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Concurrent testing

for timed event structures⋆

M.V. Andreeva, I.B. Virbitskaite

The intention of the paper is to extend the testing methodology to true concurrent
models with a dense time domain. In particular, we develop three different semantics, based
on interleaving, steps, and partial orders of actions, for testing equivalence in the setting
of timed event structures. We study the relationship between these three approaches and
show their discriminating power. Furthermore, when dealing with particular subclasses of
the model under consideration, such as timed sequential and timed deterministic event
structures, there is no difference between a more concrete and a more abstract approach.

1. Introduction

For the purpose of correctness analysis of systems, it is necessary to provide a
number of equivalence notions in order to be able to choose the most suitable
view of system behaviours. In concurrency theory, a variety of equivalences
have been promoted, and the relationship between them has been quite
well-understood (see, for example, [9, 10]).

Testing [8] is one of the major equivalences of concurrency theory. Test-
ing equivalences and preorders are defined in terms of tests that processes
may and must satisfy. Two processes are considered as testing equivalent, if
there is no test that can distinguish them. A test is usually itself a process
applied to a process by computing both together in parallel. A particular
computation is considered to be successful if the test reaches a designated
successful state, and the process guarantees the test if every computation is
successful.

Recently, the demand for correctness analysis of real time systems, i.e.
systems whose descriptions involve a quantitative notion of time, increases
rapidly. Timed extensions of interleaving models have been investigated
thoroughly in the last ten years. Various recipes on how to incorporate time
in transition systems — the most prominent interleaving model — are, for
example, described in [2, 14], whereas, the incorporation of real time into
equivalence notions is less advanced. There are a few papers (see, for exam-
ple, [5, 15, 17]), where decidability questions of time-sensitive equivalences
are investigated in the setting of timed interleaving models.

⋆Partially supported by the Russian Foundation for Basic Research under
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In this paper, we seek to develop a framework for testing equivalences in
the setting of a timed true concurrent model, to take into account the pro-
cesses’ timing behaviour in addition to their degrees of relative concurrency
and nondeterminism. In particular, we develop three different semantics,
based on interleaving, steps, and partial orders of actions, for testing equiv-
alence in the setting of event structures with the dense time domain. We also
study the relationship between these three approaches and show their dis-
criminating power. Furthermore, when dealing with particular subclasses of
the model, such as timed sequential and timed nondeterministic processes,
there is no difference between a more concrete and a more abstract approach.
This line of research is sometimes referred to as comparative concurrency
semantics.

There have been several motivations for this work. One has been the
papers [1, 11] which have developed concurrent variants of testing in the set-
ting of event structures. Another origin of this study has been the papers
[7] and [15], which have treated timed interleaving testing for discrete time
and dense time transition models, respectively. A next origin of this study
has been given by the papers (see [5, 15, 17] among others), which have ex-
tensively studied time-sensitive equivalence notions for interleaving models.
However, to our best knowledge, the literature on timed true concurrent
models has hitherto lacked for such equivalences. In this regard, the papers
[3, 13] is a welcome exception, where the decidability question of timed inter-
leaving testing has been treated in the framework of timed event structures.
Finally, another origin has been the papers where step based equivalences
have been investigated in the framework of stochastic Petri nets with dis-
crete time.

The rest of the paper is organized as follows. The basic notions concern-
ing timed event structures are introduced in the next section. The definitions
of three different semantics (sequences of actions, sequences of multisets, par-
tial ordering of actions) of timed testing are given in Sections 3, 4, and 5,
respectively. In the following section, we establish the interrelations between
the equivalence notions in the setting of the model under consideration and
some its subclasses. The conclusion can be found in Section 7.

2. Timed event structures

In this section, we introduce some basic notions and notations concerning
timed event structures.

We first recall a notion of an event structure [18]. The main idea behind
event structures is to view distributed computations as action occurrences,
called events, together with a notion of causality dependency between events
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(which is reasonably characterized via a partial order). Moreover, in order to
model nondeterminism, there is a notion of conflicting (mutually incompat-
ible) events. A labelling function records which action an event corresponds
to. Let Act be a finite set of actions.

Definition 1. A (labelled) event structure over Act is a 4-tuple S = (E,≤,

#, l), where

• E is a countable set of events;

• ≤ ⊆ E × E is a partial order (the causality relation), satisfying the

principle of finite causes: ∀e ∈ E ⋄ {e′ ∈ E | e′ ≤ e} is finite;

• # ⊆ E × E is a symmetric and irreflexive relation (the conflict re-

lation), satisfying the principle of conflict heredity: ∀e, e′, e′′ ∈ E ⋄

e # e′ ≤ e′′ ⇒ e #e′′;

• l : E −→ Act is a labelling function.

For an event structure S = (E,≤,#, l), we define ⌣ = (E × E) \ (≤
∪ ≤−1 ∪ #) (the concurrency relation); for e, f ∈ E, we let e#1f ⇔
e#f ∧ (∀e′, f ′ ∈ E ⋄ e′ ≤ e ∧ f ′ ≤ f ∧ e′#f ′ ⇒ e′ = e ∧ f ′ = f) (the
immediate conflict). For C ⊆ E, the restriction of S to C is defined as
S⌈C = (C,≤ ∩(C × C),# ∩ (C × C), l |C). We will use O to denote the
empty event structure (∅, ∅, ∅, ∅).

Let C ⊆ E. Then C is left-closed iff ∀e, e′ ∈ E ⋄ e ∈ C ∧ e′ ≤ e ⇒ e′ ∈ C;
C is conflict-free iff ∀e, e′ ∈ C ⋄ ¬(e # e′); C is a configuration of S

iff C is left-closed and conflict-free. Let C(S) denote the set of all finite
configurations of S.

Next we present a model of timed event structures which are a timed
extension of event structures by associating their events with timing con-
straints that indicate times of event occurrences with regard to a global
clock. An execution of a timed event structure is a timed configuration that
consists of the configuration and the timing function recording global time
moments at which events occur and satisfies some additional requirements.

Before introducing the concept of a timed event structure, we need to
define some auxiliary notations. Let N be the set of natural numbers, and
R+

0 the set of nonnegative real numbers. Define the set of intervals: Interv =
{[d1, d2] | d1, d1 ∈ R+

0 , d1 ≤ d2}.
We are now ready to introduce the concept of timed event structures.

Definition 2. A (labelled) timed event structure over Act is a pair TS =
(S,D), where

• S = (E,≤,#, l) is a (labelled) event structure over Act;
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• D : E −→ Interv is a timing function such that e′ ≤S e ⇒ minD(e′) ≤
minD(e) and maxD(e′) ≤ maxD(e).

In a graphic representation of a timed event structure, the corresponding
action labels and time intervals are drawn near to events. If no confusion
arises, we will often use action labels rather than event identities to denote
events. The <-relation is depicted by arcs (omitting those derivable by tran-
sitivity), and conflicts are also drawn (omitting those derivable by conflict
heredity). Following these conventions, a trivial example of a labelled timed
event structure is shown in Figure 1.

b : e3

a : e1

[3, 6]

[4, 5]

b : e2

[4, 7]
TS : ✲

#

Figure 1

Timed event structures TS and TS′ are isomorphic (denoted TS ≃ TS′),
if there exists a bijection ϕ : ETS −→ ETS′ such that e ≤TS e′ ⇐⇒
ϕ(e) ≤TS′ ϕ(e′), e #TS e′ ⇐⇒ ϕ(e) #TS′ ϕ(e′), lTS(e) = lTS′(ϕ(e)),
and DTS(e) = DTS′(ϕ(e)), for all e, e′ ∈ ETS .

Definition 3. Let TS = (S,D) be a timed event structure, C ∈ C(S), and
T : C −→ R+

0 . Then TC = (C, T ) is a timed configuration of TS iff the
following conditions hold:

(i) ∀ e ∈ C ⋄ T (e) ∈ D(e);

(ii) ∀ e, e′ ∈ C ⋄ e ≤TS e′ ⇒ T (e) ≤ T (e′);

(iii) ∀ e ∈ (E \ C) ⋄ max D(e) ≥ T (e′) for all e′ ∈ C or
for some e′ ∈ C s.t. e′ # e.

Informally speaking, a timed configuration consisting of the configuration
and the timing function recording global time moments at which events
occur satisfies the following requirements:

(i) an event can occur at a time when its timing constraints are met;

(ii) for all events e and e′ occurred if e causally precedes e′ then e should
temporally precede e′;

(iii) occurrences of events should not temporally prevent other events to
occur except the events whose conflicting events have occurred before
the events had time to occur.
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Note, the above definition of a timed configuration ensures that events once
ready — i.e., all their causal predecessors have occurred and their timing
constraints are satisfied — are forced to occur, provided they are not disabled
by others events. Typically such events are timeout mechanisms that guard
the occurrence time of other events in the sense that the events are prevented
from happening after a particular time instant. The approach looks more
suitable to model realistic systems (see [12] for more explanation).

The initial timed configuration of TS is TCTS = (∅, 0). We use T C(TS)
to denote the set of finite timed configurations of TS.

To illustrate the concept, consider the set of possible timed configura-
tions of the timed event structure TS shown in Figure 1: {(∅, 0), ({e1}, T1),
({e3}, T2), ({e1, e3}, T3), ({e1, e2}, T4) | T1(e1) ∈ [3, 5]; T2(e3) ∈ [4, 5];
T3(e1) ∈ [3, 6], T3(e3) ∈ [4, 5]; T4(e1) ∈ [3, 5], T4(e2) ∈ [4, 5], T4(e1) ≤
T4(e2)}.

From now on, for TC1 = (C1, T1), TC2 = (C2, T2) ∈ T C(TS) we will
write TC1 −→ TC2 iff C1 ⊆ C2, T2|C1

= T1, and ∀e ∈ C1 ∀e′ ∈ (C2 \ C1) ⋄

T1(e) ≤ T2(e
′).

3. Interleaving semantics

In this section, we define timed testing equivalences based on an interleaving
observation on timed event structures.

For this purpose we need the following notation. Let (Act,R+
0 ) = {(a, d) |

a∈Act, d ∈ R+
0 } be the set of timed actions.

In the interleaving semantics, a timed event structure progresses through
a sequence of timed configurations by occurrences of timed actions. In a
timed configuration TC1 = (C1, T1), the occurrence of a timed action (a, d)

leads to a timed configuration TC2 = (C2, T2) (denoted TC1
(a,d)
−→ TC2),

if TC1 −→ TC2, C2 \ C1 = {e}, l(e) = a, and T2(e) = d. The lead-
ing relation is extended to a sequence of timed actions from (Act,R+

0 )
∗

as follows: TC
(a1,d1)
−→ · · ·

(an,dn)
−→ TC ′ ⇔ TC

(a1,d1)...(an,dn)
−→ TC ′. The set

Lti(TS) = {w ∈ (Act,R+
0 )

∗ | TCTS
w

−→ TC for some TC ∈ T C(TS)}
is the ti-language of TS. As an illustration, consider the ti-language of the
timed event structure TS shown in Figure 1: {ǫ, (a, d1), (b, d2), (a, d3)(b, d4),
(b, d5)(a, d6) | d1, d3 ∈ [3, 5], d2, d4, d5 ∈ [4, 5], d6 ∈ [4, 6], d3 ≤ d4, d5≤d6}.

Testing equivalences [8] are defined in terms of tests which processes may
and must satisfy. Two processes are considered testing equivalent if there is
no test that can distinguish them. A test is usually itself a process applied to
a process by computing both together in parallel. A particular computation
is considered to be successful if the test reaches a designated successful state,
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and the process guarantees the test if every computation is successful. How-
ever, following the papers [1, 6, 11], we use an alternative characterization of
the timed testing concept from [3]. In interleaving semantics, a test consists
of a timed word and a set of timed actions. A process passes this test if after
every execution of the timed word the timed actions are inevitable next.

Definition 4. Let TS and TS′ be timed event structures.

• For w ∈ (Act,R+
0 )

∗ and L ⊆ (Act,R+
0 ), TS after w MUST L iff for

all TC ∈ T C such that TCTS
w

−→ TC there exists an (a, d) ∈ L and

TC ′ ∈ T C such that TC
(a,d)
−→ TC ′;

• TS and TS′ are timed interleaving test equivalent (denoted TS ∼tit

TS′) iff for all w ∈ (Act,R+
0 )

∗ and for all L ⊆ (Act,R+
0 ) the following

holds:

TS after w MUST L ⇐⇒ TS′ after w MUST L.

As an illustration, consider the timed event structures shown in Figure 2.
We have TS2 ∼tit TS3 but TS1 6∼tit TS2, because TS1 after (a, 0)(b, 1)
MUST {(c, 2)} and ¬(TS2 after (a, 0)(b, 1) MUST {(c, 2)}).

TS1 : TS2 :

6∼tit ∼tit

6∼tst

a
[0, 1]

a
[0, 1]

b

[0, 1]
b

[0, 1]

c
[1, 2]

❆
❆❯

✁
✁☛

c
[1, 2]

❆
❆❯

✁
✁☛

a
[0, 1]

b
[0, 1]

❄

# b

[0, 1]

a
[0, 1]

❄
+

TS3 :

a
[0, 1]

b

[0, 1]
a

[0, 1]

b[0, 1]
❄

# b

[0, 1]

a [0, 1]
❄

+

c
[1, 2]

❄
c

[1, 2]

❄

Figure 2

4. Step semantics

In this section, we define a step observation on timed event structures in
order to develop timed step testing equivalences. Step semantics generalizes
interleaving semantics by allowing timed actions to occur concurrently with
themselves. We show that timed step semantics gives a more precise account
of concurrency than the timed interleaving one.
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Let A be an arbitrary set. A finite multiset M over A is a function
M : A −→ N such that | {a ∈ A | M(a) > 0} |< ∞. Let MAct denote the
set of finite nonempty multisets over Act. We use (MAct,R+

0 ) = {(A, d) |
A ∈ MAct, d ∈ R+

0 } to indicate the set of timed steps.
In the step semantics, timed configurations of a timed event structure

change, if timed steps from (MAct,R+
0 ) are executed. In a timed configu-

ration TC1 = (C1, T1), the execution of a timed step (A, d) ∈ (MAct,R+
0 )

leads to a timed configuration TC2 = (C2, T2) (denoted TC1
(A,d)
−→ TC2), if

TC1 −→ TC2, C2 \ C1 = X, ∀ e, e′ ∈ X ⋄ e ⌣ e′, l(X) = A, ∀e ∈ X ⋄

T2(e) = d, where l(X)(a) = |{e ∈ X | l(e) = a}|. The leading relation is ex-

tended to a sequence of timed steps from (MAct,R+
0 )

∗ as follows: TC
(A1,d1)
−→

· · ·
(An,dn)
−→ TC ′ ⇔ TC

(A1,d1)...(An,dn)
−→ TC ′. The set Lts(TS) = {w ∈

(MAct,R+
0 )

∗ | TCTS
w

−→ TC for some TC ∈ T C(TS)} is the ts-language
of TS. Considering the timed event structure TS shown in Figure 1, we
have Lts(TS) = {ǫ, ({a}, d1), ({b}, d2), ({a}, d3)({b}, d4), ({b}, d5)({a}, d6),
({a, b}, d2) | d1, d3 ∈ [3, 5], d2, d4, d5 ∈ [4, 5], d6 ∈ [4, 6], d3 ≤ d4, d5 ≤ d6}.

We now come to a definition of timed step testing.

Definition 5. Let TS and TS′ be timed event structures.

• For w ∈ (MAct,R+
0 )

∗ and L ⊆ (Act,R+
0 ), TS after w MUST L iff

for all TC ∈ T C such that TCTS
w

−→ TC there exists an (a, d) ∈ L

and TC ′ ∈ T C such that TC
(a,d)
−→ TC ′;

• TS and TS′ are timed step test equivalent (denoted TS ∼tst TS
′) iff

for all w ∈ (MAct,R+
0 )

∗ and for all L ⊆ (Act,R+
0 ) it holds that

TS after w MUST L ⇐⇒ TS′ after w MUST L.

TS4 : TS5 :

∼tst

6∼tpt

a[0, 1] a [0, 1]

❄

#

b[2, 3] b [2, 3]

❄
c [2, 4]

✎ ✌#

a[0, 1] a [0, 1]

❄

#

b[2, 3] b [2, 3]

❄
c[2, 4]

✎ ✌#

Figure 3

To illustrate the concepts, consider the timed event structures shown
in Figures 2 and 3. We have TS4 ∼tst TS5, but TS2 6∼tst TS3, because
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TS2 after ({a, b}, 1) MUST {(c, 2)} and ¬(TS3 after ({a, b}, 1) MUST

{(c, 2)}).

5. Partial order semantics

In this section, we consider some suggestions in order to define a timed
testing notion based on partial orders which take into account causality
between timed actions.

Define a timed partial order set as a timed event structure TP = (STP =
(ETP ,≤TP ,#TP , lTP ),DTP ) such that #TP = ∅ andDTP : ETP −→ Points,
where Points = {[d1, d2] ∈ Interv | d1 = d2}. Isomorphism classes of timed
partial order sets are called timed pomsets.

We now consider leading relations of the form
TP
−→, where TP is a

timed pomset. For TC1 = (C1, T1), TC2 = (C2, T2) ∈ T C(TS), we shall

write TC1
TP
−→ TC2, if TC1 −→ TC2 and TP is the isomorphism class

of (STS⌈(C2 \ C1) , T2|(C2\C1)). The set Ltp(TS) = {TP | TCTS
TP
−→ TC

for some TC ∈ T C(TS)} is the tp-language of TS. To illustrate the con-
cept, we consider the tp-language of the timed event structure TS shown in

Figure 1: Ltp(TS) = {(O, 0),
[d1,d1]
a ,

[d2,d2]

b ,

[d3,d3]
a

[d2,d2]

b

,
[d4,d4]
a −→

[d5,d5]

b | d1, d4 ∈

[3, 5], d2, d5 ∈ [4, 5], d3 ∈ [3, 6], d4 ≤ d5}.

We are now ready to define partial order testing in the setting of the
model under consideration.

Definition 6. Let TS and TS′ be timed event structures.

• For a timed pomset TP and L ⊆ (Act,R+
0 ), TS after TP MUST L

iff for all TC ∈ T C such that TCTS
TP
−→ TC there exists an (a, d) ∈ L

and TC ′ ∈ T C such that TC
(a,d)
−→ TC ′;

• TS and TS′ are timed pomset test equivalent (denoted TS ∼tpt TS
′)

iff for all timed pomsets TP and for all L ⊆ (Act,R+
0 ) it holds that

TS after w MUST L ⇐⇒ TS′ after w MUST L.

Consider the timed event structures shown in Figures 3 and 4. We have

TS6 ∼tpt TS7, but TS4 6∼tpt TS5, because TS4 after
[1,1]
a −→

[2,2]

b MUST

{(c, 2)} and ¬(TS5 after
[1,1]
a −→

[2,2]

b MUST {(c, 2)}).
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TS6 : TS7 :

∼tpt

b

a

[2, 4]

[2, 4]

b

[2, 4]

✲

#

a

a

[2, 4]

[2, 4]

b

[2, 4]

#

b

[2, 4]

#
✑
✑✑✸

Figure 4

6. Comparison of the equivalences

The common framework used to define different observational equivalences
allows us to study the relationships between the three induced semantics.
The theorems we state are a step towards a better understanding of the
relationships between interleaving, multisets, and partial order semantics.
In particular, we will give the hierarchy for the equivalences and will es-
tablish that some of them coincide on particular subclasses of timed event
structures.

Theorem 1. Let TS and TS′ be timed event structures. Then

TS ∼tit TS
′ ⇐ TS ∼tst TS

′ ⇐ TS ∼tpt TS
′.

Proof. Immediately follows from the definitions of the equivalences.

The timed event structures shown in Figures 2–4 show that the converse
implications of the above theorem do not hold and that the three equiva-
lences are all different.

Now one can ask the obvious question: what happens with all these
equivalences if we restrict ourselves to some subclasses of the model under
consideration. A timed event structure TS is called sequential, if ⌣TS= ∅;
TS is deterministic, if for all e, e′ ∈ ETS it holds that e ⌣S e′ or e#1

Se
′ ⇒

l(e) 6=S l(e′); TS has correct timing, if for all e, e′ ∈ ETS it holds that
e ⌣S e′ or e#1

Se
′ ⇒ DTS(e) ∩DTS(e

′) 6= ∅.
The next theorem shows that if we only consider timed event structures

which represent timed sequential processes, then all the three semantics
coincide.

Theorem 2. Let TS and TS′ are timed sequential event structures. Then

TS ∼tit TS
′ ⇒ TS ∼tst TS

′ ⇒ TS ∼tpt TS
′.
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Proof. We will show that TS ∼tit TS′ implies TS ∼tpt TS′. Take an
arbitrary timed pomset TP = (E = {e1, . . . , en},≤, l,D) (n ≥ 0) and L ⊆
(Act,R+

0 ) such that TS after TP MUST L. First, consider the case when
⌣TP 6= ∅. Since TS′ is a timed sequential event structure, it follows that
TP 6∈ Ltp(TS

′). This implies TS′ after TP MUST L. Next, consider the
case when ⌣TP= ∅, i.e., ∀ 0 ≤ i ≤ j ≤ n ⋄ ei ≤ ej . Since TS is a sequential
timed event structure, this implies that TS after w MUST L, where w =
(lTP (e1),DTP (e1)) . . . (lTP (en),DTP (en)). According to our assumption, we
have TS′ after w MUST L. Then TS′ after TP MUST L, because TS′

is a timed sequential event structure.

An arbitrary choice of TP and L guarantees TS ∼tpt TS
′.

Theorem 3. Let TS and TS′ be timed deterministic event structures. Then

(i) TS ∼tit TS
′ ⇐⇒ Lti(TS) = Lti(TS

′);

(ii) TS ∼tst TS
′ ⇐⇒ Lts(TS) = Lts(TS

′);

(iii) TS ∼tpt TS
′ ⇐⇒ Ltp(TS) = Ltp(TS

′).

Proof. We will consider the proof of the item (i) (the proofs of the re-
maining items are similar).

(⇒) Assume TS ∼ti TS
′. Let w 6∈ Lti(TS). Then TS after w MUST

L for all L ⊆ (Act,R+
0 ). This means that TS′ after w MUST L for all

L ⊆ (Act,R+
0 ), according to our assumption. Hence, we have w 6∈ Lα(TS

′).
An arbitrary choice of w guarantees Lti(TS) = Lti(TS

′).

(⇐) We first show that for all w = (a1, d1) . . . (an, dn) ∈ Lti(TS) (n ≥ 0),
it holds that if TCTS

w
−→ TC = (C, T ) and TCTS

w
−→ TC1 = (C1, T1), then

TC1 = TC. We will proceed by induction on n.

n = 0. Trivial.

n > 0. Let w′ = (a1, d1) . . . (an−1, dn−1) and w = w′(an, dn). Then, according
to the induction hypothesis, there exists only one T̂C = (Ĉ, T̂ ) ∈

T C(TS) such that TCTS
w′

−→ T̂C. Hence, we have that T̂C
(an,dn)
−→

TC and T̂C
(an,dn)
−→ TC1. Take e and e1 such that C = Ĉ ∪ {e} and

C1 = Ĉ ∪ {e1}. Clearly, l(e) = l(e1) = an. Consider all the possible
relations between e and e1. If e <TS e1 (e >TS e1), then C1 (C) is not a
configuration. If e ⌣TS e1 or e #1

TS e1, then we get a contradiction to
the definition of a timed deterministic event structure having correct
timing. Hence, we have TC = TC1.

Further, take an arbitrary L and w such that ¬(TS after w MUST L).
According to Definition 3, there exists TC ∈ T C(TS) such that TCTS

w
−→



Concurrent testing for timed event structures 11

TC, and for all (a, d) ∈ L and TC ′ ∈ T C(TS) it holds that ¬(TC
(a,d)
−→

TC ′). This implies w ∈ Lti(TS), and according to our assumption we have
w ∈ Lti(TS

′). Suppose the contrary, i.e., TS′ after w MUST L. Then,
according to Definition 3, there exist TC ′, TC ′′ ∈ T C(TS′) and (a, d) ∈ L

such that TCTS′

w
−→ TC ′ (a,d)

−→ TC ′′. Consider w′ ∈ Lti(TS
′) such that

TCTS′

w′

−→ TC ′′. Since Lti(TS) = Lti(TS
′), w′ ∈ Lti(TS). This means that

TC
(a,d)
−→ TC ′′′ for some TC ′′′ ∈ T C(TS), because TC is the unique timed

configuration such that TCTS
w

−→ TC, as shown above. Hence, we get a
contradiction to ¬(TS after w MUST L). Thus, ¬(TS′ after w MUST L).
An arbitrary choice of w and L guarantees TS ∼αt TS

′.

The theorem below establishes that if we only consider timed event struc-
tures having correct timing, then timed step and timed partial order seman-
tics coincide.

Theorem 4. Let TS and TS′ be timed deterministic event structures which

have correct timing. Then

TS ∼tst TS
′ ⇒ TS ∼tpt TS

′.

Proof. Let TS = (S,D) and TS′ = (S′,D′). Assume Lts(TS) = Lts(TS
′).

According to Theorem 3, it is sufficient to show that Ltp(TS) = Ltp(TS
′).

Take an arbitrary timed pomset TP ∈ Ltp(TS) such that TCTS
TP
−→ TC.

W.l.o.g. assume ETP = {e1, . . . , en} (n ≥ 0) such that DTP (ei) ≤ DTP (ej)
for all 1 ≤ i ≤ j ≤ n. Let lTP (ei) = ai and DTP (ei) = di for all 1 ≤ i ≤

n. Then TCTS = TC0
({a1},d1)
−→ TC1 · · ·TCn−1

({an},dn)
−→ TCn = TC, where

TCi = (Ci, Ti) and Cj \ Cj−1 = {ej} for all 0 ≤ i ≤ n and 1 ≤ j ≤ n. Since
w = ({a1}, d1) . . . ({an}, dn) ∈ Lts(TS), w ∈ Lts(TS

′), according to the

assumption. Hence, we have TCTS′ = TC ′
0
({a1},d1)
−→ TC ′

1 · · · TC ′
n−1

({an},dn)
−→

TC ′
n = TC ′, where TC ′

i = (C ′
i, T

′
i ) and C ′

j \ C
′
j−1 = {e′j} for all 0 ≤ i ≤ n

and 1 ≤ j ≤ n.
We will show that (S⌈Cn, Tn) ≃ (S′⌈C ′

n, T
′
n). Three cases are possible.

n = 0. Trivial.

n = 1. The result follows from the definition of a deterministic timed event
structure.

n > 1. It sufficies to show that ei ⌣S ej ⇐⇒ e′i ⌣S′ e′j for all 1 ≤ i < j ≤ n.
Suppose ei ⌣S ej for some 1 ≤ i < j ≤ n. W.l.o.g. assume j = i + 1.
Let us prove that e′i ⌣S′ e′j .

We will show that there exists T̃Ci+1 ∈ T C(TS) such that TCi−1
({ai,ai+1},d)

−→ T̃Ci+1 for some d ∈ R+
0 . Take C̃i+1 = Ci+1. Further,
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take T̃i+1 : C̃i+1 −→ R+
0 such that T̃i+1|Ci−1

= Ti−1 and T̃i+1(ei) =

T̃i+1(ej) = d, where d ∈ D(ei) ∩ D′(ej) such that di ≤ d ≤ dj (the
existence of d is guaranteed by the definitions of a deterministic timed
event structure having correct timing, the set Interv and the rela-
tion → on timed configurations). We have to show that T̃Ci+1 =
(C̃i+1, T̃i+1) ∈ T C(TS). Since TCi−1 ∈ T C(TS) and d ∈ D(ei)∩D(ej),
the truth of item (i) of Definition 2 is obvious. Due to the facts that
TCi ∈ T C(TS) and di ≤ d, item (ii) of Definition 2 holds, by the defini-
tion of the relation → on timed configurations. Since TCi+1 ∈ T C(TS)
and d ≤ dj , it is straightforward to show the truth of item (iii) of Def-

inition of 2. According to the construction of T̃Ci+1, it holds that

TCi−1
({ai,ai+1},d)

−→ T̃Ci+1. Hence,

w′ = ({a1}, d1) . . . ({ai−1}, di−1)({ai, aj}, d) ∈ Lts(TS).

Since Lts(TS) = Lts(TS
′), then w′ ∈ Lts(TS

′). This implies that

TC ′
i−1

({ai,aj},d)
−→ T̃C ′

i+1, because TS′ is a deterministic timed event
structure (see the proof of Theorem 3). Thus, we have e′i ⌣ e′j .

We have shown that (S⌈C, T ) ≃ (S′⌈C ′, T ′). Since (S⌈C, T ) ≃ TP it

follows that (S′⌈C ′, T ′) ≃ TP . This means that TCTS′

TP
−→ TC ′. So, we get

TP ∈ Ltp(TS
′). An arbitrary choice of TP guarantees Ltp(TS) = Ltp(TS

′).

The timed event structures in Figure 5 show that even for timed deter-
ministic event structures having correct timing there is a difference between
timed interleaving and timed partial order semantics: TS8 ∼tit TS9, but
TS8 6∼tst TS9 because for w = ({a, b}, 1) and L = ∅ we have TS9 after w

MUST L and ¬(TS8 after w MUST L).

b

a

[0, 1]

[0, 1]

TS8 :

a

b

[0, 2]

[0, 1]

#

b

a

[0, 1]

[0, 2]

TS9 :

∼tit

6∼tst

✲

✲

Figure 5
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7. Conclusion

In this paper, we have proposed a family of testing equivalences for timed
event structures, a model aimed at an explicit representation of concurrency
and time. In particular, we have given a flexible abstract mechanism based
on the observational techniques studied in [8] which allows us to use timed
event structures as the basis of three different approaches to the description
of concurrent and real time systems. Apart from giving a concurrency pre-
serving semantics, our approach has an additional advantage of providing a
unified framework for the definition of different semantics induced on timed
event structures by the equivalences and determines when one semantics is
more appropriate than another. The results obtained show that interleaving,
multisets and partial ordering semantics in general provide formal tools with
an increasing power. Furthermore, when dealing with particular subclasses
of the model such as timed sequential and timed nondeterministic processes,
there is no difference between a more concrete or a more abstract approach.
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