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A mathematical model of determining
the stress field and dilatant zones
by geodetic data*

A.S. Alekseev, A.S. Belonosov, and V.E. Petrenko

An inverse problem to determine the location of acting equivalent forces to
geodetic data on the surface of the Earth’s crust is considered within the framework
of the quasistatic model for the elastic isotropic half-space with the sources of
point type. It uses the data of monitoring for deformations of areas of the Earth’s
crust surface. The determination of zones of possible dilatancy in the area of the
source influence and search for the relation between such zones and the location
and behavior of the anomalies — precursors of various nature — are discussed. Some
results of numerical modeling are presented.

The process of accumulation of stresses and deformations is crucial in
the preparation of earthquakes. It can be assumed in the multidisciplinary
problem of earthquake prediction [1] that the appearance of anomalies —
precursors of various nature (forces of gravity, ground water level, geochem-
ical precursors, etc.) — is caused by this process in the area covering the
epicenter of a future earthquake.

Now the data of monitoring of deformations of the Earth’s crust are one
of the main constituents of earthquake prediction. Geodetic measurements
[2] are the main method to obtain these data and a basis for the prediction of
the locations of earthquake preparation. This trend in earthquake prediction
has received much attention in the last 20 years in China [3-5]. Both the
data of the regional networks of monitoring (geodetic surveys) in large areas
and observational data of the movements in the existing fractures [3, 4]
are used. It is known that the data of deformations of the Earth’s crust
played an important role in the successful prediction of the 1975 Haicheng
earthquake (M = 7:3). Confinement of the epicenter of a future earthquake
to the area with high gradients of deformation observed many times [3] is
an important rule. '

It is necessary to use for earthquake prediction the quantitative model
of deformation and stress of the Earth’s crust. As the preparation process
of strong earthquakes and accumulation of deformations and stresses is very
slow (it takes years, tens of years, and more), it is natural to consider the
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deformation process as a quasistatic one. That is, the Earth’s crust is in
equilibrium in the given region at each moment of time, and this problem can
be seen as a static problem of deformation of the elastic medium. In Russia,
the static model describing earthquake preparation was used by I.P. Dobro-
volsky [6]. Precursor deformations are observed at distances of hundreds of
kilometers from the future epicenter [3-5]. In accordance with the Saint-
Venant principle, replacement of loading in the place of its application by
an equivalent system of forces gives a slightly different field of deformations
at large distances. By using equivalent system of forces (fictition) it is pos-
sible to determine the stress field in the Earth’s crust and then to find the
dilatant zones.

Direct problem. Let the half-space 2z > 0 (the Cartesian coordinates
T = x1, y = T3, 2 = 23) with the free boundary z = 0 be filled by a
homogeneous elastic isotropic medium with the shear modulus g and the
Poisson coefficient v.

Let @(z,y,2) = u'iy + v'iy + w'is be the displacement vector in the
static problem on equilibrium of such medium due to a unit force applied at
a point and acting along the positive direction of the axis z; (7 is the unit
vector along the axis z;) and applied at a point M'(z’,y’, h’). The explicit
expression for @ (u',v!,w') and for the components of deformations €, and
stresses afk at any point z, y, z in terms of the algebraic functions of the
quantities z — z’, y — ¢/, z, ', p, v were obtained by R. Mindlin [7].

Let us consider a more general point source J; (M’), which is a combina-
tion of a simple force with the components Fj, three double forces without
the moment and six double forces with the moment (source of the 1st type).

The displacement vector @ generated by such source has the form

3 3 —
i=Y Ri'+), L M,m{i—"m = iy + v'iy + w'is,
=1 =1 m=1
where the constants M, are the parameters of the double forces. The
source of the second type J; is a combination of two sources of the first type
J1(M') and J;(M"). In both cases, the solution to the direct problem of
determination of u, v, w, €;x, o (displacements, deformations, stresses) at
the given parameters of the source can be computed by explicit formulae at
any point z, y, z and, in particular, at the boundary of observations z = 0.

Inverse problem consists in determining the set of parameters z’, y/, A/,
Fi, My, in the case of J; and two such sets in the case of J; using the data
of deformations on some set of points M;(z;,y;) in the given domain D at
the boundary z = 0 (¢ = 1,2,...,N). The following characteristics of the
deformation field which can be measured in the monitoring of earthquake
precursors should be chosen as the data: .
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1. The vertical component of displacements w or the quantity w + ¢,
where ¢ is an unknown constant (it can be assumed that ¢ = —wp, where
wp is the value of w at some fixed point Mpy in the domain D or outside of
it). Let ¢, and t; > t; be two moments of time before an earthquake, H;(t;)
and Ho(t;) — absolute heights of the points M;, My at the epoch t;. As a
result of repeated leveling, the quantities h;(t;) = H;i(t;) — Ho(t;) (relative
heights of the points M; at the epoch t;) are measured and either the change
in heights of the points M; relative to My, Ah; = hi(t2) — hi(t1) (in mm),
during the period At = t; — t; or the velocity of vertical displacements,
Vi = Ah;/At (in mm/year), is determined. An example of such data for
V; in the Datong region (China) is given in [4]. Then the values w; =
w(z;,y;,0) are determined by the formula w; = Ah; + Ahg — VpgrAt, where
Ahy = Ho(tz) — Ho(t1), Vigr is the velocity of vertical background motions
in the domain D as a result of global tectonic processes. If one or both
quantities Ahg, Vpgr are unknown, we shall know w; with an accuracy of the
additive constant ¢. The value V; during earthquake preparation is of the
order of several mm/year.

2. Relative lengthening (deformations) of the linear horizontal elements

€ry = gﬁ and ey = 5—1{ during the period At measured by the baseline
z y
method.
3. Tilts Z—w and %—w of the horizontal elements.
Y

4. Relative volume expansion 8 = div 4.

It is important that the errors X in the determination of these data X
were at least 3-4 times smaller than the observed values X. As the values X,
as a rule, increase with increasing At, the interval At between the moments
of monitoring (observation) is bounded from below by the value §X. At
the same time, from the point of view of the purposes of monitoring, the
interval At must be sufficiently small. These contradictory requirements can
be weakened, if more accurate measurement devices are applied.

The sets of points M; for the data of the type 1-4 can coincide or not
coincide; different combinations of these data are possible.

The coordinates of the sources and their parameters (the forces and the
moments of forces) are found as a result of solving the inverse problem by
minimizing the functional

2

G(ﬁl\---sﬁm;aa-“sgm) =min, (1)

(i:: (&, %) - ) = Gk

where m = i for the source of the type Ji; &, . - ., &m are the sought for coor-
dinates of the sources; p,. ..} P are the sought for forces and the moments
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of forces of the sources; K is the number of observation points; 7} are the
coordinates of the k-th observation point; ¢} is the vector of values of the
experimental quantities (displacements, deformations) of dimension n given
at the point 7%; A is the 12 x n matrix, the elements of which are expressed
in terms of the quantities u! and du}/dz,.

The functional (1) represents the quadratic form relative to the whole
set of the components of the vectors pj. This makes it possible to elim-
inate p; from (1). As a result, we come to the minimization problem
G(g},...,é’m) = min. The nonlinearity of this problem in comparison to
problem (1) increases, but the number of unknowns decreases. The possibil-
ity to compute partial derivatives in our case in the explicit form allows an
effective use of the Newtonian methods with the help of the gradients and
restrictions on the unknown values. The numerical experiments have shown
that the solution to the problem with a smaller number of variables is eco-
nomical and has an increased stability in comparison to the initial problem
(1).

If there are data of monitoring of deformations for a sequence of the
moments of time ¢, 13, ..., ¢,, the inverse problem is also solved in the regime
of monitoring, the area of the source location (origin of a future earthquake)
being determined more and more exactly step-by-step.

As the data of monitoring for the earthquakes which have already oc-
curred are available, for example, in China [3], then we can test the effec-
tiveness of this approach to long-range earthquake prediction by solving the
inverse problem using these input data and comparing the results obtained
with those which are known. These data can also be used to improve the
quantitative model (to choose an appropriate combination of forces in the
source giving an adequate picture of deformations in the direct problem,
i.e., which is close to the picture observed).

Dilatant zones. After solving the inverse problem, we can compute the
components of deformations and stresses at an arbitrary point of the volume
containing the sources using the explicit formulae mentioned above. For the
calculated stress field {o;;} the spatial extent of the dilatant zone is found
from the following condition:

P, (0ij, 0, Y) =7 —a(p+ pgz) = Y >0,
where p is the density of the rock, g is the gravitational acceleration, z is

the depth, « is the coefficient of internal friction, Y is the cohesion of the
rock, p = —%O';jaij is the pressure, 7 is the shear stress intensity

3 1/2
T= ‘_/2_.. [(011 —092)% + (022—033)° + (033—011)% + 6(07; + 024 +-0§1-)]



A mathematical model of determining the stress field ... 19

The influence of the dilatancy velocity A on the dynamics of the dilatant
zone can be taken into account using the dilatancy relation between the

volume plastic deformation de? = e’ 5,J and the intensity of the plastic
shear dvyP:

2
&, (de?:, A) = de? — —=A - dvP = 0,
e( ) = de A

1]’

where
dyP = \/—{ def; — def,)” + (deh, — degs)” + (defs — def,)? +

6 [(del)? + (defs)? + (de§y)?] } .

The increments of the plastic deformation defj are related with the
stressed state o;; in the following way:

where d) is the scalar function (d\ > 0 at ®, = 0 and the active loading,
and d) = 0 if there is the discharge ®, < 0 or ®, = 0, but the loading is
neutral).

It will be considered that o = a(x) and A = A(x) are the functions of
the parameter of state x = e?/eP", where p* is such a deformation, at which
the medium does not dilatate (A(x = 1) = 0); e?” = f(p) is some function
of pressure.

We assume that o = ag+ (o — o)X, A =b— V(0 + 2bag) — (au +2b)a,
where ag = a(0), o = a(1), b = /1 — as.

Consequently, the dilatant zones can be found. Projecting them onto the
daily surface z = 0, we can search for a connection between the location of
dilatant zones and the distribution of the anomalies — precursors of different
physical nature — using the data for the earthquakes which occurred. It
can be assumed that all these anomalies are determined by the presence of
dilatant zones. These zones can migrate with time in the area of the source
influence and their behavior can turn out to be an important feature for
prediction.

Numerical example. The geodetic data (the vertical components of dis-
placements) for the Datong region before the large earthquake in October,
1989 were measured at the stations presented in Figure 1. These values
range from approximately —30 to +10 mm.

The parameters (coordinates and force components) for two fictitious
sources were found by solving numerically the inverse problem (1) using the
least-squares method for the minimization of the error functional G. The
location of these sources is shown in Figure 2 (the black squares 1 and 2).
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Figure 1. Stations and main epicenter locations: ¥ is the main epicenter, a are
stations with a negative displacement, and a are stations with a positive one
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Figure 2. The isolines of the vertical component of the displacements field for the
fictitious sources found (the epicenter is located at the center of the shown area):
m are recovered (fiction) sources 1, 2; — are negative levels (step 2.5 mm); — are

positive levels (step 2.5 mm).
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Solving the direct problem for the found fictitious sources, we can calcu-

late the fields of displacements # and stresses {¢;;}. For example, the vertical
component of the displacements field on the daily surface is shown in Fig-
ure 2. The isoline picture for this field agrees well with the given geodetic
data: the stations with negative (positive) values of vertical displacements
are mostly located in areas with negative (positive) isoline levels.

Using the stress field {o;;} found we can construct dilatant zones.
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