC is a mapping Boxdts from
RegStatExpr into the area of plain dts-boxes defined as follows:

1. Boxdts((α, ρ)i) = N(α,ρ)i
;

2. Boxdts(E ◦ F ) = Θ◦(Boxdts(E), Boxdts(F )), ◦ ∈ {; , [], ‖};
3. Boxdts(E[f ]) = Θ[f ](Boxdts(E));

4. Boxdts(E ◦ a) = Θ◦a(Boxdts(E)), ◦ ∈ {rs, sy};
5. Boxdts([E ∗ F ∗K]) = Θ[∗∗](Boxdts(E), Boxdts(F ), Boxdts(K)).

The dts-boxes of dynamic expressions can be defined as well. For E ∈
RegStatExpr, let Boxdts(E) = Boxdts(E) and Boxdts(E) = Boxdts(E).
Note that any dynamic expression can be decomposed into overlined or
underlined static expressions or those without overlines and underlines, and
the definition of dts-boxes is compositional.

Isomorphism is a coincidence of systems up to renaming of their compo-
nents or states. Let ' denote isomorphism between transition systems or
DTMCs and reachability graphs. Note that in this case, the names of tran-
sitions of the dts-box corresponding to a static expression could be identified
with the enumerated activities of the latter.

Theorem 1. For any static expression E

TS(E) ' RG(Boxdts(E)).

Proof. As for the qualitative (functional) behaviour, we have the same
isomorphism as in PBC. The quantitative behaviour is the same by the fol-
lowing reasons. First, the activities of a static expression have probability
parts coinciding with probabilities of the transitions belonging to the cor-
responding plain dts-box. Second, in both semantics, conflicts are resolved
via the same probability functions.

Proposition 1. For any static expression E

DTMC(E) ' DTMC(Boxdts(E)).
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Figure 3. The marked dts-box N = Boxdts(E) for E = [(({a}, ρ)1[]({a}, ρ)2) ∗
({b}, χ) ∗ ({c}, θ)], its reachability graph and the underlying DTMC

Proof. By Theorem 1 and definitions of the underlying DTMCs for dy-
namic expressions and LDTSPNs, since transition probabilities of the as-
sociated DTMCs are the sums of those belonging to transition systems or
reachability graphs.

Example 2. Let E = [(({a}, ρ)1[]({a}, ρ)2)∗({b}, χ)∗({c}, θ)], i.e., it is from
Example 1. In Figure 3 the marked dts-box N = Boxdts(E), its reachability
graph RG(N) and the underlying DTMC DTMC(N) are presented. It is
easy to see that TS(E) and RG(N) are isomorphic, as well as DTMC(E)
and DTMC(N).

5. Conclusion

In this paper, we have proposed a discrete time stochastic extension of a fi-
nite part of PBC enriched with iteration called dtsPBC. The new calculus
has the concurrent step operational semantics based on transition systems
and the denotational semantics in terms of a subclass of LDTSPNs. Con-
sistency of operational and denotational semantics was established.

Future work consists in defining the algebraic equivalences of dtsPBC
which abstract from the silent activities, i.e., those with empty multiaction
part. As a result, we shall have the algebraic analogues of the net probabilis-
tic equivalences from [7]. The equivalence relations will allow one to identify
stochastic processes with similar behaviour which are differentiated by too
strict notion of the semantic equivalence. Then, we can try to construct a
congruence relation based on some algebraic equivalence we have proposed.
Moreover, we plan to extend dtsPBC with recursion.
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