Bull. Nov. Comp. Center, Comp. Science, 9 (1998), 1-14
© 1998 NCC Publisher

Distributed architecture
for implementing fast parallel algorithms
for two combinatorial optimization
problems

S.M. Achasova

Using the Parallel Substitution Algorithm, as a formal model of parallel compu-
tations, a distributed architecture is designed for implementation of the following
two fast parallel algorithms: one for the maximal independent set problem and
the other for the minimum weighted vertex cover problem. The former is a ran-
domizing algorithm based on the Monte Carlo method, the latter is a deterministic
approximation algorithm based on the primal-dual technique that consists of find-
ing feasible solutions to the problem under consideration and its dual to be close to
each other. The topology of the connections between the processors in the designed
distributed architecture is similar to the topology of the graph in hand.

Introduction

It is known that sequential algorithms for combinatorial optimization prob-
lems cannot always be converted in fast parallel algorithms. One frequently
cited instance of such a problem is the maximal independent set (MIS) prob-
lem. Given an n-vertex, m-edge undirected graph G = (V, E), find a subset
of vertices I C V having the following properties: 1) I is a set of pairwise in-
dependent (i. e., not adjacent) vertices, 2) on addition a new vertex to I, the
property 1 does not hold. Such a subset [ is a MIS. The obvious sequential
algorithm for the MIS problem can be stated as: initialize I to the empty
set, for t = 1,...,n if a vertex 7 is not adjacent to any vertex in I then add
t to 1. This algorithm cannot be converted in a fast parallel algorithm that
requires a number of iterations being expressed by a function of the input
size of a problem that grows considerably slower than the linear one [1-3].

This circumstance stimulates a search for completely different approaches
to designing parallel algorithms than sequential ones. We refer to two such
approaches. The first makes use of random variables and the Monte Carlo
method [1, 2], and it is illustrated by a Monte Carlo algorithm for the
MIS problem. The second makes use of the primal-dual technique based
on the fact that the optimum value of an optimization problem is equal
to the optimum value of its dual [4-6]. The second approach is applied to



2 S.M. Achasova

the minimum weighted vertex cover problem. In the case, given a graph
G = (V, E) with vertex weights w(i) (i € V), find C C V such that: 1) for
each edge (i,7) € E (i,j € V) at least one of ¢ and j belongs to C, and
2) Yicc w(i) is minimum.

The Monte Carlo algorithm finds a MIS taking O(logn) iteration steps
[2]. In each iteration, the algorithm randomly selects a subset of vertices
which are pretenders to a MIS (the operation is executed for all vertices
simultaneously). Further, if the selected subset contains pairs of vertices.
connected by an edge, then one vertex of each pair is removed from the subset
(the operation is executed for all edges simultaneously). The remaining
vertices are added to the MIS and removed from the graph along with all
adjacent vertices. For the remainder of the graph, the new iteration step is
executed and so until the graph is empty.

For the minimum weighted vertex cover problem the dual problem is
the maximum edge packing one, which consists of finding the edge weights
w(3, §) such that the total weight assigned to the edges incident to any vertex
i is at most w(i) and the total weight assigned to all edges is maximum. Both
the primal and dual problems are NP-hard [7]. A parallel approximation
algorithm based on the primal-dual technique finds a vertex cover of weight
at most 2/(1 —¢) times the minimum taking O{log m) iteration steps, where
£ € (0,1) is the key parameter for resolution whether a vertex is added to
a cover [5]. In each iteration, the edge weights, simultaneously all, increase
(the edge packing is formed) at the expense of lowering the weights of the
incident vertices. Whenever a vertex i reaches a weight smaller than ew(3)
the algorithm puts i into the vertex cover and deletes all edges incident to i.
For the remainder of the graph, the new iteration step is executed and so
until the graph is empty.

For the fast parallel algorithms based on the above approaches, the ques-
tion arises of mapping these into a distributed architecture. The key features
of distributed architectures are massive parallelism and local connections
between processors. The algorithms of interest are ideally suited to these
features in structure. Indeed, the algorithms assume massive parallel compu-
tations (a parallel processing of all vertices or all edges of a graph), and these
are satisfied with local connections in an architecture having the topology
similar of the graph in hand (a processing of a vertex requires the informa-
tion only from the adjacent vertices or from the incident edges; a processing
of an edge requires the information only from the incident vertices).

In this paper, design of distributed architectures is based on an origi-
nal model of parallel computations named Parallel Substitution Algorithm
(PSA) [8]. The PSA enables us to represent an algorithm as a set of copies
of the basic procedures distributed in space and executed simultaneously
in time. The PSA offers the following flexible mechanisms for control of
parallel computations in time and in space: (a) applicability of the parallel



Dastributed architecture for implementing fast parallel algorithms 3

substitutions by condition for control of processing data in time, (b) the con-
text in the parallel substitutions for controlling cause-and-effect relationship
between operations over data distributed in space, and for controlling the
order of processing data in time, (c) the naming functions in the parallel sub-
stitutions for organizing parallel operations over data distributed in space.
For designing and debugging parallel substitution algorithms a simulating
system named Animated Language Tools (ALT) has been developed which
has tools for visual and textual representation of computational processes
in a distributed structure [8-10].

In the remainder of the paper, the basic ideas of the PSA are given, and
the parallel substitution algorithms for the above combinatorial optimization
problems are presented.

1. The parallel substitution algorithm

The PSA is a formal model of distributed computations that is intended for
organizing the joint work of a massive number of simple processors with the
aim to solve a given problem.

The processors take names. A set of names M corresponds to the struc-
ture of the input data of the problem being solved. Traditionally, M is
either the set of coordinates of the 2D or 3D Cartesian space, if the data are
located at the nodes of an integer Cartesian grid, or a set of symbols for the
graph problems, if the topology of the connections between the processors
i8 assumed to be similar to the topology of the graph in hand.

A processor is assumed to have a set of states A. The sets M and A are
finite. A pair (a,m), where a € A and m € M, is called a cell. A finite
set of cells with no pair of cells having one and the same name is termed a
cellular array K.

An elementary operation over a cellular array is a substitution

Sy * Sy = S,

where 51, S; and S3 are sets of cells, S; = {(a1,my)...(ap, m,)} is the base
of a substitution, Sy = {(by, mp41) ... (b, mpyq)} is the context of a substi-
tution (all names my, ..., myy, are different), Sz = {(c;,m1) ... (cp,m,)} is
the right-hand part of a substitution. The base and the right-hand part of a
substitution are of the same cardinality and contain cells with the same set

of names. Note, that ¢;,...,¢, can be both merely states and functions of
states ay,...,ap, by,...,b,. In the latter case, the substitutions are named
functional.

An elementary substitution Sy * S; = Sj is applicable to a cellular array
K if 5; US; C K. The substitution is executed by substituting the cells of
the right-hand part S for the cells of the base S;. The cells of the context do
not change. The context is the condition for a substitution to be applicable.



4 S.M. Achasova

For representation of a number of copies of the same operation which
can be executed in parallel in a cellular array a substitution is generalized
to a parallel substitution

8 : Sy (m)  Sa(m) = S3(m),

in which
Sy (m) = {(a1,p1(m)) ...(ap, pp(m))},

SZ(m) = {(bla d’l(m)) vee (btn wq(m))}!
S3(m) = {(Cla V’l(m)) T (CP1 (Pp(m))}:

where @;(m) (i =1,...,p) and ¥;(m) ( =1,...,q) are functions over a set
of names M with both the domain and the range equaled M. The functions
are called naming. The values of naming functions for any m € M must be
different. The naming functions define the neighborhood of the processors.

Parallel computations in a cellular array K are determined by a set of
parallel substitutions & = {8y, ..., 8}, which are applied to K in accordance
with the following iterative procedure.

Let us assume that K (t) is a cellular array being the result of execution
of a set of the parallel substitutions ® in K during ¢ iteration steps. Further,

o if no substitution 8; € @ is applicable to K(t), then K(t) is the result
of the computation, else

e all applicable to K (t) substitutions are executed simultaneously, and
K(t) is transformed to K(t + 1) that is the result of the (¢ + 1)-th
iteration step.

Determinacy of a parallel computation performed in accordance with
the above synchronous procedure is provided with the property of non-
contradictoriness of a set of parallel substitutions ®. This property lies
in the fact that the application of ® to any K (specified over the given sets
A and M) cannot give a set of cells in which there are if only two cells with
the same names and different states [8].

The non-contradictory set of parallel substitutions ® together with the

above iterative procedure of its execution is called a parallel substitution
algorithm.

2. A parallel substitution algorithm
for the maximal independent set problem
The Monte Carlo algorithrﬁ for the maximal independent set problem [2]

contains two basic procedures VER and ED which are performed in each
iteration step, first VER and then ED. VER is applied to all vertices of a



Distributed architecture for implementing fast parallel algorithms 5

graph in parallel, ED — to all edges of a graph in parallel. VER constructs a
set X of vertices which are pretenders to a MIS I. A vertex i is put into X
with probability 1/2d(i), where d(i) is the degree of i. ED works with each
pair of vertices belonging to X and connected by an edge and puts one of
two edges of such a pair into 7, namely that has the greater degree than the
other. In [2] it is proved that the algorithm can be performed in O(log n)
iteration steps.

The above Monte Carlo algorithm generates n pairwise independent ran-
dom variables [11] in each iteration by the following rule:

r(i) = (z + y x ) mod ¢, i=1,...,n,

where z, y are random numbers from the interval [0,q — 1], ¢ is a prime
number from the interval [n, 2n], it defines the cardinality ¢ of a probability

space each point {(,y)} of which corresponds to one of variants of X. Let
G' = (V', E') be a subgraph of

G=(V,E), NW)={ieV': IjeW,(5j)eE}

be the neighborhood of W C V/, d'(i) be the current degree of a vertex
i. Here is a pseudocode of the Monte Carlo algorithm (g is assumed to be
given).

The algorithm MC

begin G'(V',E") :=G(V,E); I:=0;
while G' # 0, do
begin
in parallel for all ie V'’
compute d'(7);
if d'({) =0, then add i to / and remove from V';
randomly select z and y from the interval [0,q—1];
X = 0;
in parallel for all i€ V' do
p(i) == q/2d'(i);
r(i) :== (z+ y X ¢) mod ¢;
if r(¢) < p(i), then add i to X;
in parallel for all (¢,j)€ E’
if 1€ X and j € X, then
if d'(i) < d'(j), then remove i from X,
else remove j from X ;

I =1uUX;

Y =XUN(X);

Vi=V'\Y;
end

end



6 : S.M. Achasova

The algorithm MC can be implemented in a distributed architecture of
the following kind.

Let there be n nodes. The topology of connections of the nodes is sim-
ilar to the graph in hand. A node has a name : as its respective vertex.
Each node 7 is connected with the nodes jfi),...,j,(:), where k = d(i),
as their respective vertices are connected with a vertex i. Each node i
combines six elementary processors which have the names (¢,1),..., (i, 6).
In what follows, we say “cells” instead of “processors” and for brevity, we
say “a cell m” instead of “a cell having the name m”. Two cells (i,5) and
(i,6) are merely the memory ones for the constants ¢ and q.

In addition to the above n nodes there is one more node with the name
ran which is connected with each of the n nodes. The node ran combines
three cells (ran, 1), (ran, 2) and (ran, 3), two of which generate random num-
bers z and y, and the third cell works as a counter. A fragment of the
architecture is shown in Figure 1.

00..0

J}l] J;(:)

00...0

ran

1 2 3
LI
Figure 1

The cell (%,2) computes the current degree d'(7) of a vertex 7. The cell
(7,1) calculates the random number r(i) = 2d'(i)((z + iy) mod q) for its
node. The cells (2,3) and (i,4) carry the following information: (i,3) has
the state 1 if the vertex ¢ still remains in G’, the state 0 if the vertex ¢ has
been removed from G’; {i,4) has the state 1 if the vertex i is put into X,
the state 2 if the vertex ¢ has been put into I, the state 0 if the vertex i is
not put into both X and 1.

A parallel substitution algorithm to operate the described set of the
processors contains functional substitutions, and so the set of the states of
the cells contains variable symbols {z,y, z, 2, ...} and functional symbols
{f1, f2,...} and also the “don’t care” symbol “ —”. Both the domain and
the range of the functions and also of the variables are equal to the interval
of integers [0,...,2A(g— 1)], where A’is the maximal degree of the vertices
of the graph. '




Distributed architecture for implementing fast parallel algorithms 7

A parallel substitution algorithm realizing the MC in the distributed
architecture comprises six substitutions {61,64,03,04,05,66} (their visual
representation is shown on Figure 2):

61 : {(—,({ran,1))(—, (ran, 2))(0, (ran, 3))}
= {(fl (ran, 1)) (f{, (ran,2))(1, (ran, 3))},
f1 = (a random number 0 < z < g — 1 is generated),
= (a random number 0 < y < g — 1 is generated);

6, : —<zmn {1,630 (30, G, 3)) - - (230, (517, 3))(0, (ram, 3))}
= {(f2: (‘1 2) }s
fg = zj + ceet 25,
03 : {(—, (1), (ran,3))}
{(22, (5, 2)) (1, (i, 3))(z, (ran, 1)) (y, (ran, 2)) (i, (i, 5)) (g, (i, 6)) }
= {(f3s ("‘1 1))(21 (ran, 3))}1
f3=22((z + iy) mod g);

04 : {(0,(i,4))(2, (ran, 3))} * { (21, (4, ))(1, (i, 3))(g, (3, 6)) }
= {(f&, (i,4))(3, (ran, 3))},
fi=1,if 2 < g

0s : {(1,(i,4) ( (ran 3))}*{ 22,(1 2) (22’ (J(!) 2))(1 (J(l) 4))}
= {(fs, (1,4))(4, (ran,3))}, (=1,...,k,
fs =0, if 23 < zé;

86 : {(1,(i,4)(1,(6,3) (=, (G, 3)) ... (=, (5", 3)) (4, (ran, 3))}
= {(2, (1, 4)(0, (,3))(0, (5", 3)) ... (0, (5, 3)) (0, (ran, 3)) }.

The initial states of the cells (¢,1), (¢,2), (i,4) of the node 7, i = 1,...,n
and of the cell (ran,3) are equal to 0. The initial state of the cell (i,3),
t=1,...,n,is equal to 1, what corresponds to G’ := G. The initial states of
the cells (ran, 1) and (ran, 2) are specified by a method of generating random
numbers. Its algorithm terminates work when all cells (i,3),i = 1,...,n,
turn into the state 0. The algorithm returns a MIS specified with those cells
{i.4), i =1,...,n, which have the state 2.

In each iteration step, firstly the substitution 8; and the substitution 8,
in all nodes ¢, 1 = 1,...,n, are performed in parallel. The substitution 6,
generates two random numbers. The substitution #; computes the current
degrees of the vertices of the subgraph G’. Then, in each node i,i=1,...,n,
the substitution @3 calculates random numbers by the above rule. Further,
the substitution 84 being executed -in all nodes ¢ in parallel builds a set
X of vertices — pretenders to /. Following, for each pair of the adjacent




01:

82 :

#s:

94:

35:

9 :

S.M. Achasova

ran

1 2 3
AN

i ‘[_-E__I
=] - !
ran [E_-l
1 12 3 5 8
= RinEa
3 ) ran 1 2

it

o o

3 4

-
ran:D-

Figure 2




Dustributed architecture for implementing fast parallel algorithms 9

nodes ¢ and j such that the vertices 1, j € X, the substitution 65 is executed
which adds one of the vertices ¢ and j to I. Finally, the substitution 8
being executed in all nodes i, ¢ = 1,...,n, in parallel deletes all vertices
which have been put in 7 and all adjacent to them. The order in which the
substitutions are executed is determined by the state of the cell (ran, 3) and
the contexts of the substitutions. The substitutions are non-contradictory.
The algorithm comes to a halt (no substitution is applicable) when the states
of the cells (i,3),¢=1,...,n, are equal to 0 and the state of the cell (ran, 3)
is equal to 1.

3. A parallel substitution algorithm for
the minimum weighted vertex cover problem

For any minimum vertex cover and any maximum edge packing

dow(i)> Y w(ij),

i€C (i.J)EE

where C' C V is a vertex cover, w(s) is the weight of a vertex i, w(i,j) is
the weight of an edge (7, 7). Assuming that for any vertex i € C' and a set
Inc(#) of edges incident to the vertex i

z w(iaj) 2 (1 - E)’UJ(i),

(#,7)€Inc(s)

where € € (0, 1), we obtain

A-e)d wid<d) > wiH<2 Y w(,j).

i€C i€C (i,7)€Inc(i) (i,4) EInc(i)

From this follows that approximate solutions of the above dual problems
differ by the factor 2/(1 —¢) from the optimum solutions. Thus, the problem
on the vertex cover reduces to the problem on the edge packing. In each
iteration, the algorithm PD (Primal-Dual) starting from the zero packing
increases the edge weights at the expense of lowering the weights of the
incident vertices until (after a number of iterations) has formed a cover C
such that w'(i) < ew(?) for each vertex i € C. To ensure that the condition
“a sum of the weights of the edges incident to a vertex i does not exceed
w(i)” is met, in each iteration, an edge weight w(i, j) may be increased only

by the value
o [w(E) w'(j)}
é = —

(113) mln{ d,(i) 3 d’(]) J
where d'(7) is the current degree of a vertex i in G’ C G, w'(i) is the current
weight of a vertex 7. In [6] it is proved that the algorithm takes O(logm)
iteration steps to return a vertex cover of weight at most 2/(1 —¢) times the
minimum.




10 S.M. Achasova

Algorithm PD

begin
G'(V',E"):=G(V,E);
C:=0;
in parallel for all i€ V'
w'(i) := w(i);
vhile G'#0, do
begin
in parallel for all i€ V'
compute d'(i);
in parallel for all (i,j) € E'
8(4, j) = min{w'(s)/d'(3), w'(§) /d'(4) };
in parallel for all i€ V'
w'(i) == w'(8) ~ Li j)etne(i) 0 (4, 5)
if w'(i) <ew(i), then
begin
C:=CuUi;
V= VI 4
E':= E'\ {(i,j) € Inc(i)};
end
end
end

The algorithm PD can be implemented in a distributed architecture of
the following kind. Let there be m + n nodes, n of which corresponds to the
vertices, m — to the edges of the graph in hand. The architecture topology
is similar to the graph. A node corresponding to a vertex ¢ has a name
i, a node corresponding to an edge (¢,7) has a name (¢, j]. Each node i is

O0..0
/. o o )

G [ 2 G

SRR

A I " i

° ° ©

" Figure 3



Distributed architecture for implementing fast parallel algorithms 11

connected with the nodes [i,jf‘}], . .,[i,j,(:)], k = d(z). A node ¢ contains
seven cells (4,1),..., (i, 7), two of which (4, 5) and (i, 6) are memory cells for
the constants w(i) and ¢, (i, 7) works as a counter. A node [, 7] contains two
cells ([7, 7], 1), {[¢, 7], 2). A fragment of the architecture is shown in Figure 3.
The cells (¢,1) and (i,2) calculate the current weight w' (7) and degree
d'(é) of a vertex i, respectively. The cells (i,3) and (i,4) can be in the state
1 or 0. The state 1 of the cell (i,3) means that a vertex i belongs to G/,
the state 0 — it does not. The state 1 of the cell (i,4) means that a ver-
tex 1 has been put in the cover C, the state 0 — it has not been. A cell
([, 7], 1) calculates &(z, 7). A cell ([¢,5],2) being in the state 1 indicates that
an edge (¢, j) belongs to G’, in the state 0 — the converse. A parallel substi-
tution algorithm realizing PD in the distributed architecture comprises five
substitutions 6y, ...,85 (their visual representation is shown on Figure 4):

61: {(~(i,2))(0, (i, 7))} *
{(1, €6, 3) (230, (6,571, 2)) - (250, ([ 5, 2))
= {(f1, (,2) (1, (i, 7))},
h =2zj + ...+ z,;
620 {(= ([i, 31, ), (4 T, (G, 7))} +
{(zi1, (5, 1)) (232, (6, 2)) (252, (G, 1)) (=52, (3, 2)) (1, (5, 3)) (1, (5, 3))}
= {(f2s ([i,j], 1)) (21 (i,7)) (2: (3! 7))}1
J2 = min{z;1/2i2, 21/ zj2};
b3: {(a1, (i, D)2, (1, 7))} *
{4 (630 50, (3171 1) - (23, 6,5, 1))
= {(f3a (ia 1))(3v (3.! 7))}:
fa=z - [Zj! + "'+zjk];
64 : {(0, (s, 4))(3’ (4, 7))} *
{(Zh (i! 1))(}-: (i, 3)) (251 (i: 5))(267 (iv 6))}
= {(f4a <i1 4))(4’ (i1 7))}:
fa=1if z; < 25 2g;
Bs = {(1, (5,3) (4, (. T (=, (5, 571, 2)) ... (=, (6, 5, 20) ) #
{(1, G,4))}
= {(0, (i,3))(0, i, 7))(0, ([, 5], 2)) ... 0, (2,51, 2))).

In each node ¢, i = 1,...,n, the initial state of the cell (,1) is equal
to w(i), the initial state of the cell (i,3) is equal to 1 (what corresponds to
V*:= V), and the initial states of the cells (i,2), (i, 4), (i, 7) are equal to 0.
In each node [z, 5], the cell ([4, j], 1) has the initial state 0, the cell [z, 71,2) has



12 S.M. Achasova

v 'lE - m - [
[’-Jl]H ["

W T EELD ']
n:  BAC] . — i
1] 2] B [ i[2]

ST (] x| {n - |G
[,A"];@ . .u’]a

1 1 3 5 6 1
SRR | Y| N | I 0 0 3 ) B | | EY

o] o]

. 4
95‘. m '

=

3, 5] E] ,Jk’l E| i, 5] |::| [i,5) @

Figure 4

the initial state 1 (what corresponds to E’ := E). The algorithm terminates
its work when all cells (i,3),7 =1, ..., n, obtain the state 0. The algorithm
returns a vertex cover specified with those cells (¢,4), ¢ = 1,...,n, which
have the state 1.

In each iteration, starting with 6; all five substitutions are performed
one after another. Such an order corresponds to the change of state of the
cell (i,7) from 0 to 4 and further on the cycle 0,1,...,4. The substitution
6, being executed in each node ¢,7=1,...,n, and its ad_]a,cent nodes [, _’]( )],
[=1,...,k (k=d(i)), computes the cilrrent degree d'(i) of a vertex ¢. The



Distributed architecture for implementing fast parallel algorithms 13

substitution 8, is applied to each node [, Jj] and its adjacent ones i and j and
finds the suitable addition 4(%, j) to the current weight of an edge (i, J)€EF.

03 works with each node i and its adjacent nodes [z, j,('}], l=1,...,k, and
decreases the weight of the vertex i by the value of the addition calculated
by 2. 8,4 is applied only to the nodes i, i = 1,.. ., 7, and reveals those
vertices which may be put into C. Finally, 85 being applied to each node i
and its adjacent ones [z, j,')], I =1,...,k, deletes all edges incident to the
vertices put to C.

4. Conclusion

The original model of distributed computations — the Parallel Substitution
Algorithm - is applied for design of the distributed architectures implement-
ing the fast parallel algorithms for two combinatorial optimization problems:
on a maximal independent set and on a minimum weighted vertex cover. The
approaches underlying these algorithms (one is based on the Monte Carlo
strategy, the other — on duality of combinatorial optimization problems)
share three interesting properties. The first consists in the fact that the ini-
tially parallel algorithms are designed on the basis of the approaches. The
second consists in the fact that the structure of the algorithms allows us to
implement them in the distributed architecture with the local connections
between the processors. And the third is that the key component of the
time complexity of the algorithms which is the number of required iteration
steps is the binary logarithm of the input size of the problem under consid-
eration. The parallel substitution algorithms realize these properties in the
distributed architecture having the topology similar to the graph in hand.

References

[1] R. Carp and A. Wigderson, A fast parallel algorithm for the mazrimal indepen-
dent set problem, J. of ACM, 32, 1985, 762-773.

[2] M. Luby, A simple parallel algorithm for the mazimal independent set problem,
SIAM J. Comput., 15, No. 4, 1986, 1036-1053.

[3] A. Clementi, J.D.P. Rolim, and E. Urland, Randomized paraliel algorithms,
Lect. Notes in Comput. Sci., 1054, 1996, 25-50.

[4] C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization. Algorithms
and Complezity, Prentice—Hall, 1982.

[5] S. Khuller, U. Vishkin, and N. Young, Primal-Dual Parallel Approzimation
Technique Applied to Weighted Set and Verter Cover, J. of Algorithms, 1994,
280-289.



14 S.M. Achasova

[6] D.P. Bovet, A. Clementi, P. Crescenzi and R. Silvestri, Parallel approzimation
of optimization problems, Lect. Notes in Comput. Sci., 1054, 1996, 7-24.

[7] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, Freeman, San-Francisco, 1979.

[8] S. Achasova, O. Bandman, V. Markova, and S. Piskunov, Parallel Substitution
Algorithm. Theory and Application, World Scientific, 1994.

[9] Y. Pogudin, Simulation of Fine-Grained Parallel Algorithms with the ALT
(Animated Language Tools) System, First International Workshop on Dis-
tributed Interactive Simulation and Real Time Applications (Proceedings),
Eilat, Israel, Jan. 9-10, 1997, p. 22.

[10] Y. Pogudin, O. Bandman, Simulating Cellular Computations with ALT. A
Tutorial, Lect. Notes in Comput. Sci., 1277, 1997, 424-435.

[11] W. Feller, An Introduction to Probability Theory and its Applications, 1, John
Wiley, New York, 1968.



