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Direct and inverse problems assosiated
with inclined passing of SH-waves
through 1d inhomogeneous medium®*

A.S. Alekseev and V.S. Belonosov

Wave process in a one-dimensional vertically-inhomogeneous medium induced by a sound-
ing impulse moving from the depth is considered. Mathematical background of the algo-
rithm for the reconstruction of the medium’s mechanical parameters is given when the
form of the initial wave and the surface seismogram are known. Theoretical results are
illustrated by the numerical examples.

Observations of wave fields in internal points of the medium, i.e., bore-
holes, are used in seismoprospecting to obtain more comprehensive informa-
tion on the geologic medium under study. Over the recent years, a special
method of vertical seismic profiling (VSP) has been developed using obser-
vations in a number of points along the borehole. One of the difficulties of
this method is the absence of direct information on the form of the initial
wave generating interference vibrations in the layer and at the earth’s sur-
face. It is hard to solve the inverse dynamic problem of seismoprospecting
(VSP in particular) without this information.

The given paper deals with direct and inverse problems of dynamics of
horizontally polarized waves in a vertically inhomogeneous elastic medium.
It is supposed that measurements of wave displacements were carried out
both at the free surface of the earth and inside of it at one or several
depths. Theorems of the existence and uniqueness of solutions not only
for the inverse, but also for the direct problem are presented, since we
didn’t manage to find the consideration of these issues in terms of classical
mathematical physics in spite of the fact that they were sufficiently well
studied theoretically. Moreover, consideration of these questions in the
rigorous, but adapted form can be of interest in geophysics.

*This work was supported in part by Russian Fund of Fundamental Research under
Grant 93-05-8638.
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1. Statement of the problem

Let the Cartesian coordinates in R3 be z, y, 2. We suppose that the half-
space z > 0 is filled with an elastic isotropic medium having the Lame
parameters A, u and density p. The process of wave propagation in this
medium is described by the general system of dynamic elasticity theory
equations

(A+p)graddivU + p AU + (grad M) divU + (grad p) U' + U’ grad p = p Uy.

Here U = (X, Y, Z) is the displacement vector of the medium points, U’
is the Jacobi matrix of the mapping (z,y,2) — U(z,y,2) and t is time.
Absence of external influences on the free surface z = 0 is interpreted as
fulfilment of the boundary conditions

AivU+2u2, =0, X,+2,=0, Y,+2,=0.

In the subsequent discussion it will be supposed that the functions A,
i, p are twice continuously differentiable and depend only on z, and the
displacement vector is parallel to the y-axis, i.e., X = Z = 0. Then the
initial system will be substantially simplified

(A+p)(Yy): + Ay =0,
(A+p)(¥y)e =0,
(At p) Yy + pAY 4 .Y, = pYy,

and the boundary conditions will have the form

Y, =0, Y, =0.
z=0 z=0
The first equation of this system together with the first boundary condition

form the homogeneous Cauchy problem over the derivative Y,,, due to which
Y, = 0. Thus, Y = Y(z,z2,t), and

#(Yxr'i"Yzz)“}'ﬂz.Yz =P},tt, z>0; (1)

Y, =0. (2)
z=0
Further we shall restrict our consideration to the case, when the func-
tions p, p are constant for z > H > 0 and equal to some known values g,
po- Under these conditions the equation (1) in the domain {z > H, —o0 <
z < oo } has particular solutions of the plane waves
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Y(.’.C,;Z;f) ="P(t + ZCosx —28111&),

K0 (3)
where a is the angle formed by ‘the direction of the wave movement and
the negative direction of z-axis; vy = Ho/po is the velocity of wave prop-
_agation; ¢ is an arbitrary twice differentiable function. As a rule, it will
be supposed that the function ¢ vanishes outside of some interval (a,c0).
This implies that the wave has in the plane (z,2) a linear leading edge
moving with speed vg in the direction of the vector (sina,—cosa).

Let us-suppose that the wave of the type (3) moving from the domain
z > H in the direction of the boundary 2z = 0 was generated by means of
external influences. Scattering from the inhomogeneities of the medium in
the band 0 < z < H, this wave will generate a wave process Y (z,z,1) in’
the half-plane z > 0. Due to symmetry (displacement along the z-axis is
equivalent to time lag) this process should have the form A

- - rsina
Y(z,2,t) = w(z,1), r=t- 2202

Yo

Passing in (1)~(2) to the new function w(z,7) and a.ésnming o

‘ _ sin’a
r(2) = p(2) - W(z)—7—,
0
we obtain
(Bw:); = rwy,, 2z>0 (4)
w(0,7)=0. (5)

The function w(z,7) coincides with the initial wave (3) until its leading
edge reaches the domain 2 < H. This condition can be formulated in the
following way. There exists such finite 7o, that. : R
2 Cos a

Yo

w(z,r)=<p(r+ ), 0<z<o00, 7<7. ., (6)
The relation (6) characterizes the function w at T — —oco and serves as an .
analogue of initial data. ' _ ‘

Depending on the sign of the coefficient r(2) the equation (4) can be
hyperbolic, elliptic or of a mixed type. In our further discussion r(z) will
be considered positive at all z > 0, and this guarantees hyperbolicity of the
equation (4). This condition can always be fulfilled by choosing the angle
a small enough. -

Now we can formulate two basic problems that are associated with the
system (4)—(6) and will be considered in the subsequent sections of the
give'n pa'per‘ . : L P . - .
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Direct problem. Lct the medium characteristics pu(z), p(z), the angle o
and the function (1) be given. It is necessary to find the function w(z,T)
satisfying the equation (4), the boundry condition (5) and the “initial” con-
dition (6).

Inverse problem. Let the characteristics of the medium pu(z) and p(z)
on the interval (0, H) be unknown. Only values of these functions, their
first derivatives in the point z = 0, and constants pg, po and « are given.
Moreover, the form o(7) of the initial wave and the regime of vibrations
w(0.7) of boundary points cuused by this wave are known. It is necessary to
find the relationship between the unknown functions i and p on the interval
(0,H). To be more precise, we shall present the algorithm allowing the
reconstruction of the function o(z) = \/u(z)r(z), determining the required
relationship between p and p. _

It should be noted that a similar problem is studied in [1]. There
is also considered the wave process satisfying the equation (4), but the
plane wave generating it moves from the half-space z < 0 filled with an
elastic homogeneous medium with the known parameters. In this case the
corresponding direct problem reduces to the search for a solution to the
equation (4) that is equal to zero for 7 < 0 and satisfies the inhomogeneous
condition of the form

w,(0,7) = kw,(0,7) = ()

at z = 0. Here the inverse problem consists in the determination of the
function &(z) in the half-line 0 < = < 2c using the known values ()
and w(0, 7). Substantial difference of these statements from the statements
presented in the given paper will be clear from the further consideration.

2. Direct problem

Let us consider generalized (in the Sobolev sense) solutions to the problem
(4)-(6) determined in the half-plane { z > 0, —00c < 7 < o0 } and belonging
to the space W2 in any region of the form {z >0, 1 <7 < m}. For any
solution of this type the energy conservation law (see, for example, [2])

o

s [,u.(z)u.f(z,r) + 'r(z)wf(z,r)] dz =10
R
15 valid and from it directly follows uniqueness of the solution to the direct

problem. This law also implies that the solution does not depend on 7
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that is present in the condition (6): solutions w’ and w” corresponding to
different values of 75 and 7 coincide.

The evolution system (4)-(5) is naturally connected with the spectral
problem

—(puz); = Ar(z)u, 0< z< oo; (7)

The corresponding differential operator u — —(uu,). acts in the space
L3(0,00) and is defined for all functions v € W2(0,00), satisfying the
boundary condition (8). Let u be the eigenfunction of the problem (7)-(8)
corresponding to the eigenvalue A. Multiplying the equality (7) by @ and
integrating over z, we obtain

o0

/u(z)]uz(z)lzdz = ,\/r(z)lu(sﬂ? dz.
0

0
As p and r are positive, X is necessarily real and positive.

In order to study the solvability of the problem (4)-(6), we represent
it in a more convenient form. Following (3], we set ' '

z H
v(z) = Vu(2)/r(z), €= /j_s h= /d_s
2 0

Physically v(z) means propagation velocity of perturbations at the depth
z, and £ means time of wave path from the free surface to the depth z.
Passing from (z,7) to new independent variables (£,7), we obtain

wee + [lna({)]"t. We = Wrr.

where
o(&) = Vu(z(€)) r(2(£)).
In the point £ = 0 we have we = 0 as before.

In order to correct the new form of the condition (6) we choose 7o such
that the support of the function ¢(7+ zcosa/uvp) will lie in the domain
z > H at 7 < 79, where the velocity v(z) is constant and equal to vg/cos a.
Then (E—h)vp = (:—=H)cosa. and the condition {6} will have the form

w(€, 7Y = o(T7+E—h+ Heosa/vy), 0< E<x, T

And, finally, we assume
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u(6,7) = Vol®) w(&, ).
- After trivial transformations. we come to the problem;.
uge —qé)u=1Ur,, €>0, -—-00<T<O00; o (9)
ue—ku=0, £€=0, -00<T<00; (10)
u(é,7) = f(€+7), 0< €< o0, T < To. (11)

R

Here

0 = it (D, 036 <o k=G
f(r) = Voo - o(t—h+Hcosafvy), =00<T<o0,
a0

12

[ﬂo(Po posm Of/ ‘Uo)]

Recall that p, p and, consequently, o are twice contin'uously differentiable,
and o(£) = op for £ > h. So, the functlon g(§) is continuous at 5 > 0 and
__vanishes in the half- hne £€>h. The functlon f together with <p are ‘equal
"to zéro outside of some interval [a, o).

Together with (9)-(11), let us consider the spectral problem

Ug —a(6)U = -0, £>0; (12)
Ug=kU=0, £=0, ' (13)

" obtained as a result of the formal application of the Fourier transform-

b((,w) = —\7-1_2—“_- /e‘l""”".u(g,r) dr

to the equations (9)-(10). As the coefficient g(2) vanishes in the half-line
€ > h, the function exp (iwf) will be the solution to the equation (12) at
£ > h and any complex w. Continuing the solution for the whole interval
0 < £ < h we obtain the function e(§,w) that is determined and satisfies
the equation (12) at all complex w and any £ > 0; it is holomorphlc over
. the variable w in the whole complex pla.ne at any fixed £>0and coincides
with exp (wE) at £ > h a.nd any w. V

Let us enumerate the propertles of e(¢ ,w) that will be necessary further.
It is easy to verify.(see [4-5]), that if w # 0 then e(£,w) satisfies the integral
equation
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~X

» sinw(&-n) ,
(Eow)= " 4 /———— Q). ) d.
) w :
€
Hence, using the method of successive approximations, we can ecasily derive

Lemma 1. At w # 0 the function ¢(£.w) and its derivalives !, " with
respect to the variable € can be represented in the: form

WEw) = = (i) + va(,w)] (1)

where ¢ are functions that arc holomorphic over w. continuous over the
combination of arguments (logether with the derlvatives with respect to £ of
the order 2—k), cqual to zero for € > h and such that

for(€e)] < Cr(Jwl+ 1 exp [a(| Imw| — Imw)).

(15)
0<E<h. Cpe>00 a>0.

Details of the proof are standard and we do not give it here.

For each w the functions (£.w) and (€. —w) are solutions of one and
the same equation (12). Their Wronskian for € > h can be easily computed
in the explicit form

)b —w) = c(bow)d (6. —w) = . (16)

As the equation (12) does not contain Ug. the Wronskian (see. for example,
(1]) does not depend on €. Consequently. the formula (16) is valid also at
&< h. So.ifw# 0. then e(é.w) and (€. —2) form the fundamental svstem
of solutions to the equation (12). Note that for real w the functions (E.x)
and (€. —w) are complex conjugate. i.e..

Al.—w)=c(fw). £20. Imw=0. (17)

Substituting ¢(€.) into the boundary coundition (13). we obtain the
entire analvtical function
stw) = 00wy = k(0.

that will be important in the further constructions.,

Lemma 2. The function s() docs nol canish at Tme > 0. o = 0. bt it
has a zcro of the firs! order al o = 0.

Proof. If linw > 0 and scod = 0, then (&) is non trivial solution to the
problenc (120 (130 belongine 1o the space 17000 N0, Turning back from N
to the initiad independent varviabic s and assumine 1hat
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u(2) = c(€(2)ow) - [a(&(2))] V2,

we obtain the eigenfunction of the sporl'ml problem (7)+(8), corresponding
to the non-positive cigenvalue A = —w?. This contradicts the properties of
cigenvalues of the problem (7)-(R).

Let s(w) vanish at some real w # 0. Then. on the basis of (17), not
only c(&.w). but also ¢(£, —w) will satisfy the boundary condition (13). As
({.w) and e(£. =) form the fundamental system of solutions. then all the
solutions to the equation (12) will satisfy the condition (13), and this is
impossible.

It remains to consider the exceptional value w = 0. In this case the
function ¢(£,0) together with its derivative c.(£.0) over w satisly one and
the same equation U — (&)l/ = 0. By the transformation {/ = a(&)V
this equation reduces to the form V7 4 [Ino(€))'V’ = 0, and after that its

general solution
13
d¢ 2
U(€) = \/o(E) [ £ 40
¢ o
0

can be easily found. The correlations

€(8.0)= 1. € (£.0)=

should be valid for € > h, and therefore,

e(€.0) = \Ja(€)/ap.
h

&
. I¢ (g .
€ A€.0) = iaga(€)]'/? /J(—er;ri—) + ihe(&,0).

0 V]

Henee, it directly follows that

S(0) =00 s.(0) = i/ao/a(0) £ 0. O

Now we can solve the spectral problem (12)-(13). applyving the standard
reasoning from the scattering theory (see [2. 5]). Any solution (€.w) of
the equation (12) decomposes into the linear combination

() =ale)e(Ew) + blw) (£~

At &> D this decomposition is equivalent to
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U(E,w) = a(w)e’™ + b(w)e v

The term a(w)exp (ifw) corresponds to the “incoming wave” and deter-
mines the asymptotics of the solution u(€,7) for the initial problem (9)-
(I1) at 7 — —oc. Owing to the condition (11) the coefficient a(w) should
coincide with the Fourier transform F(w) of the data f(7) for the direct
problem. The coefficient b(w) corresponds to the "outg.pmg3 wave” and de-
termines the asymptotics of the solution at 7 — oc. It will be found from
the boundary condition (13):

Ue(0.w) = kU(0,w) = F(w) s(w) + b(w) s(—w) = 0.

According to Lemma 2 this equation is solvable relative to b(w) at all real
w # 0 and even at all w from the half-plane Imw < 0. So.

s(w)
s(=w)

The function S(w) = s(w)/s(—w) is one of the main objects of inves-
tigation in the scattering theory. It determines the so-called scattering
operator, relating the coefficients a(w) and b(w). Based on Lemma 2. S(w)
is analytical for Imw < 0, w # 0 and in the point w = 0 it has a removable
singularitv Owing to (17) s(-=w) = §w) on the real axis. and therefore,
[S(w)] = 1 at Imw = 0. If Imw < 0, then the value [S(w)] can be casily
e\tmmlo(l based on Lemma 1. And. finally. we conclude

V(€. w) = F(w)e(€.w) - Flw)e(§. —w). (18)

Imw = 0;

[S(w) =< (19)
O (exp(2afImw|)). Imw < 0.

The Heuristic considerations used in the derivation of (18) can be put
on an absolutely rigorous basis. if we show that the function

u(é.t) = \/_12:— /(»"”U(f.u;)ll‘.-;. (20)

where (€. w) is found according to the formula (18).is really the solution
to the initial problem (9)-(11). For this we shall need a description of some
functional spaces.

Let us denote by 17 the set of functions u(€. 7). continuous in the half-
plane {£>0. - <7< x} and having the following properties:

(i) mappings & — wu(€.-) and 7 — u(-.7) take values in the spaces
La(=>c.xc) and Ly(0.x) and are continuous over & and 7. respec-
tively:
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(it} the norm
lull* = sup / |tf(£.r)l?rlr+sup/|u(£.r)|2d£
& T
. - ]

Is finite.

Supplement of V" according to this norm will be denoted by Vi, It is
natural that traces on any lines parallel to coordinate axes are defined for
elements from V5. and the property (i) is fulfilled for these traces.

The set of functions w(€.7). all the derivatives I)i‘.' D u of which of
the order 0 < b+ m <1 belong to V. will be denoted by the syvmbol V.
Supplement of V' over the norm

[

lallf = > IDEDY all?

ket =0)

will he called Vi-space. It can be easily verified that the elements from v
have generalized derivatives of the order 1. and for each derivative Dé’ DY u
continnous mappings £ — Df DY u(€. ) and 7 — l-}f D™ u(-.7) are defined,
M —ac.x) and l-l’ii‘*"’”(().oc). respec-
tivelv. The space V3 is identified with V5. and the norm || - ||g is identified
with the norm ||+ |l. The norm in the classical space ) will be denoted
by |l

Ler the function ®{w) belong to La(=~c.oc). and ©(€.«) be continuons
at £ > 0. —=x < w < x, and such that

with the values in the spaces H"é’"‘

o , Collel + )7 €<
lellw)) £
0, £E>h
Consider the improper integral
X
u(é.r) = / T B(w) (€ ) e, (21)

that is understood as the imit of proper integrals

(&) = /'MIT‘I’(»‘,"-‘(E-«‘}!L:.
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where {B,} is the arbitrary sequence of finite expanding intervals, the union
of which is equal to (—oc, o0).

Lemma 3. The functions u,(&,7) belong to Vy and form a fundamental
sequence in this space. The corresponding limil w(€, 1) is identified with the
value of the improper integral (21) and satisfies the inequality

llullo < C - |®]o,
where C does not depend on ®.

The proof directly follows from the Hélder inequality and the Parseval
equality, and therefore, we do not give it here. It should only be noted,
that the conclusion of the Lemma will remain valid for the functions

o]

u(€,7) = ] EATE B (1) (£, w) dlo,

—_—

where ®(w) belongs to Ly(—oc.20). Under the improper integral we un-
derstand its principal value.

Now we can formulate and prove the basic statement of the given sec-
tion.

Theorem 1. Let the function f(r), determining the form of the initial wave,
belong to the space W} and vanish outside of some interval [a,>). Then the
problem (9)~(11) has a unique solutinn in the space V.2, and the estimate

lullz < C-|fl2 (22)
is valid, where C' does not depend on f.

Proof. Uniqueness was proved earlier, and therefore. we shall take up the
question of existence. We shall show that the required solution u(€,7) is
given by the formula (20), in which the function {/(£.w) is determined from
the equality (18). For this we consider the auxiliary integral

l n
(€, 7) = —'"\/2——7'_' /f-'wl"(f.w)d‘u. (23)

Obviously, the function u, is twice continuously differentiable, and the
operator of differentiation can be put under the integral over the variable
It follows from this and from (12)-(13) that u, satisfies the equations
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(9)-(10). If it will be proved that at n — 2 every derivative Dif D” u,, of

the order k4 m < 2 tends to some limit in the space Vo, the function w(€, 1)

will be the element of 122 and will also satisfy the equations (9)-(10).
Derivatives of u, can be easily computed from (18) and (23) using (14)

DEDY wn = Jin + Jan + Jane (24)
where
Ji = \/l-z_,rjfM(TH)(M)HHIFW)dW
Sy = _ﬁjj "M(;—“‘)(f’w)"'f"'FQ)S(w)dw
T3, = \/IZ_W [ T )" B (@) € (€ow) = e TES (W)€, —w) | du.

.
-

The expression (iw)'F(w) is the Fourier transform of the derivative f()(r).
For I < 2 all these derivatives together with the functions (iw)'F(w) belong
to the space L;. But then, on the basis of (19) and the remark to Lemma 3
the integrals Jy,. J2,, have limits in the space V5. and norms of limiting
functions are majorized by the value

C (i) " F(w)lo = C | D™ f(7)|o < C | fls-

Existence of the limit at .J3, together with the analogous estimate of the
norm of the limiting function also follows from Lemma 3, but the formulas
(15) and (19) should be used.

Thus. the function u(€,7) really satisfies the system (9)-(10), and the
inequality (22) is fulfilled for it. It remains to verily the condition (11).
This can be done very easily, when f is finite and infinitely differentiable.
Really, by the Palev-Wiener theorem [6] the Fourier transform F(w) of this
function is analytical in the whole complex planc and at any p > 0 it allows
the estimate

| 1‘1( ey

| < (ldl‘:l)-f‘-; exp (almw), (25)
where a is the left boundary of supp f. Let us assume that &= m = 0 in
(24). Owing to the inversion formula of the Fourier transform the integral
J1,, will tend to f(€ + 7). For the computation of the limit of .J,, we shall
use analyticity of the integrand and. pass on to the integration over the
semicircle T, = {lw|=n. Imw <0}.-For w € T}, on the basis of (19) and
(25) we have :
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e F(w)S(w)] = O ((|w] + 1) exp[(2a — a)| Imw]) .

But then, according to the well-known Jordan lemma, the integral /o, will
tend to zero at all T < a—2a. Similarly, using (15), (19), (25) and the
Jordan lemma it is determined that .J3, tends to zero at 7 < a—2a—h.

In the general case there exists the sequence f,(7) of infinitely differ-
entiable finite functions, converging to f in the space W2. This sequence
should always be chosen so that the supports of functions f, will lie in
the interval [a—¢,00), where € > 0. Let us denote by v,(£.7) the solution
of the problem (9)-(11) with “initial data™ f,(7). As it was just shown.
(€, 7) = ful€+7) at T < a—c—2a—h. On the other hand, the inequality
(22) is valid for the difference u — v,,. So,

lu=vullz SCf = fula — 0 (n — x).
It directly follows from this that at all T < a—z—2a—h

u(é.7)= li_lon’ v (€.7) = li_l.}). folE+1)= flE+T). - O

3. Inverse problem

After we have passed from the old variables (z,w) to new variables (€. u)
the inverse problem stated in Section 1 can be formulated in the following
way: the form f(7) of the initial wave and the value g(7) = u(0.7) =
VvV o(0)w(0.7) of the corresponding solution to the direct problem (9)-(11)
are known. It is necessary to find the coefficient ¢(£) of the equation (9).
Further the inverse problem will be solved in this formulation and. following
[3], we shall try to reduce it to the well-studied inverse spectral problem
for the Sturm-Liouville equation.

First of all let us recall the necessary information from the spectral
theory of differential operators. We denote the operator

w(€) — —u"(€) + q(€) u(§).

acting in Ly(0,a¢) by A. Its domain of definition consists of all the functions
belonging to 17(0.2c) and satisfving the boundary condition

w'(0) = ku(0) = 0.

This operator is. evidently. self-adjoint and. therefore. its spectrume lies on
the real axis Im A = 0 of the complex planc. Moreover. the finiteness of (&)
guarantees (sece [1]) that the whole hall-line A > 0 consists of the points of



11 AS. Aleksece, V.S, Belonosor

continuous spectrum, but the spectrum in the half-line A < 0 can be only
discrete. In our case operator o cannot have any eigenvalues also in the
half-line A < 0. Otherwise, il we return to the initial variable z, we shall
find non-positive cigenvalues of the spectral problem (7)-(8), but this is
impossible.

Consider the solution of Cauchy problem

—8"(E.X) + q(£)B(E.X) = AO(E. D),
8(0,A\) =1, #(0.A) =k,

determined at all £ > 0 and any complex A. Function #(£, ) generates the
integral transform

] (€)0(E. V) d (26)

It is known [4] that this transform isometrically maps L;(0,o0) onto some
weight space Ly ,(—00,00) consisting of all p-measurable functions v(A)
such that

j [o(A)? dp(A) < 0.

Initial operator A is transformed into multiplication by A by means of (26),
and the mapping inverse to (26) has the form

™

)= [ oBEN dot). (27)

-0

Here p(\) is non-decreasing continuous on the right real-valued function
that is called spectral distribution function of operator A. Point set of
the function growth coincides with the spectrum A, and the continuous
function p(A) corresponds to the operator with continuous spectrum. The
properties of operator A justified above make it possible to correct the
inversion formula (27) and fulfil the integration over the interval (0, 00).

The classical inverse Sturm-Liouville problem consists in the determi-
nation of the coefficient ¢(£) using the given spectral function p(A). There
are several effective methods for the solution of this problem (see [3-5]),
owing to which the inverse problem that we formulated can be considered
to be solved, if any way of construction of p(A) using the given f(7) and
g(7) will be found. Below we shall try to find such constructions.

Let us suppose that the function f(7) satisfies the conditions of the
Theorem 1, and turn our attention to the equality (18) determining 11
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formal Fourier transform U(£.w) from the solution of the direct problem. -
By Theorem 1 the solution u(€,7) belongs to the space V2. It is possible
to apply the usual Fourier transform over the variable 7 to the elements
of this space. Consequently, /(£,w) is not only formal, but it is the ac-
tual Fourier transform of u(&, 7). In particular, {/(0,w) coincides with the
Fourier transform of the function g(r) = u(0,7) that will be denoted by
G(w). Taking into account (16) and (18) we have

G(w) = F(w)[e(0,w) — S(w)e(0,—w)]

F(w)
s(—w)

[00,0) €/(0, ~w) — €(0.w) (0, ~0)] = = Flw)—2_

s(—w)

It follows from this equation and from the absence of zeros of the function
s(w) at all real w # 0, that F(w) and G(w) can vanish only simultaneously.
Moreover,

2w F(—w) .
.S(u.«') = W (28)
in every point w, where F(w) # 0. If the set of these points is every-
where dense (for example, in the case of finite f). then the relation (28)
continuously extends to all values w # 0.

So, in principle. the data f and g of the inverse problem make it possible
to compute the function s(w). It turns out that the required spectral
function p(A) is connected with s(w) by means of a simple formula that
was, probably, first proved in [5] for the boundary condition w(0,7) = 0.
The same statement is obtained in [7] for the case of general boundary
conditions, but it used one result of M.G. Krein [8]. the proof of which was
not published. We present the new derivation of this formula, based on
another idea.

Theorem 2. Spectral function p(A) of operator A is infinitely differentiable
for A > 0, and the cquality
VA
!
PA) = ———. (29)
mls(VA)|2

1s valid.

Proof. Note that the function (£, \) satisfies the equation (12) at w = /X,
and that is why it decomposes into the linear combination of ¢(£.v/A) and
(€. =VX). Cocfficients of this decomposition are easily computed from the
initial conditions #(0.A) = 1 and #(0.X) = & using formula (16)
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aen=- e v+ e . o
2ivVA 2iV/A

As f(r) let us choose some finite infinitely differentiable function and
consider the corresponding solution u(£, ) of the direct problem (9)-(11).
According to Theorem 1, the function u belongs to the space V2 and,
consequently, at any fixed 7 it is in the domain of definition of operator
A. This makes it possible to apply the transform (26) to both parts of the

equation (9). Assuming that

v(z\,'r):/u({,?‘)ﬂ({./\)df, A>0, (31)
0

and taking into account that operator A will transform into multiplication
bv A, we obtain the elementary equation »,, = —Av, general solution to
which has the form

v(A,7) = a(X) exp( iTVA) + 3(\) exp(—ir\/X).

Coefficients a and 3 will be determined from the condition (11). Let
T < 79, then u(&.7) = f(£ 4 7). and such 7, < 79 will be found that if
7 < 711, then the support of the function f(£+ 7) lies in the domain £ > h.
In the same domain e(¢, £v/)) coincides with exp(+i€yv/A). Consequently,
substituting (30) into (31). we shall have for 7 < 7y

v(A,7) = ﬁ/ﬂf +7) [s(\/X)e_'f‘/X - s(ﬁﬁ)eifﬂ] d
0

V2rs(VA) o o~ eux V2ms(=VA) —ir /X
= ————F(V\)e - L T R(-VA)e .
20/ 2iv/A
Due to analyticity of v(A,7) over the variable 7 this relation will be valid
also at 7 > 4.
Now let us substitute the foulid decomposition of the function v(},T)
into the inversion formula (27) and assume that £ = 0 in it. Taking into
account that 8(0.2) = 1 we obtain

g(r) = u(0,7) =/v(z\.r)e(o,)«)dnm> -
0

\/2_ “F)u\/‘) TV dp(A) —

F(=VXN) e ™V gp(A).
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In the first of the integrals we pass to the new variable w = VA, and in the -
second one - to the variable w = —+/}, Finally, g(7) will have the form

g(t) = \/E/ —;—%F(w) e”“’tlp(wz). (32)

On the other hand, the Fourier image G(w) of the function g(7) is related
with F(w) by means of the equality (28), due to which

21w

1 T Tw _ 1 i tTw
g(r)zjg_;—/ G(w)e dw——m_[ s(_w)F(w)e dw.  (33)

The obtained different representations of the function g(7) allow the
computation of p. For this we take an arbitrary infinitely differentiable
function ¢(w) that is equal to zero outside of the interval [0, \/)—\], multiply
the equality (32) by its Fourier image ®(7) and integrate over 7. As the
improper integral (i.e., its principal value) in (32) converges to g(7) in the
metric of the space Ly(—o0,00), we have

n

f f%‘“’—)ﬂw) e dp(w?)| dr.

/@(T)g('r)dr: ,,lif;o f‘I’(‘r) il

After the rearrangement of integrations that is possible on the basis of the
Fubini theorem, we find

e

i I f b(w) _i_ Ji 1Tw 2
_-[ ®(1)g(r)dr = "1520 27r_f Qifw!F(w) I:m_/ d(7)e dr] dp(w*)
VX
= 2#/ %%F(w)up(u)dp(wﬂ.
0

Similarly, it follows from (33) that

/‘I’(T)H(T}JT = —/ 2'“# Flo)p(w)de.
7 g s(=w)

Comparing the obtained formulas and using the arbitrariness of p(w).
we conclude that for any A > 0
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s(=w

e i
r/ S(T‘)F(w)dp(wz):/ 2w )F(w)dw.
o 0

Hence. applving integration by parts, we obtain

VA

(VX ! A
3 )F(\/X)'p().) = r/p(wg) [ﬂiﬂﬂw)] dw + / QMW)F(W)dw-
2 0

VA s(=

Diferentiating the both parts of this equality, it is easy to verify that p has
a derivative in every point A > 0, for which F (VX) # 0, and the formula
(29) is valid. It only remains for us to note that F is the Fourier transform
of the finite function, and therefore it is analytical and can vanish only on
the denumerable set of isolated points. But then, due to the continuity of
the right hand side of (29) at A > 0, the equality (29) is valid also in these
exceptional points. |

Note, finally. that for any summable function f(7) and any real [,
modules of the Fourier images f(r) and f(7 + [) are identical. So, the
spectral function p(A) determined by the formulas (28) and (29) and, hence,
the required o and ¢ do not change under shifts of arguments of the data
f or g of the inverse problem. Critical values H (or h) of arguments z (or
£). determining boundaries of the areas, where the medium characteristics
are not known, influence only the argument’s shift of the function f(7).
Therefore it is not necessary to give the value H at all for the solution of
the inverse problem. Moreover, it can be found after the determination of
coefficients ¢ or o.

4. Numerical experiments

As it was shown in the previous section, the formulas (28) and (29) permit
the spectral function p(A) to be found in the explicit form for the initial
differential operator, if the data f and g of the corresponding inverse prob-
lem are known. Further reconstruction of the coefficients ¢(£) and k can
be realized in many ways. One of the most effective methods has been
developed by M.G.Krein [9] in 1954. Let us recall the main idea of this
algorithm.

Let p(A) be a non-decreasing function, vanishing for A < 0. It is neces-
sary to find out whether there is a differential operator with the spectral
function p(A). Tts coefficients ¢(£) and k should also be found. Assume
that (A) = p(A) — Qﬂ/ﬁ and consider the improper integral
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a(z) =/COST/\$(IV(/\).
1

For existance of the required operator it is sufficient (see, for example, [4])
that the function a(z) have continuous derivatives up to the 4-th order
at all @ < 0. This restriction concerns only the behaviour of ¥()) when
A — oco. In’the practical calculations, the function v is usually considered
to be equal to zero for the large values of A. Consequently, the given
requirement is fulfilled automatically.

If this condition is fulfilled, the reconstruction of the coefficients ¢(&)
and k reduces to the search for a solution to the following integral equatjon
of Krein

2 _
v 20+ [ I - Ouc.200dc =1, 0<e <2, (34)
0
where o
J(z) = %/cos(\/:\_:v)(lu(/\).
0

It can be shown [3-5, 9] that the operator in the left-hand side of the
equality (34) is positive. Therefore, this equation has the unique solution
y(z,2€). The required values ¢(£), k and o(£) are expressed by means of y
‘using the formulas

= L 4 2£,2€ k—i] 2£,2
q(§) = mwy( £,2£), =% 'n y(2€, 2€)

a(€) = a(0) - y*(2€, 26).

The described method can be realized very effectively if the algorithm of
the fast Fourier transform will be used to find the spectral function by the
formulas (28)-(29), and if the Levinson recursion (see [10]) will be used
to solve the equation (34). On this basis'we have made up a program for
the computation of the solution to the inverse problem. This program has
demonstrated a sufficiently high efficiency and accuracy of calculations for
the test examples. The numerical experiments were conducted according to
the following scheme. At first the solution to the direct problem, i.e., the
synthetic surface seismogram g¢(7) was computed for the known medium
model (&) and the given form of the incident wave f(7). Then the function
f and some segments of the synthetic seismogram ¢ of different length were

5:0’
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used as the initial data for the calculation of the solution to the inverse
problem. As a result, accuracy of the medium reconstruction depending on
the used segment of the synthetic seismogram was estimated. The angle of
incidence of the initial wave was considered to be equal to zero.

The medium model was based on the real measurements presented by
the State Geological Corporation 'Eniseigeofizica’. They contained infor-
mation about density and velocity at 228 points in the borehole 'Cham-
binskaya-114" up to the depth of 3362 metres. Then the function o(§)
computed for these real data was averaged and smoothed. Further calcu-
lations were carried out for the smooth o(¢). The diagrams of the original
and smoothed functions are shown in Figure 1.

The initial wave f(7) was analytically described by the smooth finite
function. It has been tested on several wave types. However, no dependence
between the wave form and the accuracy of the medium reconstruction was
found in our experiments. The incident wave of the type

fr) { 72(1 = 107)%{1 — exp[—(2577)?]} sin 5077, 0 < T < 0.1 (sec),
T)= . _

, otherwise,

and corresponding synthetic seismogram are presented in Figure 2.

And, finally, Figure 3 shows the results of the medium reconstruction
using the initial segments of this synthetic seismogram, corresponding to
the time intervals of 1.6 sec (dotted line), 2.4 sec (dashed line) and 3.2 -
sec (thin line). The quality of reconstruction improves with the increase
of the time interval. The graphs of the initial and reconstructed functions
are practically identical when the length of the time interval is more than
4 sec. : _ '

The numerical eiperiments were performed at the work station SUN
SPARC and on IBM PC 386/387. The run time for the inverse problem
did not exceed 2-30 sec, depending on the required accuracy and the length
of the used seismogram segment.

5. Some conclusions and generalizations

The statement of inverse problem that we considered is typical for the
scattering theory, tomography, flaw detection and other problems where it
is natural to suppose that the form f(r) of the initial wave is known. As
a rule, direct information on the form of the initial wave is absent in the
problems of seismoprospecting. Here values of the full wave field (i.e., sum
of incoming and scattered waves) in one or several points deep inside the
medium and on its surface are natural observed characteristics of the wave
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process. This fact hinders direct application of the algorithms described
above to the problems of seismoprospecting. In the given section these
algorithms will be adapted to the needs of geophysics.

First of all let us find out, what information on the medium structure
and character of the wave process is sufficient for the reconstruction of the
unknown form of the initial wave. For this we again turn our attention to
the equation (18) relating the Fourier images of functions u(¢,7) and f(1).
Differentiating this equation over the variable £ we come to the system

{ U(§,w) = F(w)e(§,w) - S(w)F(w) (£, —w), (35)
Ug(é,w) = F(w)€'(&,w) — S(w)F(w) (€, —w).
Hence, taking into account (16) we get

F(©) = 506 w) el —0) - U6 ) (6 —0)]. (36)

Consequently, the function F(w) can be found if the values e(€,w), €'(£,w)
and U(&,w), Ug(€,w) in some point £ are known. Note that e(£,w) is always
known in the domain § > h where it coincides with exp(ifw). Therefore,
it is sufficient to know the full wave field u(£,7) and its derivative with
respect to £ in some point £ > h for the reconstruction of f(7) or its Fourier
image F{w).

This brings up the question: to what extent are the medium parameters
determined by the values u(x,7) and u¢(z,7) at some < h 7 Naturally,
the function g(7) = u(0,7) is considered to be known as before. We shall
show that these data uniquely determine the coefficient ¢(£) in equation
(9) only in the interval 0 < £ < z, while at £ > z the values ¢(£) can be,
generally speaking, arbitrary.

Let u(£,7) be the solution of the problem (9)-(11) with some f(r)
satisfying the conditions of Theorem 1. We choose some value z from
the interval (0,h) and arbitrarily change the function o(£) outside of the
interval [0,2] so that it will remain positive, twice continuously differen-
tiable and constant at all sufficiently large £&. Together with o(§), q(€) will
also change correspondingly. These modified functions ¢ and ¢ will be de-
noted by & and ¢. On the interval [0, 2] the evident identities 5(£) = o(€),
G(€) = ¢(&) are valid.

Theorem 3. There exists the function f(r) satisfying the conditions of
Theorem 1 and such that the solution (€, 7) of the problem (9)-(11) with
the coefficient §(€) and “initial data” f(7) coincides with u(&;7) at all £ < =,
-0 <1< 0. '
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Proof. On the basis of Theorem 1 we pass from evolutional to the corre-
sponding spectral problems. The symbol &(£,w) will be used to denote the
function playing the same part in the equation

= U + Q(€)U =w’T, ' (37)

that e({,w) in the equatlon ( }2) It is sufﬁment to find solution of the
equation (37) coinciding with U(£,w) on the interval 0 < £ < z and de-
composing into the linear combination

U(¢,w) = F(w) é(¢,w) + G(w)e(f, ), (38)

where F(w) is the Fourier image of some functson f( T) from the class W}
with the support that is bounded from the left. It will be shown that
the solution of the Cauchy problem for the equation (37) with the mltla.l
conditions :

U(z,w) = U(z,w), Ug(z,w) = U‘g(w,w) (39)

satisfies these requirements.

As the coefficients g(£) and ¢(£) on the interval [0,z] coincide, the
functions U(€,w) and U(€,w) are also equal to each other at ¢ < z and
all w due to the uniqueness of the solution to the Cauchy problem. In
particular, U (§,w) together with U(€,w) satisfy the boundary condition
(13).

Let us find the coefficients of decomposition (38). For this we substitute
the expression (38) into the boundary conditions (39), right hand sides of
which will be determined from the relations (35). As a result we obtain
the system of linear equations for F and G, and solving it we get

Fw)

ﬁ’(w) 2iw

[E(m w)é(z, —w) — E(z,w)é'(z, w)],

G’(w) = F(w) [E(;L‘ w)é(2,w) - E'(‘a:,w)é(a:,w)],
wliere
E(z,w) = e(z,w) - S(w)e(z,~w), E'(z,w)=¢(z,w)— S(w)e(z,—w).

~ Note that the functions F and G have a removable singularity at w = 0.
In fact, on the basis of Lemma 2 we have s(0) = 0, 8,(0) # 0, and therefore,
5(0) = -1, E(x,0) = 2¢(x,0), E'(2,0) = 2¢'(2,0). From this, using the
representations

e(£,0) = [a(€)/a0]" /7, &(€,0) = [5(€) /0] /2,

found in Lemma 2. we obtain
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E'(z.w)é(x,—w) — E(z,w)é(x, -w) o

[a0d0) ™ *[o" (2 )(@(x)/a(2))M? - &'(2)(o(2)/6(2))/?).

This expression is equal to zero, because the functions ¢ and & coincide
(together with their derivatives) at the point x. Similarly,

E(r,w)é(z,w) - E'(z,w)é(z,w) .= 0.
w= .

So, F and G are analytical in the half-plane Imw < 0, and due to (14)
and (15) their modules are majorized by the value C exp(—+Imw), where
(' and 7 are positive constants. All the necessary properties of the function
F are the result of this.

Firstly, f(r) belongs to W2. So, the product F(w) (1 + w?) belongs
to Ly(—00,00). But then F(u) (1 + w?) is also in Ly(—00,00) and, con-
sequently, F(w) is the Fourier transform of some function f{( T) from the
class W}

Secondly. siippott of the functioh f(r) lies in the domiain @ < r. By
the Paley-Wiener theorem (see [6]) this is equivalent to the analyticity of
F(w) in the half-plane Imw < 0 and the existence of the uniform estimate

o0
‘/|F(_./\ +ip)|>d) < const - €2*, < 0.

—_—0

After the replacement of a by a -7, the function F will also satisfy the
same estimate and therefore supp f will lie in the domain a—+ < r. a

So, if the form of the incoming wave is unknown, nothing definite can
be said about the medium structure outside of the observation interval.
Whatever the acceptable medium parameters in the domain £ > z, the form
of the initial wave can always be chosen so that the response caused by it
will coincide with the observed wave field on the whole interval 0 < £ < z
and in all time moments. Nevertheless, the result of Theorem 3 is still
positive, as it allows the reconstruction of the coefficients o(£) and ¢(£) on
the interval 0 < £ < 2 using the given values

u(z,7)=@(1), ug(ax.7)=v(r), u(0,7)=g(r).

Really, let the values of the function ¢ and its first and second deriva-
tives in the point £ = a be known additionally. We construct the new
function &(£) so that it will coincide on the interval [0, 2] with the function
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o(&) that is already available but still unknown. For £ > z we determine
this function in any known way, only the requirements of Thecrem 3 should
be fulfilled. In accordance with the conclusion of Theorem 3 there exists
such initial wave f( 7) that the solution (€, 7) corresponding to this wave
will satisfy the conditions

i(z, 1) = @(r), '&E(QJ-T) =Y(7), ??(0,7‘) =g(7). (40)

Moreover, at £ > = the function (£) and the coefficient G(€) generated
by it are known. So, values of the special solution &(&,w) to the equation
(12) and its derivative é'(£,w) in the domain £ > z and, in particular,
in the point x itself can be found. But then the Fourier image F(w) of
hypothetical initial wave f(7) is easily determined from the conditions (40)
using the formula (36). Thus, we again obtain the above-considered inverse
problem on the reconstruction of the function &(£) using the given f(7)
and u(0,7). Solution of this problem gives full information on the values
of the initial function ¢(£) on the interval [0, z].
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