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Action refinement and equivalence notions
for timed event structures

M.V. Andreeva

Abstract. The paper is contributed to study an operator for refinement of actions
to be used in the design of concurrent real time systems. The refinement operator
replaces actions on a given level of abstraction by more complicated processes on
a lower level. We define this operator on a causality based, event-oriented timed
model. Then we investigate the interplay of action refinement with abstractions in
terms of equivalence notions of the linear time - branching time spectrum for con-
current systems in terms of timed partial orders. As a result, we propose variations
of these equivalences with additional timing requirements sufficient for preserving
equivalences under refinement. Furthermore, when dealing with particular sub-
classes of the model under consideration, these additional requirements are not still
necessary for preservation of the equivalences under refinement.

1. Introduction

In the design of parallel systems, the operation of refinement of actions
is widely used, which allows us to represent behaviour of a system on higher
or lower levels of abstraction. We consider parallel systems for which the
basic building blocks are the actions which occur in the system. By an
action we mean here any activity of the system which can be considered
as a conceptual entity on the given level of abstraction. This allows us to
represent systems in a hierarchical way, changing the level of abstraction by
interpreting actions on a higher level by more complicated processes on a
lower level. The operation is constructed in such a way that the behaviour
of the refined system can be derived compositionally from the behaviour of
the initial system and the behaviour of the processes which refine actions.
For the purposes of specification and verification of the systems behaviour,
different equivalence notions are used in order to be able to choose the
simplest possible view of the system. In this paper we study the interplay
between the refinement and certain equivalence notions or, in more detail,
the problem of preserving the behaviour equivalences under the refinement.

Recently, a variety of equivalences of parallel systems have been intro-
duced and the relations between them are well-studied (see, for instance,
[12, 13]). There are two important aspects of equivalences used in their
classification: the preserved level of detail in system runs and the preserved
level of the choice structure between system runs. Concerning the first as-
pect, there are two opposite approaches based on the interleaving semantics
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and the causal semantics. In the interleaving semantics, a run consists of a
sequence of actions, therewith we abstract from the causal relations between
these actions. In the causal semantics, all causal dependencies between ac-
tions are preserved. We will consider only the partial order semantics which
is a causal semantics where all causal dependencies are represented by a
partial order [13]. The choice is motivated by the fact that the interleaving
semantics and other semantics lying in between in the spectrum of semantics
are not preserved under refinement [13, 14]. For the second aspect concern-
ing the choice structure between system runs, the simplest notion is the
trace semantics (linear time) [17] when the system behaviour is defined by
the sets of its possible runs and the choice structure is neglected. At the
opposite end of the spectrum, there is the bisimulation semantics (branching
time) [15] which preserves the information on the points of choices between
system runs. In between there are test semantics [11]. The third aspect of
the equivalence classification consists in the treatment of internal or invisi-
ble actions (strong versus weak equivalences). We will consider only strong
equivalences which do not distinguish internal actions.

The equivalence notions mentioned above were introduced for formal
models of systems without time delays. A growing interest in modeling
of real-time systems observed recently motivates a necessity for a formal
representation of the lapse of time. Several formal methods for specifying
and confirming such systems were recently introduced [4, 5]. In papers [9,
22, 25], the questions related to time-sensitive equivalences were studied. In
these investigations, real-time systems are represented by timed interleaving
models which are parallel timer processes or timed automata containing
clocks by which one means fictitious time measuring elements.

In this paper, we study the relations between the action refinement and
behaviour equivalences in the context of the timed partial order model. In
particular, we consider a family of equivalences based on the partial order
semantics from the linear-time/branching time spectrum in the setting of
event structures with a dense time domain [7, 23].

In the paper, we show that the timed extensions of those equivalence
notions, which are preserved under refinement in the event structure theory
[13, 14], are not preserved under refinement in the model under consider-
ation. We propose some variations of these equivalences with additional
timing requirements sufficient for preserving equivalences under refinement.
Moreover, we distinguish several subclasses of timed event structures on
which the original equivalences are invariant under refinement without these
additional requirements.

The remained part of the paper is structured as follows. In Section 2,
we introduce the main definitions and notation related to the timed event
structures theory. In the next section, we recall trace, test and history
preserving bisimulation equivalences of timed event structures in terms of
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the timed partial order. In Section 4, we define the refinement operator of
timed event structures. Further in Section 5, we introduce additional timing
requirements for equivalences from Section 3 such that the new equivalences
we get are invariant under action refinement. In Section 6, we distinguish
some subclasses of timed event structures on which the original equivalences
from Section 3 are invariant under refinement. Section 7 contains some
conclusions and remarks on the future works.

2. Timed event structures

In this section, we introduce some basic notions and notations concerning
timed event structures.

First, we recall a notion of event structures [24] which constitute a major
branch of partial order models. The main idea behind event structures
is to view distributed computations as action occurrences, called events,
together with a notion of causality dependency between events (which is
reasonably characterized via a partial order). Moreover, in order to model
nondeterminism, there is a notion of conflicting (mutually incompatible)
events. A labelling function records which action an event corresponds to.

We consider a dense time extension of event structures, called timed
event structures [7, 23]. The time incorporated into event structures can
be characterized in the following way. A global real-valued clock [8, 16, 18,
19, 21] is assumed. Events are associated with timed constraints restricting
the times at which the events can occur. The occurrences of enable events
themselves take no time. We assume an implicit passage of time [8, 16, 18,
19]. We do not force events to occur once they are ready, i.e. their causal
predecessors have occurred and their timing constraints are respected, since
the concept of urgent events [3, 19] is sometimes quite constraining in the
timing actions.

Let R be the set of nonnegative real numbers, N be the set of integer
numbers. Denote the set of closed intervals (segments) in R as

Interv = { [d1, d2] ⊂ R | d1 ≤ d2}.

Definition 1.

• Let Act be a finite set of action. A (labelled) event structure is a tuple
S = (E,≤,#, l), where

– E is a denumerable set of events,
– ≤ ⊆ E × E is a partial order (the causality relation), satisfying

the principle of finite courses: ∀e ∈ E ¦ ↓ e = {e′ ∈ E | e′ ≤ e}
is finite,
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– # ⊆ E × E is a symmetric and irreflexive relation (the con-
flict relation) satisfying the principle of conflict heredity: ∀e, e′,
e′′ ∈ E ¦ e # e′ ≤ e′′ ⇒ e # e′′;

– l : E → Act is a labelling.

• A (labelled) timed event structure is a tuple TS = (S, D), where S
is a (labelled) timed event structure and D : E → Interv is a timing
function.

We will use S to denote the set of event structures. Let O = (∅, ∅, ∅, ∅)
be the empty event structure. For C ⊆ E, we define the restriction S to C
as SdC = (C,≤∩(C ×C),#∩ (C ×C), l |C). Also, we will use TS to denote
the set of timed event structures.

Timed event structures TS, TS′ ∈ TS are isomorphic (denoted as TS '
TS′) if there exists a bijection ϕ : ETS −→ ETS′ such that e ≤TS e′ ⇐⇒
ϕ(e) ≤TS′ ϕ(e′), e #TS e′ ⇐⇒ ϕ(e) #TS′ ϕ(e′), lTS(e) = lTS′(ϕ(e)) and
DTS(e) = DTS′(ϕ(e)) for all e, e′ ∈ ETS.

For depicting timed event structures, we use the following conventions.
The action labels and timing constraints associated with events are drawn
near the events. If no confusion arises, we will often use action labels rather
than event identities to denote events. The <-relation is depicted by arcs
(omitting those derivable by transitivity), and conflicts are also drawn (omit-
ting those derivable by conflict heredity).

TS0 :

[23 , 4]
a : e1 -

[2, 6]
b : e2

#
c : e3

[1, 1]

Figure 1. An example of a labelled timed event structure

An execution of a timed event structure is a timed configuration which
consists of a configuration and a timing function, recording global time mo-
ments at which events occur, and satisfies some additional requirements.

Definition 2. Let TS = (S,D) ∈ TS, then

• a finite set of events C ⊆ ETS is a configuration in S (in TS) if

– C is left-closed: ∀e ∈ C ¦ ↓ e ⊆ C;
– C is conflict-free: ∀e, e′ ∈ C ¦ ¬(e # e′);

• a tuple TC = (C, T ) consisting of a configuration C and a timing
function T : C −→ R is a timed configuration in TS, if



Action refinement and equivalence notions for timed event structures 5

– ∀ e ∈ C ¦ T (e) ∈ DTS(e);

– ∀ e, e′ ∈ C ¦ e ≤TS e′ ⇒ T (e) ≤ T (e′).

Informally speaking, each event can occur at a time when its timing con-
straints are met, and, for any two events e and e′ occurred, if e causally
precedes e′ then e should temporally precede e′. The initial timed configu-
ration of TS is (∅, ∅). We use C(S) to denote the set of configurations of S
and TC(TS) to denote the set of timed configurations of TS. The restriction
of TS to TC, denoted as TSdTC, is defined as (SdC, T ).

We define the leading relation on a timed configuration in the following
way. Let TS be a timed event structure and TC = (C, T ), TC ′ = (C ′, T ′) ∈
TC(TS). We will write TC −→ TC ′ iff C ⊆ C ′ and T ′|C = T .

A timed event structure TS ∈ TS is said to have a valid timing if e ≤TS e′

implies minDTS(e) ≤ minDTS(e′) and maxDTS(e) ≤ maxDTS(e′). The
valid timing property of the timed event structure guarantees that if for some
event its causal predecessors have occurred and no conflicting events have
occured, then the event can occur respectively with its timing constraints.

Lemma 1. Let TS = (S,D) has a valid timing, then if TC = (C, T ) ∈
TC(TS) and C ⊆ C1 ∈ C(S), then there exists T1 : C1 −→ R such that
TC1 = (C1, T1) ∈ TC(TS) and TC −→ TC1.

In the following, we will consider only timed event structures having a
valid timing and call them simply timed event structures.

3. Equivalence notions

In this section, we recall those equivalence notions, based on timed partial
orders from [7, 23], which are the timed restrictions of the equivalences from
[13, 14] preserved under action refinement.

The partial order semantics of timed event structures is defined by means
of timed posets. A timed poset is a (labelled) timed event structure
TP = ((E, ≤, #, l), D) with # = ∅ and D(e) = [d, d] (or simply D(e) = d),
where d ∈ R, for all e ∈ E. We use TP to indicate the set of timed finite
posets. For two timed posets TP and TP ′, TP is a direct prefix of TP ′

(denoted as TP ≺ TP ′) if ETP ⊆ ETP ′ , ETP ′ \ ETP = {e}, e is a maximal
element of ETP ′ with respect to ≤TP ′ , ≤TP ′ |ETP×ETP

=≤TP , lTP ′ |ETP
= lTP ,

and DTP ′ |ETP
= DTP .

The first equivalence we consider is a trace equivalence defined in terms
of systems languages.



6 M.V. Andreeva

Definition 3. Let TS and TS′ be timed event structures.

• The set L(TS) = {TP ∈ TP | TP ' TSdTC for some TC ∈ TC(TS)}
is the language of TS ∈ TS.

• TS and TS′ are trace equivalent, denoted as TS ≈trace TS′, iff
L(TS) = L(TS′).

Example 1. As an illustration, consider the language of the timed event
structure TS0 from Figure 1:

L(TS0) = {(O, ∅), [d1]
a ,

[d1]
a →

[d2]

b ,
[1]
c ,

a [d1]

c [1]
| d1 ∈ [23 , 4], d2 ∈ [2, 6],

d1 ≤ d2}.

The next equivalence we consider is testing which is a timed extension
of causal testing defined in [14]. Two systems are consider to be testing
equivalent, if they pass the same number of tests. A test consists of a timed
poset TP ∈ TP and a set of timed posets Q ⊂ TP such that TP ≺ TP1 for
all TP1 ∈ Q.

Definition 4. Let TS and TS′ be timed event structures.

• Let TP ∈ TP and Q ⊂ TP such that ∀TP1 ∈ Q ¦ TP ≺ TP1.
Then TS after TP MUST Q iff for all TC ∈ TC(TS) such that
TSdTC ' TP and for all isomorphisms f : TSdTC −→ TP there exist
TP1 ∈ Q, TC1 ∈ TC(TS) and an isomorphism f1 : TSdTC1 −→ TP1

such that f ⊂ f1.

• TS and TS′ are testing equivalent, denoted as TS ≈test TS′, iff for
all TP ∈ TP and Q ⊂ TP it holds: TS after TP MUST Q ⇐⇒
TS′ after TP MUST Q.

Further, we consider the timed extensions of the history preserving bisi-
mulation from [13] which is the culminating point of the poset bisimulation
approach.

Definition 5. Let TS and TS′ be timed event structures.

• A relation B consisting of triples (TC, f, TC ′), where TC is a timed
configuration of TS, TC ′ is a timed configuration of TS′, and
f : TSdTC → TS′dTC ′ is an isomorphism, is a history preserving
bisimulation between TS and TS′ iff ((∅, ∅), ∅, (∅, ∅)) ∈ B and for all
(TC, f, TC ′) ∈ B it holds:

(a) if TC −→ TC1 in TS, then TC ′ −→ TC ′
1 in TS′ and

(TC1, f1, TC ′
1) ∈ B with f ⊆ f1, for some TC ′

1 and f1,
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(b) if TC ′ −→ TC ′
1 in TS′, then TC −→ TC1 in TS and

(TC1, f1, TC ′
1) ∈ B with f ⊆ f1, for some TC1 and f1,

• TS and TS′ are history preserving equivalent, denoted as
TS ≈hpb TS′, iff there exists a history preserving bisimulation B be-
tween them.

The relationships of the observational equivalences defined above are
shown in the following theorem.

Theorem 1. Let TS and TS′ be timed event structures, then

TS ≈trace TS′ ⇐ TS ≈test TS′ ⇐ TS ≈hpb TS′.

Proof Sketch. Immediately follows from the definitions of the equiva-
lences. ¥

The following example shows that the converse implications of the above
theorem do not hold and that the three equivalences are all different.

Example 2. Consider timed event structures on Figure 2. First, we have
TS1 ≈trace TS2, while TS1 6≈test TS2, since, for example, TS1 after a[0]

MUST a[0] → b[3] and ¬(TS2 after a[0] MUST a[0] → b[3]). Second, TS2 ≈test

TS3, but TS2 6≈hpb TS3, because, for instance, the timed configurations of
TS2 obtained by the execution of the medium timed action (a, 1) can be
related neither to the timed configuration of TS3 obtained by the execution
of the left timed action (a, 1), because the execution of the timed action (b, 2)
is not further possible in TC3, nor to the timed configuration of TS3 obtained
by the execution of the right timed action (a, 1), because the execution of the
timed action (b, 3) is further possible in TC3. Finally, TS3 ≈hpb TS4.

TS1 : TS2 : TS3 : TS4 :≈trace

6≈test

≈test

6≈hpb

≈hpb

[0, 1]
a

?
b

[1, 3]

[0, 1]
a

?
b

[1, 1]

#
[0, 1]
a

?
b

[1, 2]

#
[0, 1]
a

?
b

[1, 3]

[0, 1]
a

?
b

[1, 1]

#
[0, 1]
a

?
b

[1, 3]

[0, 1]
a

?
b

[1, 1]

#
[0, 1]
a

¢
¢®

b
[1, 2]

#

A
AU
b

[2, 3]

Figure 2
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4. Refinement

In this section, the operator of action refinement for timed event struc-
tures is proposed. In the theory of event structures, action refinement means
substituting single events by complex event structures. A refinement func-
tion maps actions (and thereby all events labelled with this action) to finite
non-empty conflict-free event structures [13, 14]. In timed event structures,
action refinement means also that all timed constraints of single events are
inherited by the substituted events.

Definition 6.

• A function r : Act −→ S \ {O} is called a refinement function if r(a)
is finite and conflict-free for all a ∈ Act.

• Let TS ∈ TS and r be a refinement function. Then r(TS) is defined
in the following way: (Sr(TS) is defined as in [13, 14])

– Er(TS) = {(e, e′) | e ∈ ETS, e′ ∈ Er(lTS(e))};
– (e, e′) ≤r(TS) (e1, e

′
1) ⇐⇒ e <TS e1 or (e = e1 ∧ e′ ≤r(lTS(e)) e′1);

– (e, e′) #r(TS) (e1, e
′
1) ⇐⇒ e #TS e1;

– lr(TS)(e, e′) = lr(lTS(e))(e′);
– Dr(TS)(e, e′) = DTS(e).

By the definition above, if TS has a valid timing then r(TS) has a valid
timing too.

The behaviour of the refined timed event structure r(TS) can be com-
positionally derived from the behaviour of TS and the behaviour of the
substituted event structures. For a timed configuration TC = (C, T ) of
TS, we denote a timed configuration, which is a refinement of TC, as
T̃C ∈ TC(r(TS)). A refinement of a timed configuration may be represented
as a composition of a refined timed configuration and timed configurations
substituted the events in C. For e ∈ C, we define TSe = (r(lTS(e)), DTSe),
where DTSe(e′) = DTS(e) ∩ [maxe1<TSe T (e1), T (e)] for all e′ ∈ Er(lTS(e)).
The timed constraints of TSe guarantee that those events in C̃ which sub-
stituted e can occur neither earlier than causal predecessors of e in TS,
nor later than e. Moreover, we require that if all events in Er(lTS(e)) have
occurred, then there is an event e′ ∈ Er(lTS(e)) which occurred in the time
moment T (e). We insist on this requirement to bind times of action occur-
rences with the ends of executions of the substituting processes.

Proposition 1. Let TS be a timed event structure and r be a refinement
function. T̃C = (C̃, T̃ ) is called a refinement of a timed configuration
TC = (C, T ) ∈ TC(TS) by r iff
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• C̃ =
⋃

e∈C

{e} × Ce and T̃ (e, e′) = Te(e′), where

(Ce, Te) ∈ TC(TSe) \ {(∅, ∅)}, TSe = (r(l(e)), DTSe) ∈ TS,
and DTSe(e′) = DTS(e) ∩ [ max

e1<e
T (e1), T (e)];

• e ∈ busy(C̃) ⇒ e is maximal in C,
e 6∈ busy(C̃) ⇒ T (e) = T̃ ((e, e′)) for some e′ ∈ Ce, where

busy(C̃) = {e ∈ C | Ce 6= ETSe}.
Then TC(r(TS)) = {T̃C | T̃C is a refinement of TC ∈ TC(TS)}.

Proof.
”(⊆)”
Assume that T̃C = (C̃, T̃ ) is a timed configuration of r(TS).
For a configuration C̃, construct the projection functions

C = {e | (e, e′) ∈ C̃} and Ce = {e′ | (e, e′) ∈ C̃},
and timed functions T : C −→ R and Te : Ce −→ R , where

T (e) = max Te and Te(e′) = T̃ ((e, e′)) for all e ∈ C and e′ ∈ Ce.

Now C̃ and T̃ can be represented as

C̃ =
⋃

e∈C

{e} × Ce and T̃ ((e, e′)) = Te(e′) for all (e, e′) ∈ C̃.

Further, for all e ∈ C construct TSe = (r(lT S(e)), DT Se), where DT Se(e
′) = D(e) ∩

[ max
e1<e

T (e1), T (e)].

We have to show that T̃C is a refinement of TC = (C, T ) ∈ TC(TS) by r.

1. TC = (C, T ) is a timed configuration of TS.

Since C̃ is finite, left-closed and conflict-free in r(TS), then C ⊆ ET S is finite,
left-closed and conflict-free in TS, therefore it is a configuration.

Since T̃C ∈ TC(r(TS)), then T̃ ((e, e′)) ∈ DT S(e) for all (e, e′) ∈ C̃. Hence,
T (e) ∈ DT S(e) for all e ∈ C. Moreover, if e <T S e1 ∈ C then (e, e′) <r(T S)

(e1, e
′
1) for all e′ ∈ Ce and e′1 ∈ Ce1 , which implies max(Te) ≤ max(Te1), i.e.

T (e) ≤ T (e1).

2. TSe = (r(lT S(e)), DT Se) is a timed event structure for all e ∈ C.

By definition, r(lT S(e)) ∈ S. Besides, DT Se(e
′) ∈ Interv for all e′ ∈ ET Se ,

since T̃ (e, e′) ∈ DT S(e) ∩ [maxe1<T Se T (e1), T (e)] for all e′ ∈ Ce 6= ∅. Obvi-
ously, TSe has a valid timing.

3. (Ce, Te) is a nonempty configuration of TSe for all e ∈ C.

Since C̃ is finite, left-closed and conflict-free in r(TS), Ce is finite, left-
closed and conflict-free in r(lT S(e)), i.e. Ce is a configuration. Ce 6= ∅,
since (e, e′) ∈ C̃ for some e′ ∈ Ce.

By construction, Te(e′) ∈ De(e′) for all e′ ∈ Ce. For e′ <T Se e′′, we get
(e, e′) <r(T S) (e, e′′) which implies T̃ ((e, e′)) ≤ T̃ ((e, e′′)) and Te(e′) ≤ Te(e′′).
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4. e ∈ busy(C̃) ⇒ e is maximal in C according to ≤T S.

Suppose e <T S e1 ∈ C. Then (e, e′) <r(TS) (e1, e
′
1) for some e′ ∈ ET Se

and e′1 ∈ Ce1 6= ∅, which implies Ce = ET Se , since C̃ is left-closed. Hence,
e 6∈ busy(C̃).

5. By construction of T , for all e ∈ C it holds: T (e) = T̃ ((e, e′)) for some
e′ ∈ Ce.

”(⊇)”
Assume that TC = (C, T ) ∈ TC(TS) and T̃C = (C̃, T̃ ) is a refinement of TC. We
will show that T̃C ∈ TC(r(TS)).

1. C̃ is a configuration of r(TS).

By our assumption, C̃ =
⋃

e∈C

{e}×Ce, where ∀e ∈ C ¦ Ce ∈ C(r(lT S(e))\{∅},
and e ∈ busy(C̃) ⇒ e is maximal in C. Hence, C̃ ⊆ Er(TS). Since C and
Ce are finite and conflict-free for all e ∈ C, then C̃ is finite and conflict-free.
Let us check that C̃ is left-closed. Suppose (e1, e

′
1) <r(T S) (e, e′) ∈ C̃, and

consider the following cases:

(a) if e1 = e then e′1 <r(lT S(e)) e′ ∈ Ce. Since Ce is left-closed, we get
e′1 ∈ Ce and (e1, e

′
1) ∈ C̃;

(b) if e1 <T S e then e1 ∈ C since C is left-closed, and e1 is not maximal in
C. Then e1 6∈ busy(C̃), i.e. Ce1 = Er(lT S(e1)) which implies e′1 ∈ Ce1

and (e1, e
′
1) ∈ C̃.

2. T̃ satisfies the Definition of a timed configuration.

By our assumption, T̃ ((e, e′)) = Te(e′) ∈ DT S(e) for all (e, e′) ∈ C̃. For
(e1, e

′
1) ≤r(TS) (e, e′) ∈ C̃, the following cases are possible:

(a) if e1 = e then e′1, e
′ ∈ Ce and e′1 ≤r(lT S(e)) e′, which implies Te(e′1) ≤

Te(e′), or T̃ ((e1, e
′
1)) ≤ T̃ ((e, e′));

(b) if e1 <T S e then T (e1) ≤ T (e), that, by definition of TSe1 and TSe,
implies Te1(e

′
1) ≤ Te(e′), or T̃ ((e1, e

′
1)) ≤ T̃ ((e, e′)).

Thus, T̃C ∈ TC(r(TS)). ¥
The next lemma illustrates the interplay between the leading relation on

a timed configuration and a refinement operator.

Lemma 2. Let TS ∈ TS and r, r′ be refinement functions, then we have

1) refinement transitivity: if T̃C ∈ TC(r(TS)) is a refinement of TC ∈
TC(TS) by r and ˜̃

TC ∈ TC(r′ ◦ r(TS)) is a refinement of T̃C by r′,

then ˜̃
TC is a refinement of TC by r ◦ r′;
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2) if T̃C −→ T̃C1 in r(TS) and T̃C1 is a refinement of TC1 ∈ TC(TS),
then T̃C is a refinement of TC such that TC −→ TC1 in TS;

3) if T̃C −→ T̃C1 in r(TS), T̃C is a refinement of TC ∈ TC(TS), and
∀(e, e′) ∈ C̃1 \ C̃ ¦ e 6∈ C, then T̃C1 is a refinement of TC1 ∈ TC(TS)
such that TC −→ TC1 in TS.

Proof Sketch. Immediately follows from the definitions of the equiva-
lences. ¥

As was shown in [13, 14], the behaviour equivalences of event structures
whose timed extensions were exposed above are invariant under refinement.
However, by the following example, their considered timed extensions are
not preserved under refinement of timed event structures.

Example 3. Consider timed event structures

TS5 :
[0, 2]

a , TS6 :
[0, 1]

a #
[1, 2]

a ,

and a refinement function r(a) = a1 → a2. We have TS5 ≈hpb TS6, but
r(TS5) 6≈trace r(TS6), since a

[0]
1 → a

[2]
2 ∈ L(r(TS5)) \ L(r(TS6)):

r(TS5) :
[0, 2]
a1 →

[0, 2]
a2 , r(TS6) :

[0, 1] a1 → a2 [0, 1]
#

[1, 2] a1 → a2 [1, 2]
.

Roughly speaking, action implementations after refinement could acquire
some positive durations reflecting time periods during which the substi-
tuted events occur. Since time restrictions for the corresponding events
from equivalent event structures may not coincide, the resulted refinements
may be non-equivalent.

Further we introduce two possible solutions to the posed problem of
preservation of equivalences under refinement of timed event structures. One
of them consists in incorporating additional time requirements into the def-
initions of equivalences. However, another solution is based on restricting
the considering model of timed event structures onto certain subclasses.

5. Equivalence notions with additional timing requirements

We expose here the equivalence notions strengthened by additional re-
quirements on the time neighborhood of timed configuration sufficient to
preserve them under refinement of timed event structures.
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Definition 7. Let TS ∈ TS and TC = (C, T ) ∈ TC(TS). A function
δTC : C −→ Interv is called a time neighborhood of TC, if

δTC(e) =

{
DTS(e)

⋂
[ max
e1<TSe

T (e1),∞], if e is maximal in C;

DTS(e)
⋂

[ max
e1<TSe

T (e1), T (e)], otherwise.

Roughly speaking, a time neighborhood δTC of a timed configuration
TC = (C, T ) ∈ TC(TS) defines a timed segment δTC(e) for all e ∈ C, in
which the constraints events (e, e′) ∈ C̃1 can occur, for all timed configu-
rations T̃C, T̃C1 of r(TS) such that T̃C is a refinement of TC by r and
T̃C −→ T̃C1 in r(TS).

Further, consider the equivalence notions for timed event structures with
additional requirements concerning the notion of a time neighborhood of a
timed configuration.

First, consider the δ-trace equivalence.

Definition 8. Let TS and TS′ be timed event structures.

• The set Lδ(TS) = {(TP, δ) ∈ TP | there exist TC ∈ TC(TS) and
an isomorphism f : TSdTC −→ TP such that δTC = δ ◦ f} is the
δ-language of TS ∈ TS.

• TS and TS′ are δ-trace equivalent, denoted as TS ≈δ·trace TS′, iff
Lδ(TS) = Lδ(TS′).

It is obvious that δ-trace equivalent timed event structures are trace
equivalent.

The next equivalence notion we consider is δ-testing, where δ-test consists
of a timed poset TP ∈ TP, a function δ : ETP −→ Interv, and a set Q ⊆ TP

such that TP ≺ TP1 for all TP1 ∈ Q.

Definition 9. Let TS and TS′ are timed event structures.

• Let TP ∈ TP, δ : ETP −→ Interv and Q ⊂ TP such that ∀TP1 ∈ Q ¦

TP ≺ TP1.
TS after (TP, δ) MUST Q iff for all TC ∈ TC(TS) such that TSdTC '
TP , and for all isomorphisms f : TSdTC −→ TP satisfying the con-
dition δTC = δ ◦ f , there exist TP1 ∈ Q, TC1 ∈ TC(TS) and an
isomorphism f1 : TSdTC1 −→ TP1 with f ⊂ f1.

• TS and TS′ are δ-testing equivalent, denoted as TS ≈δ·test TS′, iff
for all TP ∈ TP, δ : ETP −→ Interv and Q ⊂ TP it holds:
TS after (TP, δ) MUST Q ⇐⇒ TS′ after (TP, δ) MUST Q.
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It is easy to check that δ-testing equivalent timed event structures are
testing equivalent.

Finally, consider the δ-history preserving equivalence.

Definition 10. Let TS and TS′ be timed event structures.

• A history preserving bisimulation B between TS and TS′ is called a
δ-history preserving bisimulation iff ∀(TC, f, TC ′) ∈ B ¦ δTC =
δTC′ ◦ f .

• TS and TS′ are δ-history preserving equivalent, denoted as TS ≈δ·hpb

TS′ iff there exists a δ-history preserving bisimulation between them.

The interrelationships between behavioural equivalences and δ-equivalen-
ces of timed event structures are shown in the following theorems.

Theorem 2. Let TS and TS′ be timed event structures and

α ∈ {trace, test, hpb},
then

TS ≈α TS′ ⇐ TS ≈δ·α TS′.

Proof Sketch. Immediately follows from the definitions of the equiva-
lences. ¥

The converse implications of the above theorem do not hold, because,
for example, for TS3 and TS4 shown on Figure 2 we have TS3 ≈hpb TS4

and TS3 6≈δ·trace TS4, since (a[0], [0, 1]) → (b[1], [1, 2]) ∈ Lδ(TS4) \ Lδ(TS4).

Theorem 3. Let TS and TS′ be timed event structures, then

TS ≈δ·trace TS′ ⇐ TS ≈δ·test TS′ ⇐ TS ≈δ·hpb TS′.

Proof Sketch. Immediately follows from the definitions of the equiva-
lences. ¥

The following example shows that the converse implications of the above
theorem do not hold and that the three δ-equivalences are all different.

Example 4. Consider timed event structures shown on Figure 3. First, we
have TS7 ≈δ·trace TS8, while TS7 6≈δ·test TS8, since, for example, TS8 after
(a[0], [0, 1]) MUST a[0] → b[2] and ¬(TS7 after (a[0], [0, 1]) MUST a[0] → b[2]).
Second, TS8 ≈δ·test TS9, but TS8 6≈δ·hpb TS9, because, for instance, the
timed configurations of TS8 obtained by the execution of the right timed
action (a, 1) can’t be related to the correspondent timed configuration of TS9,
because the execution of the timed action (b, 1) with the time neighborhood
[1, 1] is not further possible in TC8, that is not the case in TC9. Finally,
TS9 ≈δ·hpb TS10.
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TS7 : TS8 : TS9 : TS10 :≈δ·trace

6≈δ·test
≈δ·test
6≈δ·hpb

≈δ·hpb

[0, 1]
a

?
b

[1, 1]

#
[0, 1]
a

?
b

[1, 2]

[0, 1]
a

¢
¢®

b
[1, 1]

#

A
AU
b

[1, 2]

#
[0, 1]
a

?
b

[1, 2]

[0, 1]
a

¢
¢®

b
[1, 1]

#

A
AU
b

[1, 2]

¡
¡ª

b
[1, 1]

#

[0, 1]
a

?
b

[1, 2]
#

@
@R

b
[1, 2]

Figure 3

Finally, we will prove that δ-equivalences indeed are invariant under
refinement. If two systems are δ-equivalent, then, after refining actions in
both systems in the same way, the resulting systems are still δ-equivalent.
For this purpose we need the following lemma.

Lemma 3.
Let TC ∈ TC(TS), TC ′ ∈ TC(TS′), f : TSdTC −→ TS′dTC ′ be an

isomorphism, and δTC = δTC′ ◦ f . Then if T̃C = (C̃, T̃ ) is a refinement
of TC by r, then T̃C ′ = (f̃(C̃), T̃ ◦ f̃−1) is a refinement of TC ′ by r, where
f̃((e, e′)) = (f(e), e′) is an isomorphism between r(TS)dT̃C and r(TS′)dT̃C ′

with δT̃C = δ
T̃C′ ◦ f̃ .

Proof.
Let TC = (T, C) ∈ TC(TS), TC ′ = (C ′, T ′) ∈ TC(TS′), f : TSdTC −→

TS′dTC ′ be an isomorphism, δTC = δTC′ ◦ f , and T̃C = (C̃, T̃ ) be a
refinement of TC, i.e.

C̃ =
⋃

e∈C

{e} × Ce and T̃ ((e, e′)) = Te(e′) for all (e, e′) ∈ C̃,

where (Ce, Te) ∈ TC(TSe) \ {(∅, ∅)}, TSe = (r(l(e)), DTSe) ∈ TS. Since
f : TSdTC −→ TS′dTC ′ is an isomorphism, every refinement of TC ′ has a
form T̃C ′ = (C̃ ′, T̃ ′), where

C̃ ′ =
⋃

e∈C

{f(e)} × Cf(e) and T̃ ′(f(e), e′) = Tf(e)(e′) for all (e, e′) ∈ C̃,

where (Cf(e), Tf(e)) ∈ TC(TSf(e)) \ {(∅, ∅)}, TSf(e) = (r(l(e)), DTSf(e)
) ∈ TS.

Since δTC = δTC′ ◦f , we have DTSe = DTSf(e)
for all e ∈ C, which implies

TSe = TSf(e). Hence, (Ce, Te) ∈ TC(TSf(e)), and therefore T̃C ′ = (C̃ ′, T̃ ′)
is a refinement of TC ′, where

C̃ ′ =
⋃

e∈C{f(e)} × Ce and T̃ ′(f(e), e′) = Te(e′) for all (e, e′) ∈ C̃.
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By Definition 6 of the refinement of TS, a bijection f̃ : r(TS)dT̃C −→
r(TS′)dT̃C ′, where f̃(e, e′) = (f(e), e), is an isomorphism because it pre-
serves labels, partial order and the timing function. Thus, T̃C ′ = (f̃(C̃), T̃ ◦
f̃−1). Moreover,

δT̃ C((e, e′)) =

{
δT C(e)

⋂
[maxe′1<T Se e′ T̃ ((e, e′1)),∞], if (e, e′) is maximal in C̃;

δT C(e)
⋂

[maxe′1<T Se e′ T̃ ((e, e′1)), T̃ ((e, e′))], otherwise.

Since T̃ = T̃ ′ ◦ f̃ and δTC = δTC′ ◦ f , we have δT̃C = δ
T̃C′ ◦ f̃ . ¥

Theorem 4. Let TS and TS′ be timed event structures, r be a refinement
function. Then

(i) TS ≈δ·trace TS′ ⇒ r(TS) ≈δ·trace r(TS′),

(ii) TS ≈δ·test TS′ ⇒ r(TS) ≈δ·test r(TS′),

(iii) TS ≈δ·hpb TS′ ⇒ r(TS) ≈δ·hpb r(TS′).

Proof.
(i)

Assume TS ≈δ·trace TS′.
Take arbitrary (T̃P , δ̃) ∈ Lδ(r(TS)). By definition, there exist T̃C ∈

TC(r(TS)) and an isomorphism f : r(TS)dT̃C −→ T̃P such that δT̃C = δ̃◦f .
Hence by Proposition 1, T̃C is a refinement of some TC = (C, T ) ∈ TC(TS).
Let TP = TSdTC and δ = δTC . Then (TP, δ) ∈ Lδ(TS), which by our
assumption implies (TP, δ) ∈ Lδ(TS′). This means that there exist TC ′ =
(C ′, T ′) ∈ TC(TS′) and an isomorphism ϕ : TSdTC −→ TS′dTC ′ such that
δTC = δTC′ ◦ ϕ. By Lemma 3, we get that T̃C ′ = (ϕ̃(C̃), T̃ ◦ ϕ̃−1) is a
refinement of TC ′, where ϕ̃ : r(TS)dT̃C −→ r(TS′)dT̃C ′ is an isomorphism,
ϕ̃((e, e′)) = (ϕ(e), e′), and δT̃C = δ

T̃C′ ◦ ϕ̃. Hence, (T̃P , δ̃) ∈ Lδ(r(TS)).
The arbitrary choice of (T̃P , δ̃) ∈ Lδ(r(TS)) guarantees r(TS) ≈δ·trace

r(TS′).

(ii)
Assume TS ≈δ·test TS′.
Suppose r(TS′) after (T̃P , δ̃) MUST Q̃ for some T̃P ∈ TP, δ̃ : ET̃P −→

Interv and Q̃ ⊂ TP. We will show that r(TS) after (T̃P , δ̃) MUST Q̃.
By Theorem 3 and Item (i) of the Theorem, we have r(TS) ≈δ·trace

r(TS′), that impies (T̃P , δ̃) ∈ Lδ(r(TS)). Take arbitrary T̃C = (C̃, T̃ ) ∈
TC(r(TS)) and an isomorphism f : r(TS)dT̃C −→ T̃P such that δT̃C = δ̃◦f .
We have to show that there exist T̃P1 ∈ Q̃, T̃C1 ∈ TC(r(TS)) and an
isomorphism f1 : r(TS)dT̃C1 −→ T̃P1 such that f ⊂ f1.

By Proposition 1, T̃C is a refinement of some TC = (C, T ) ∈ TC(TS).
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Denote TP = TSdTC and δ = δTC. Then (TP, δ) ∈ Lδ(TS), that by
our assumption and Theorem 3 implies (TP, δ) ∈ Lδ(TS′). So, there ex-
ist timed configurations of TS′ isomorphic to TP = TSdTC such that the
correspondent isomorphisms preserve the time neighborhood δ = δTC . By
Lemma 3, for each such timed configuration with an isomorphism, there is
a refinement of it which is a timed configuration in r(TS′) isomorphic to
r(TS)dT̃C (therefore to T̃P ) with the correspondent isomorphism preserv-
ing the time neighborhood δT̃C .

Following our assumption, we have r(TS′) after (T̃P , δ̃) MUST Q̃. So, for
all T̃C ′ ∈ TC(r(TS′)) such that r(TS′)dT̃C ′ ' T̃P and for al isomorphisms
g : r(TS′)dT̃C ′ −→ T̃P satisfying the condition δ

T̃C′ = δ̃ ◦ g, there exist
T̃P1 ∈ Q̃, T̃C ′

1 ∈ TC(r(TS)) and an isomorphism g1 : r(TS)dT̃C ′
1 −→ T̃P1

such that g ⊆ g1. Note that T̃C ′ −→ T̃C ′
1 in r(TS′) and C̃ ′

1 = C̃ ′ ] {(e, e′)}
for some (e, e′) ∈ C̃ ′, since T̃P ≺ T̃P1.

Further, consider two possible cases.

1. There exist TC ′ ∈ TC(TS′) and an isomorphism ϕ : TSdTC −→
TS′dTC ′ with δTC = δTC′◦ϕ such that for a refinement T̃C ′ = (ϕ̃(C̃), T̃◦
ϕ̃−1) of TC ′ and for an isomorphism ϕ̃, which exist by Lemma 3
(where ϕ̃((e, e′)) = (ϕ(e), e′) for all (e, e′) ∈ C̃ is an isomorphism
between r(TS)dT̃C and r(TS′)dT̃C ′ with δT̃C = δ

T̃C′ ◦ ϕ̃), there are a
timed configuration T̃C ′

1 ∈ TC(r(TS′)), a timed poset T̃P1 ∈ Q̃ and an
isomorphism g1 : r(TS′)dT̃C ′

1 −→ T̃P1 satisfying the δ-test we have
chosen, i.e. g ⊂ g1 for g = f ◦ ϕ̃−1 : r(TS′)dT̃C ′ −→ T̃P , such that:

C̃ ′
1 = C̃ ′ ] {(e, e′)} with e ∈ C ′.

By Proposition 1, T̃C ′
1 is a refinement of some TC ′

1 = (C ′
1, T

′
1) ∈

TC(TS′). Since e ∈ C ′ we get C ′ = C ′
1. Since T̃C −→ T̃C ′

1, we
have T̃ ′((e, e′)) = T̃ ′1((e, e

′)) for all (e, e′) ∈ C̃ ′. By the definition
of a refinement of a timed configuration, we get T ′(e) = T ′1(e) =
max

(e,e′)∈C̃′ T̃
′((e, e′)) for all e 6∈ busy(C̃). Hence, by the definition of

a time neighborhood, we get δTC′ = δTC′1 that implies T ′1(e) ∈ δTC′(e)
for all e ∈ C ′.

Construct T1 = T ′1 ◦ ψ. Since δTC = δTC′ ◦ ϕ, we get T1(e) ∈ δTC(e) ⊆
DTS(e) for all e ∈ C. By the definition of a timed configuration,
TC1 = (C, T1) ∈ TC(TS), since ϕ : TSdTC1 −→ TS′dTC ′

1 is an
isomorphism. Moreover, ϕ is an isomorphism between TSdTC1 and
TS′dTC ′

1. Consider the inverse isomorphism ψ = ϕ−1 : TS′dTC ′
1 −→
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TSdTC1. Applying Lemma 3, we get that T̃C1 = (ψ̃(C̃ ′
1), T̃

′
1 ◦ ψ̃−1) is

a refinement of TC1, where ψ̃((e, e′)) = (ψ(e), e′) for all (e, e′) ∈ C̃ ′
1 is

an isomorphism between r(TS′)dT̃C ′
1 and r(TS)dT̃C1.

Since C̃ ′ ⊂ C̃ ′
1, we have ϕ̃ ⊂ ψ̃. Thus, f1 = g−1

1 ◦ ψ̃−1 : r(TS)dT̃C1 −→
T̃P1 and f ⊂ f1, which we had to show.

2. For all TC ′ ∈ TC(TS′) and for all isomorphisms ϕ : TSdTC −→
TS′dTC ′ with δTC = δTC′◦ϕ, for a refinement T̃C ′ = (ϕ̃(C̃), T̃ ◦ϕ̃−1) of
TS′ and for isomorphism ϕ̃ which exist by Lemma 3 (where ϕ̃((e, e′)) =
(ϕ(e), e′) for all (e, e′) ∈ C̃ is an isomorphism between r(TS)dT̃C and
r(TS′)dT̃C ′, δT̃C = δ

T̃C′ ◦ ϕ̃), it holds that all timed configurations
T̃C ′

1 ∈ TC(r(TS′)), all timed posets T̃P1 ∈ Q̃ and all isomorphisms
g1 : r(TS′)dT̃C ′

1 −→ T̃P1, satisfying the δ-test we have chosen, i.e.
g ⊂ g1 for g = f ◦ ϕ̃−1 : r(TS′)dT̃C ′ −→ T̃P , also satisfying

C̃ ′
1 = C̃ ′ ] {(e, e′)}, where e 6∈ C ′.

For TP = TSdTC and δ = δTC, we construct a δ-test with the set
Q ⊂ TP using Q̃ and all of TC ′ and ϕ such as we explained above:

− suppose TC ′ ∈ TC(TS′) and isomorphism ϕ : TSdTC −→ TS′dTC ′

such that δTC = δTC′ ◦ ϕ. Then, by Lemma 3, there exist T̃C ′ =
(ϕ̃(C̃), T̃ ◦ ϕ̃−1), a refinement of TC ′, where ϕ̃((e, e′)) = (ϕ(e), e′)
for all (e, e′) ∈ C̃ ′ is an isomorphism between r(TS)dT̃C and
r(TS′)dT̃C ′ with δT̃C = δ

T̃C′◦ϕ̃. Hence, the mapping g = f◦ϕ̃−1 :
r(TS′)dT̃C ′ −→ T̃P is an isomorphism with δ

T̃C′ = δ̃ ◦ g. By
our assumption, there exist T̃C ′

1 ∈ TC(r(TS′)), T̃P1 ∈ Q̃ and an
isomorphism g1 : r(TS′)dT̃C ′

1 −→ T̃P1 such that g ⊂ g1. Accord-
ing to the case we consider, we have C̃ ′

1 = C̃ ′ ] {(e, e′)}, where
e 6∈ C ′. By Lemma 2(3), T̃C ′

1 is a refinement of TC ′
1 ∈ TC(TS)

such that TC ′ −→ TC ′
1 in TS′. It is obvious that C ′

1 = C ′ ] {e}.
W.l.o.g., suppose that T ′1(e) = T̃ ′1((e, e′)). Construct a timed
poset TPTC′,ϕ = (E,≤, l,D), where

∗ E = ETP ∪ {e};
∗ ≤ = ≤TP ∪{(e, e) | e ∈ ETP and ϕ(e) <TS′ e} ∪ {(e, e)};
∗ l |ETP

= lTP , l(e) = lTS′(e);
∗ D |ETP

= DTP , D(e) = T ′1(e).

By construction, TP ≺TPTC′,ϕ and the mapping ψ :TS′dTC ′
1 −→

TPTC′,ϕ is an isomorphism, where ψ|C′ = ϕ−1 and ψ(e) = e.
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Let Q consist of all such TPTC′,ϕ. Then TS′ after (TP, δ) MUST Q
and by our assumption we get TS after (TP, δ) MUST Q.

Hence, there exist TC1 = (C1, T1) ∈ TC(TS), TPTC′,ϕ ∈ Q and an iso-
morphism ι1 : TC1 −→ TPTC′,ϕ such that ι ⊂ ι1, where ι : TSdTC −→
TP is the identity mapping. Then, ϕ1 = ψ−1 ◦ ι1 : TSdTC1 −→
TS′dTC ′

1 is an isomorphism and ϕ ⊂ ϕ1. Since δTC1
should not be

equal to δTC′1◦f , we can’t apply Lemma 3.

Consider a set C̃1 = C̃ ] {(ϕ−1(e), e′)} and a timing function T̃1 :
C̃1 −→ R, where T̃1|C̃ = T̃ and T̃1((ϕ−1(e), e′)) = T1(ϕ−1(e)). Since
ϕ−1(e) 6∈ C and {e′} is a configuration of r(lTC′(e)), then, by the
definition of a refinement of a timed configuration, we get that T̃C1 =
(C̃1, T̃1) is a refinement of TC1. Moreover, the mapping ϕ̃1((e, e′)) =
(ϕ1(e), e′) for all (e, e′) ∈ C̃ ′

1 is an isomorphism between r(TS)dT̃C1

and r(TS′)dT̃C ′
1 such that ϕ̃ ⊂ ϕ̃1. Hence, the mapping f1 = g1 ◦ ϕ̃1 :

r(TS)dT̃C1 −→ TP1 is an isomorphism such that f ⊂ f1, that we had
to show.

The arbitrary choice of T̃P , δ̃ and Q̃ guarantees r(TS) ≈δ·test r(TS′).

(iii)
Assume TS ≈δ·hpb TS′. Then there exists a δ-history preserving bisi-

mulation B between TS and TS′.
Further we will need an additional auxiliary notation. Let µC be the

timed configuration of TS containing the configuration C and the minimal
possible timing function T , i.e. µC = (C, T ), where T (e) = minDTS(e) for
all e ∈ C. This notation is correct, since TS has a valid timing.

Construct a new relation B
µ

in the following way:

B
µ

= {(TC, f, TC ′) | TC ∈ TC(TS), TC ′ ∈ TC(TS′), T = T ′ ◦ f and
(µC, f, µC ′) ∈ B}.

We have to check that B
µ

is a δ-history preserving bisimulation between TS
and TS′.

1. ((∅, ∅), ∅, (∅, ∅)) = (µ∅, ∅, µ∅) ∈ B
µ
.

2. Let (TC, f, TC ′) ∈ Bδ.

(a) Since f preserves a partial order and labels, and T = T ′ ◦ f , we
resume that f is an isomorphism between TSdTC and TS′dTC ′.

(b) Since δµC = δµC′ , we have minDTS(e) = minDTS′(f(e)) for all
e ∈ C and DTS(e) = DTS′(f(e)) for all maximal e ∈ C. Hence,
by the definition of δ, we get δTC = δTC′ ◦ f .
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(c) Suppose TC −→ TC1 in TS. By the construction of B
µ
, we

have (µC, f, µC ′) ∈ B. Since C ⊆ C1 and TS has a valid timing,
µC −→ µC1 in TS. Then there exist TC ′

1 ∈ TC(TS′) and an
isomorphism f1 : TSdµC1 −→ TS′dTC ′

1 such that µC ′ −→ TC ′
1,

f ⊆ f1 and (µC1, f1, TC ′
1) ∈ B. By the definition of B, we have

δµC1
= δTC′1 which implies TC ′

1 = µC ′
1. By the construction of

B
µ
, we get (TC1, f1, TC ′′

1 , ) ∈ B
µ

for TC ′′
1 = (C ′

1, T1 ◦ f1). Since
C ′ ⊆ C ′

1 and T ′ = T ′1 |C′ , we get TC ′ −→ TC ′
1 in TS′.

(d) Symmetric to item (c).

Further, we construct a relation B̃ between r(TS) and r(TS′) using B
µ
.

B̃ = {(T̃C, f̃ , T̃C ′) | (TC, f, TC ′) ∈ B
µ

such that:

− T̃C = (C̃, T̃ ) is a refinement of TC by r, where
C̃ =

⋃
e∈C{e} × Ce and T̃ (e, e′) = Te(e′), (Ce, Te) ∈ TC(TSe) \

{(∅, ∅)} for all e ∈ C,
− T̃C ′ = (C̃ ′, T̃ ′) is a refinement of TC ′ by r, where

C̃ ′ =
⋃

e∈C{f(e)} × Ce and T̃ ′(f(e), e′) = Te(e′),

− f̃ : C̃ −→ C̃ ′ is a bijection satisfying f̃(e, e′) = (f(e), e′).

We have to show that B̃ is a δ-history preserving bisimulation between r(TS)
and r(TS′).

1. Since ((∅, ∅), ∅, (∅, ∅)) ∈ B
µ
, we get ((∅, ∅), ∅, (∅, ∅)) ∈ B̃.

2. Suppose (T̃C, f̃ , T̃C ′) ∈ B̃ for some (TC, f, TC ′) ∈ B
µ
, which implies

(µC, f, µC ′) ∈ B.

(a) By Lemma 3 we have that f̃ : r(TS)dT̃C −→ r(TS′)dT̃C ′ is an
isomorphism and δT̃C = δ

T̃C′ ◦ f̃ .

(b) Suppose TC −→ T̃C1 in r(TS).
Let T̃C1 be a refinement of TC1 ∈ TC(TS). Then, by Lemma 2( 2),
T̃C is a refinement of some TC2 ∈ TC(TS) such that TC2 −→
TC1 in TS. It is clear that TC2 = (C, T2). By the definition
of a refinement of a timed configuration, if T (e) 6= T2(e) then
e ∈ busy(C̃), therefore e is maximal in C. Hence, δTC2

= δTC by
the definition of δ, which implies T2(e) ∈ δTC′(f(e)) ⊆ DTS′(f(e))
for all e ∈ C. This means that TC ′

2 = (C ′, T2 ◦ f−1) ∈ TC(TS′).
Further, following the similar way, we get δTC′2 = δTC′ by the
definition of δ, thus we get δTC2

= δTC′2 ◦ f .

Since T̃C is a refinement of TC2, by the construction of B and
Lemma 3, we get that T̃C ′ is a refinement of TC ′

2. Since
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(µC, f, µC ′) ∈ B, then (TC2, f, TC ′
2) ∈ B

µ
by the construction

of B
µ
. Then, TC ′

2 −→ TC ′
1 in TS′ implies (TC1, f1, TC ′

1) ∈ B
µ

for some TC ′
1 and f1 with f ⊆ f1 and δTC1

= δTC′1 ◦ f1.

Applying Lemma 3, we get that T̃C ′
1 = (f̃1(C̃1), T̃1 ◦ f̃1

−1
) is a

refinement of TC ′
1. By the construction of B̃, we have (T̃C1, f̃1,

T̃C ′
1) ∈ B̃. Since T̃C −→ T̃C1 in r(TS) and f̃ ⊆ f̃1, we get

T̃C ′ −→ T̃C ′
1 in r(TS′).

(c) Symmetric to item (b).

Thus, r(TS) ≈δ·hpb r(TS′). ¥

6. Subclasses of timed event structures and action
refinement

In this section, we introduce several subclasses of timed event structures
constructed by some additional requirements on the timed constraints of
events. We show that equivalences considered in Section 3, when restricted
onto these subclasses, are invariant under refinement of timed event struc-
tures.

Definition 11. Let TS be a timed event structure, then

• TS is said to have a deterministic timing, if for all TC, TC ′ ∈ TC(TS)
and for all isomorphisms f : TSdTC −→ TSdTC ′ it holds: DTS|C =
DTS|C′ ◦ f ,

• TS is called discrete if ∀e ∈ E ¦ D(e) = [d, d] for some d ∈ R;

• TS is called segmentary if ∀e ∈ E ¦ D(e) = [n, n+1] for some n ∈ N.

By the above definition, discrete timed event structures have a deter-
ministic timing, so further we will not distinguish discrete ones. The next
theorem shows that δ-equivalences and the corresponding original equiv-
alences coincide when dealing with the defined subclasses of timed event
structures. For these purposes, we will need the following lemma.

Lemma 4. Let TS and TS′ be timed event structures having a determin-
istic timing such that TS ≈trace TS′. Then for all TC ∈ TC(TS), for all
TC ′ ∈ TC(TS′) and for all isomorphisms f : TSdTC −→ TS′dTC ′ it holds:
DTS|C = DTS′ |C′ ◦ f .

Proof Sketch. Immediately follows from the mathematical fact that if
s ∈ Interv is a closed interval and s can be represented as a denumerable
union of closed intervals s =

⋃
i∈I⊆N

si such that si∩ sj = ∅ for all i 6= j, then

I = {i} and s = si. ¥
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Theorem 5. Let TS and TS′ be timed event structures which are segmen-
tary or have a deterministic timing. Then

(i) TS ≈trace TS′ ⇐⇒ TS ≈δ·trace TS′,

(ii) TS ≈test TS′ ⇐⇒ TS ≈δ·test TS′,

(iii) TS ≈hpb TS′ ⇐⇒ TS ≈δ·hpb TS′.

Proof. In the case when TS and TS′ have a deterministic timing,
the proofs of all these items immediately follows from the definitions and
Lemma 4.

Now consider the case when TS and TS′ are segmentary timed event
structures.

Further we will need an additional auxiliary notation. Let λC be the
timed configuration of TS containing the configuration C and the medium
timing function T , i.e. λC = (C, T ), where T (e) = minDTS(e) + 1

2 for all
e ∈ C. This notation is correct, since TS have a valid timing and it is
segmentary.
(i)

Assume TS ≈trace TS′.
Suppose (TP, δ) ∈ Lδ(TS). Then there exists TC = (C, T ) ∈ TC(TS)

and an isomorphism f : TSdTC −→ TP such that δTC = δ ◦ f . Since
λC ∈ TC(TS), according to our assumption, there exist TC ′ = (C ′, T ′) ∈
TC(TS′) and an isomorphism f : TSdλC −→ TS′dTC ′. By the definition
of a segmentary timed event structure, we get DTS|C = DTS′ |C′ ◦ f . Hence,
TC ′ = (C ′, T ′′) ∈ TC(TS′), where T ′′ = T ◦ f−1 with δTC = δTC′′ ◦ f . Thus,
(TP, δ) ∈ Lδ(TS′).

The arbitrary choice of (TP, δ) ∈ Lδ(TS) guarantees TS ≈δ·trace TS′.

(ii)
Assume TS ≈test TS′.
Suppose TS after (TP, δ) MUST Q for some TP ∈ TP, δ : ETP −→

Interv and Q ⊂ TP. We will show that TS′ after (TP, δ) MUST Q.
In the case when (TP, δ) 6∈ Lδ(TS′), we immediately get TS′ after (TP, δ)

MUST Q. Further we consider the case when (TP, δ) ∈ Lδ(TS′).
Take an arbitrary TC ′ = (C ′, T ′) ∈ TC(TS′) and an isomorphism f :

TS′dTC ′ −→ TP such that δTC′ = δ ◦ f . We have to show that there exist
TP1 ∈ Q, TC ′

1 ∈ TC(TS′) and an isomorphism f1 : TS′dTC ′
1 −→ TP1 such

that f ⊂ f1.
For λC ′ = (C ′, λT ′) ∈ TC(TS′), construct a timed poset

TP λ = (ETP ,≤TP , lTP , λT ′ ◦ f−1).

Then f : TS′dλC ′ −→ TP λ is an isomorphism, therefore TP λ ∈ L(TS′).
By our assumption and Theorem 1, we have TP λ ∈ L(TS). Further we will
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form a test consisting of TP λ and a set Qλ ⊂ TP which we construct using
Q as follows:

− since TP λ ∈ L(TS), take an arbitrary configuration C of TS and an
isomorphism g : TSdλC −→ TP λ. Then ϕ = f−1 ◦ g : TSdλC −→
TS′dλC ′ is an isomorphism, therefore DTS|C = DTS′ |C′ ◦ ϕ because
TS and TS′ are segmentary. Hence, TC = (C, T ′ ◦ ϕ) ∈ TC(TS),
ϕ : TSdTC −→ TS′dTC ′ is an isomorphism and δTC = δTC′ ◦ϕ, which
implies g : TSdTC −→ TP is an isomorphism and δTC = δ ◦ g. By our
assumption, there exist TP1 ∈ Q, TC1 = (C1, T1) ∈ TC(TS) and an
isomorphism g1 : TSdTC1 −→ TP1 such that g ⊂ g1. We have λC1 =
(C1, λT1) ∈ TC(TS), because TS is segmentary. Construct a timed
poset TPC,g = (ETP1

,≤TP1
, lTP1

, λT1 ◦ g−1
1 ) ∈ TP. By the construction

of TPC,g, we get TP λ ≺ TPC,g and g1 : TSdλC1 −→ TPC,g is an
isomorphism.

Let a set Qλ consist of all such TPC,g. By the construction of Qλ, we
have TS after TP λ MUST Qλ. According to our assumption, we get TS′

after TP λ MUST Qλ.
Recall that f : TS′dλC ′ −→ TP λ is an isomorphism, there exist a config-

uration C ′
1 of TS, TPC,g ∈ Qλ and an isomorphism f1 : TS′dλC ′

1 −→ TPC,g

such that f ⊂ f1. By the construction of TPC,g, a mapping ϕ1 = f−1
1 ◦ g1 :

TSdλC1 −→ TS′dλC ′
1 is an isomorphism for some C1 and ϕ ⊂ ϕ1. Hence

DTS|C1 = DTS′ |C′1 ◦ ϕ1, because TS and TS′ are segmentary. Therefore,
TC ′

1 = (C ′
1, T1◦ϕ1) ∈ TC(TS) and δTC1

= δTC′1 ◦ϕ1. Thus, f1 : TS′dTC ′
1 −→

TP1 is an isomorphism and f ⊂ f1, which we had to show.
The arbitrary choice of TP , δ and Q guarantees TS ≈δ·test TS′.

(iii)
Assume that TS ≈hpb TS′ and B is a history preserving bisimulation

between TS and TS′.
Construct a new relation Bλ as follows.

Bλ = {(TC, f, TC ′) | TC ∈ TC(TS), TC ′ ∈ TC(TS′), T = T ′ ◦ f and
(λC, f, λC ′) ∈ B}.

By the construction of Bλ, for all (TC, f, TC ′) ∈ Bλ it holds DTS|C =
DTS′ |C′ ◦ f , because TS and TS′ are segmentary. We will show that Bλ is
a δ-history preserving bisimulation between TS and TS′.

1. ((∅, ∅), ∅, (∅, ∅)) ∈ Bλ, since (λ∅, ∅, λ∅) ∈ B.

2. Suppose (TC, f, TC ′) ∈ Bλ.

(a) Since f preserved the partial order and labels, and T = T ′ ◦f , we
resume that f is an isomorphism between TSdTC and TS′dTC ′.
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(b) Since DTS|C = DTS′ |C′ ◦ f and T = T ′ ◦ f , we get δTC = δTC′ ◦ f .
(c) Suppose TC −→ TC1 in TS. By the construction of Bλ, we

have (λC, f, λC ′) ∈ B. Since λC −→ λC1 in TS, there exist
λC ′

1 ∈ TC(TS′) and an isomorphism f1 : TSdλC1 −→ TS′dλC ′
1

such that f ⊆ f1 with (λC1, f1, TC ′
1) ∈ B. Hence DTS|C1 =

DTS′ |C′1◦f1 which implies TC ′
1 = (C ′

1, T1◦f−1
1 ) ∈ TC(TS′). By the

construction of Bλ, we have (TC1, f1, TC ′
1) ∈ Bλ. Since C ′ ⊆ C ′

1

and T ′ = T ′1 |C′ , we get TC ′ −→ TC ′
1 in TS′.

(d) Symmetric to item (c).

Thus TS ≈δ·hpb TS′. ¥
As a corollary of the theorems, we resume that the trace, testing and his-

tory preserving equivalences of segmentary timed event structures or timed
event structures with a deterministic timing are invariant under refinement.

Corollary 1. Let TS and TS′ be timed event structures which are segmen-
tary or have a deterministic timing, r be a refinement function. Then

(i) TS ≈trace TS′ ⇒ r(TS) ≈trace r(TS′),

(ii) TS ≈test TS′ ⇒ r(TS) ≈test r(TS′),

(iii) TS ≈hpb TS′ ⇒ r(TS) ≈hpb r(TS′).

7. Conclusion

In this paper, we have studied an operator of action refinement and
the interplay between the operator and the behavioural equivalences of the
linear-time/branching-time spectrum in the framework of event structures
with the dense time domain. We have shown that in general these equiva-
lences are not preserved under refinement in contrast to their counterparts in
the theory of event structures [13, 14]. As a compromise we have constructed
certain equivalences strengthened by additional requirements sufficient for
their preservation under refinement. Moreover, we have presented some sub-
classes of timed event structures on which these equivalences are preserved
by refinement without any additional assumptions.

In the future, we plan to extend these results onto other classes of timed
event structures (e.g., timed stable event structures, timed local event struc-
tures, etc.).

References

[1] Aceto L. History preserving, causal and mixed-ordering equivalence over sta-
ble event structures // Fundamenta Informaticae. — 1992. — Vol. 17(4). —
P. 319–331.



24 M.V. Andreeva

[2] Aceto L., De Nicola R., Fantechi A. Testing Equivalences for Event Structures
// Lect. Notes Comput. Sci. — 1987. — Vol. 280. — P. 1–20.

[3] Aceto L., Murphi D. Timing and causality in process algebra // Acta Infor-
matica. — 1996. — Vol. 33 (4). — P. 317–350.

[4] Alur R., Dill D. The theory of timed automata // Theor. Comput. Sci. —
1994. — Vol. 126. — P. 183–235.

[5] Alur R., Henzinger T.A. Logics and models of real time: a survey // Lect.
Notes Comput. Sci. — 1992. — Vol. 600. — P. 74–106.

[6] Andreeva M.V., Bozhenkova E.N., Virbitskaite I.B. Analysis of timed con-
current models based on testing equivalence // Fundamenta Informaticae. —
2000. — Vol. 43(1-4). — P. 1–20.

[7] Andreeva M.V., Virbitskaite I.B. Timed Equivalences for Timed Event Struc-
tures // Lect. Notes Comput. Sci. — 2005. — Vol. 3606. — P. 16–26.

[8] Baier C., Katoen J.-P., Latella D. Metric semantics for true concurrent real
time // Proc. 25th Internat. Colloquium, ICALP’98, Aalborg, Denmark, 1998.
— P. 568–579.
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