Joint NCC & 1IS Bull., Comp. Science, 5(1996), 55-67
© 1996 NCC Publisher

Correct transformations
of logic programs

Andrei Sabelfeld

This paper describes a system of transformations that preserves the seman-
tics of logic programs with respect to a fixed goal. We formalise some standard
transformations and introduce two new transformation rules: Copying/Merge of -
Copies and Conteztual Replacement by Equal Term. Correctness of all schemes
of the transformation rules is proven. The applicability conditions of the schemes
-of rules are effectively decidable, that makes it useful for application in practice.
Since some transformations simplify programs, the transformation system can be
used for automated program transforming.

1. Introduction

Research on analysis, synthesis, specialisation, verification, and optimisa-
tion of programs mainly relies on program transformations. When we de-
rive a new program from an initjal program, we should keep the semantics
unchanged. The formal approach consists of constructing an equivalence re-
lation on programs and checking that this relation is preserved while trans-
forming.

In this paper we investigate the logic programs described in [2]. However,
we assume that a program contains a request and consider the semantics of
program with respect to a fixed request (goal).

Intuitively, the investigated equivalence relation of logic programs is de-
scribed as follows. Two Programs are equivalent iff any answer computed
by one program is an answer for the other program. It is important that the
equivalence does not depend on how “the answer” is defined, declaratively

or procedurally.
‘ In the content of such an equivalence we prove the correctness of the fol-
lowing transformation schemes: Definition Intmduction/Elimination, Cla-
use Introductz’on/Elz‘mz’nation, Variable Renaming, Parameter Introduction/
Elimination, Copying/Merge of Copies, Instance Clause Introduction /El;-

mination, Conjunct Intmd?rction/Elz'mz'nation, Folding/UnfaIding, Contez-
" tual Replacement by Equal Term, The latter scheme uses the powerful
method of decision of the flow analysis problem on graphs and the concept
of functional nets described in [3]. Using transformations of contextual re-

56 7 Andrei Sabelfeld

placement by equal term it is possible te obtain significant improvements
of programs. An illustrative example is considered in the final part of the
paper.

2. Concepts and notations

We consider the definite logic programs defined in [2] with the assumption
that all programs are constructed over a fixed first order language with finite
number of predicate and functional symbols. We adopt the notation, usual
in logic programming, using “,” instead of “A”.

By Hd(C) and Bd(C) we denote the head and body of a clause C.

The definition Def(P,p) of a predicate P in a program P is the set of
all clauses C from P such that Hd(C) = p. :

A predicate p Hz'rectly depends on a predicate ¢ in P iff the program has
a clause p(...) « B, and g occurs in B; p depends on q iff either p directly
depends on ¢ or there exists a predicate r such that p directly depends on r
and r depends on gq.

A formula F requires a predicate p iff either poccurs in F or there exists
a predicate occurring in, F' which depends on .

The relevant part Rel(P,F) of a program P for a formula F is the union
of the definitions of the predicates required by F.

Vars(t) denotes the set of variables of a term (atom, goal, or clause) ¢.

V(F) stands for Vz,...Vz,F, where F is a formula and z4,...,z, are
all its free variables. ‘ ‘

Let P be a program with a goal G =« A,,..., A, and 0 be a substitution
on variables occurring in G. Then 8 is called correct for PU {G}ff¥((A; A
..+ A A,)f) is a logical consequence of the program P.

We say that a substitution 8 is R-computed for a program P with a goal
G iff the result of the computation using the selection rule R is an SLD-
refutation for PU{G} and 8 is the restricted on variables from G composition
of the most general unifiers of the inference steps.

3. Equivalence

Definition. ~ A substitution 8 is a renaming for a formula F iff § =
{z1/v1,..., Ta/yn}, where Y1,--.,Yn are different variables, z; € Vars(F)
foralli=1,...,n, and (Vars(F) \{z1,- 2.)N {w1,..., 0.} = 0.

Definition. A program P, with a goal G, is computable by a program P,
with a goal G, (P, U {G,} ~ P,U {G3} for short) iff for any computation
rule R and any R-computed substitution @ for P, U {G,} there exists a

Correct transformations of logic programs 57

computation rule R’ such that # is an R’-computed substitution for P, U
{G.}. '

Definition. Programs P, and P, with goals G, and G, respectively, are
called equivalent (P,U{G,} ~ P,U{G,} for short) iff P,U{G1} ~ P,U{G,}
and P, U {Gg} ~ P U {Gl}.

Theorem 3.1. Let P, and P, be programs, and Gy =— L and Gy =— M
be goals. Then the following statements are equivalent.

1. P] U {Gl} ~ Pg U{_Gz}.

2. 0 is a correct substitution for P, U {G,} iff @ is a correct substitution

fOl" Pz u {Gz}

8. For any substitution @

P, = V(L8) iff P, |= V(M6)

Proof. 2. is equivalent to 3. by definition of correct substitution. Equiva-
‘lence of 1. and 2. follows from equivalence of the declarative and procedural
semantics (theorems 7.1 and 9.5 in [2]).

4. Transformation rules

We denote P, UG, «— P, UG, iff a program P, with a goal G, is trans-
formable to a program P, with a goal G,. In the case G, = G, we sometimes
use a simpler notation: P, «— P,. If a goal is not specified in a transfor-
mation rule, then it is assumed that the rule is applicable to an arbitrary
goal.

A transformation rule is correct iff UG, «— P,UG, implies P,UG, ~
P, U G,. A scheme of transformation rules is correct iff all instances of the
scheme are correct.

4.1. Definition introduction/elimination

Let P and P’ be programs, G be a goal, and there exists a predicate p such
that P’ = PU Def(P’,p) holds. Suppose that the predicate symbol p does
not occur in Rel(P’,G), then the scheme of rules DefIntr contains the rule

P e P,

58 Andrei Sabelfeld

re—gq
T+—q Deflntr -3
—7r p '

—T

Example.

Lemma 4.1. The scheme of rules DefIntr is correct.

Proof. Let P PE™* p/ For any computation rule R, SLD-derivations
for P U {G} and for P' U {G} do not involve definitions of the predicate
p, since p does not occur in Rel(P',G). P’ = PU De f(P',p), therefore,
the derivations in P and in P’ by the rule R coincide and the R-computed
substitutions coincide. Hence, P U {G} ~ P' U {G}.

4.2. Clause _ihtroduction/elimination

Let P = {C),...,Cs} be a program and G be a goal. We assume that no
two clauses from P have common variables. Suppose that for some k one of
the following conditions is valid:

o Cy=p(t1y.. . tm) « Ai,...,A;. There exists no substitution unifying
p(t1y. . stm) and p(sy,...,8m) for all occurrences of p(81,...,3m)in G
and in Bd(C;) foralli=1,...,k=1Lk+1,...,n.

e Cp = A Ay,...,p(t1,- -+ ytm),. .., A;. There exists no substitution

unifying p(t1,- .. ,tm) and p(s1,. . .,3m) for all occurrences of p(sy,. ..,
8m)in Hd(C;) foralli=1,...,k—-1,k+1,...,n.

Then the scheme of rules Clauselntr contains the rule

P «— P\ {C:}.
Example.
p(a) <
p(b) — Clauselntr p(e) — . Clauselntr | p(a) —
p(a) — g {ffa)(:)q} ‘“’ {*—p(a)}'
< p(a) P

The condition of variable distinction is required here in order to unify
correctly. If this condition were violated, then atoms taken from different
clauses, for example, p(z) and p(f(z)), would not be unifiable.

Lemma 4.2. The scheme of rules Clauselntr is correct.

Proof. Let us denote P\ {C;} by P'. Let P "™ p'_ For any
computation rule R, SLD-derivations for P U {G} and for P'U {G} do not

Correct transformations of logic programs 59

involve the clause C; because of one of the formulated conditions. Therefore,
the derivations for P and P’ by the rule R coincide and the R-computed
substitutions coincide. Hence, P U {G} ~ P’ U {G}.

4.3. Variable renaming

Let P be a program. Let C' € P and # be a renaming for variables of C.
Then the scheme of rules Rename contains the rule

P — (P\{C}Hu{C6}.

Example.
{p(2,9) « a(y)} "EF° {p(z,2) — ¢(2)}.

Lemma 4.3. The scheme of rules Rename is correct.

Proof. Let us denote (P\ {C})U {C8} by P'. Let P "% p'_ For any
goal G =« L and any substitution #

P = V(L6) iff P' |= V(L6),

since the renaming of variables in clauses does not change the declarative
semantics. By theorem 3.1, we have P U {G} ~ P' U {G}.

4.4. Parameter introduction/elimination

Let P be a program, G be a goal, and Def(P,p) # §. Assume that no two
clauses from P have common variables.

Suppose that it is impossible to eliminate any clause of the program by
the scheme of rules ClauseIntr. Suppose that there exists k, such that
for any C € Def(P,p) Hd(C) = p(t1,...,t,...,t,), and all constants and

~variables appearing in t, do not occur in Bd(C).

Let P' and G’ be obtained from P and G, respectively, by replacement
of all occurrences of p(sy,...,s;,...,s,) by (8150 s Sko1,8k41yr ey 8n)-

Then the scheme of rules Param contains the rule

PuU{G} — P' U{G'}.

60 ‘ Andrei Sabelfeld

Example.

{ p(z, f(¥)) — a(f(2)) }Pmm{ p(z) — o(f(=)) }

« p(a,2) T 1 ene

The impossibility of application of the scheme Clauselntr is required
to ensure the use of each of the clauses in SLD-derivations for G. If z = b,
for example, then the transformation would not be correct, as an unused
clause in SLD-derivations for G would become used in SLD-derivations for
G’ after the transformation.

Lemma 4.4. The scheme of rules Param is correct.

Proof. Let PU{G} "&%" P’y {G'}. For any computation rule R, SLD-
derivations for PU{G} and for P’ U{G'} coincide, except that in derivation
for P’ U {G'} the predicate p does not have the k-th parameter. The unifi-
cation at each step of derivation is identical because of the condition of im-
possible elimination of any clause by ClauseIntr. Therefore, R-computed
substitutions coincide too. Hence, PU {G} ~ P' U {G'}.

4.5. Copying/merge of copies

Let P be a program and G be a goal. Predicates p,, ..., p, defined in P are
called similar in P iff for any i,5 € 1,...,n

Def(P,Ps‘)lpnlq.---,p.lq = Def(PanNm/q.-‘-.pnlq’

where ¢ is a predicate that does not have definitions in P, and M |p/q stands
for the set of clauses obtained by replacement of ull occurrences of ‘the pred-
icate symbol p in clauses from the set of clauses M by the symbol q. We
use the same notation for replacement of occurrences of predicates in one
clause.

Let predicates py,...,p, be defined in P. We put D = Def(P,p,)U...U
Def(P,py). ,

Suppose that p;,...,p, are similar in P, then the scheme of rules Copy
contains the rule

Example.

p(a) < g(a),r(c)

g(a) — r(a), p(c) 923;{ p(a) — p(a),p(c) }
r(a)(‘—) p(a),q(c) « p(a) '
— q a

Correct. transformations of logic programs 61

Lemma 4.5. The scheme of rules Copy is correct.

Proof. We denote (P\ Def(P, P))lpsq and G|,/ by P' and G, respec-

tively. Let PU {G} & pry {G'}. For any computation rule R SLD-
derivations for P U {G} and for P’ U {G'} coincide modulo substitution of

similar predicates. Therefore, the R-computed substitutions coincide too.
Hence, PU {G} ~ P' U {G"}.

4.6. Instance clause introduction/elimination

Let P be a program. Suppose that clauses C and D from P have no common
variables and have the form

C=p(tl,...,th,...,ti,...,tkm,...,tn)‘—L,

D =p(tl,...,thﬂ,...,t‘,t,...,t,,_ﬁ,..'.,t,,) «— Lo,

where L is a conjunction of atoms; m,t < n; and 0 is a substitution defined
on variables from C. Then the scheme of rules Instance contains the rule

P~ P\{D}. -
Example.

{ o) Cslon) Vw1 rar)).

Lemma 4.6. The scheme of rules Instance is correct.

Proof. We denote P\ {D} by P’. Let p ™mgtance P'. For any goal G =« [
and any substitution

P V(L6) iff P' = Y(L8),

since both introduction and elimination of instance clause do not influence
the declarative semantics. Bv theorem 3.1, we have PU{G} ~ P' U {G}.

62 Andrei Sabelfeld

4.7. Conjunct introduction/elimination

Let P be a program and G be a fixed goal. Let either C = G or C € P. Let
Bd(C) =« Ay Aiye L Ag L A Suppose that C’ is obtained from C
by removing one of the A;’s in the body. Thus, we have C' = Hd(C) ~
Aj,... A, ..., Ay, Then the scheme of rules Conj contains the rule

PU{G} — ((PU{G}H\{ChHu{C"}.

Example.

{ T;,t:’(w),zw(w) } Conj { (19_;1;(1(%) } Conj { i';P,q(w) }

The introduction/elimination of a conjunct does not change the declar-
ative semantics of a program, therefore, by theorem 3.1, we receive the
following lemma.

Lemma 4.7. The scheme of rules Conj is correct.

4.8. Folding/unfolding

Let P be a program and G be a fixed goal. Let either C = G or C € P. Let
C=H«~L,A K, where A is an atom, and L and K are (may be empty)
conjunctions of atoms. Assume that

1. Ey,...,E, = {C € P | Ais unifiable with Hd(C)}, n > 1, and
01,...,0, are the corresponding most general unifiers;

2. n = 1in the caseif G = C;

3. D; = (H « L,Bd(E;),K); for i = 1,...,m

4. no two clauses from C, E,,..., E,, D,,...,D, have common variables.

Then the scheme of rules Fold contains the rule
P (P\{C})U{Dl,...,Dn}.

A step of unfolding corresponds to application of the SLD-resolution to
the clause C with the atom A selected and the input clauses E,,..., E

n-

Example.

§ — r(y) - €T
t — p(2),s : — ﬁ:g: ggyll))

{s*—q(m) }Egﬂ ::gg:g

Correct transformations of logic programs 63

The requirement of variable distinction is relevant here. For example, if
z = y = z, then unfolding would not be correct.

Lemma 4.8. The scheme of rules Fold is correct.

Proof. We denote (P\ {C})U {D,,...,D,} by P'. Let Pu{G} &4
P'U {G} for some goal G. As noted above, a step of unfolding corresponds
to an application of the SLD-resolution to the clause C with the atom A
selected and input clauses E,,..., E,. Hence, folding/unfolding allows us to
extend/reduce the SLD-derivation without affecting the answer. Therefore,

PU{G}~ P'U{G).

4.9. Contextual replacement by equal term

If the value of one of the actual parameters of all the occurrences of a predi-
cate p in the right parts of the clauses of a program coincides with the value
of some term ¢ from other actual parameters, then it is possible to replace
any occurrence of the corresponding formal parameter in a clause defining p
by term ¢ from the other formal parameters. This class of cases often aris-
es, for instance, in partial evaluation, when such functional dependences are
discovered after program specialisation with regard to a particular input.

Let us describe the algorithm based on application of the marking tech-
nique to a search for program invariants. The property of functional de-
pendence of parameters will be a base for constructing a transformation via
contextual replacement by equal term. _ '

For this purpose let us formulate a flow analysis problem for properties
of the directed graph I'(P) constructed according to a program P UG as
follows. The clauses of the program will be treated as the nodes of the
graph.

An edge from a clause C to a clause D (distinct from C) is drawn iff
in the right part of C there exists a predicate unifiable with H d(D). For
correctness of unification we require different clauses to have no common
variables. An edge from a clause C to itself is drawn iff in the right part
of C there exists a predicate unifiable with Hd(C’), where C' is the clause
obtained from C by replacement of all variables by different variables not
contained in Vars(C).

Obviously, edges do not lead to G.

As a semi-lattice of properties we use the semi-lattice (£,M) of the re-
duced acyclic nets described in [3]. More precisely, we allocate the semi-
lattice (D, M) containing only such nets that represent the sets of equalities
of the form z = ¢, where z is a variable, and ¢ is a functional term.

Let us take advantage of the defined in [3] assignment effect converter of
nets on the semi-lattice (D,M) and introduce two new converters,

64 Andrei Sabelfeld

e If Z is a finite set of variables, then the application of the converter
of nets [Forget(Z)] to a net s consists in the removal of all elements
associated with all variables from Z and in the subsequent reduction
of the result. It is, naturally, a distributive converter of nets from D.

¢ [zn i=1ta,...;21 i= ti]s = [@0 == t,](...([21 := t;]s)...). This
is a distributive converter of nets from D, as far as it represents the
superposition of distributive converters.

We get the formulation of the problem of flow analysis of the graph I'(G)
by fixing the initial marking u, that associates mark 1 with all nodes and
the semantic function that associates the distributive converter of properties
Sem(C, D) with each pair of incidental clauses.

For defining the semantic function, let us consider possible cases.

o Let C=gq(...) « ...,p(t1,...tp),..., D = P(81,...,8,) « ..., and
C # D, where C and D have no common variables, then for each edge
related to an occurrence of p in the right part of C,

Sem(C,D) = Forget(Y)[z := o0y,...,2, :i= 04 Jsp,

where Y = Vars(C‘), {z1/01,...,2:/01} is the most general unifier of
p(t,-.., t,) and p(sy,..., s,), and sp is the net mark of the node D.

® Let C=p(...) —...,p(ts,...,ts),...; then, for each edge associated
with the occurrence of p in the right part of C, let us consider the
clause C’ obtained from C by replacement of all variables by different
variables not contained in Vars(C).

Sem(C,C) = Forget(Y)[z :=o0y,...,2, := 0, lse,

where Y = Vars(C'), {z1/oy,...,2:/0;} is the most general unifier of
p(t1,...,t,) and Hd(C"), and sp is the net mark of the node C.

It follows from the results proven in [3] that one can effectively build the
stationary marking p. of the graph I'(P), that is the exact solution of the
flow analysis problem on I'(P).

We formulate the rule of the transformation based on the construction
of the stationary marking . detecting the functional dependences of formal
parameters as follows. Let C be a clause of a program P and (x=t)e

assert(u.C). We denote {z/t} by 6. Then the scheme of rules Replace
contains the rule :

PU{G} — (PU{G})\ {C}u {C8}.

Note that the formulated scheme of rules allows the integration: it is
possible to substitute z for ¢t in C.

Correct transformations of logic programs 65

Example.
{ a(z) — p(z, f(z)) } Replace { q(z) « p(z, f(z)) - }
p(h(2),v) « r(z,v) p(h(2), f(h(2))) = 7(2, f(R(2))) |~

As noticed above, only distributive converters are used in the flow anal-

"ysis problem. By theorem 2.4 from [3], the stationary marking of the graph

can be effectively constructed. The marking is the exact solution of the flow
analysis problem. Hence, the following lemma holds.

Lemma 4.9. The scheme of rules Replace is correct.

5. An example of program optimisation

Consider the program in which sets are represented by lists

Inter(Y,Z) « In(z,Y), In(z, Z)
In(z,2.Y) «

In(z,9.Z) — z # y, In(z,2)

— Inter(Y,Y)

We have Inter(Y,Z)iff Y N Z # 0 and In(z,Y)iffz €Y.
Inter(Y,Y)is the only call of the predicate Inter, therefore we can apply
Replace and get

Inter(Y,Y) In(z,Y), In(z,Y)
In(z,2.Y)

In(z,y.2) — z # y,In(z,Z) ,
« Inter(Y,Y)

Now we can eliminate the conjunct duplication by Conj

Inter(Y,Y) — In(z,Y)
In(z,z.Y) —

In(z,y.Z) — z # y,In(z, Z)
— Inter(Y,Y)

Here we Unfold the goal of the program
Inter(Y,Y) « In(z,Y)
In(z,2.Y) —
In(z,y.Z) — z # y,In(z, Z)
— In(z,Y)

Now we are capable to eliminate the definition of Inter, since it is not used
anymore. Using DefIntr we obtain finally i

66 Andrei Sabelfeld

In(z,2.Y) «
{ In(z,y.2) — z # y,In(z, Z) }
— In(z,Y)

Observe that our transformation chain proves implicitly that Y NY # @
if3zzeY.

Of course, it is just a simple example. In practice, automatic algorithms
based on the described transformation system should capture more compli-
cated cases and perform more sophisticated transformations.

6. Related work

A number of authors have investigated the problems of correctness of logic
program transformations following the approach proposed by Tamaki and
Sato [1]. This approach consists in imposing restrictions on the use of the
transformation rules for ensuring total correctness.

Bossi and Cocco [4] focus their study on definite logic programs which
are evaluated using the PROLOG leftmost computation rule. They prove
that restricted versions of Tamaki and Sato’s unfolding and folding preserve
both the set of computed answer substitutions and PROLOG semantics.

Bossi and Etalle (5] consider general logic programs and show that Tama-
ki and Sato’s rules preserve acyclicity of programs.

Recently, advances in the study of logic program termination have stimu-
lated the investigations of the relationship between program transformation
and program termination. The paper by Lau, Ornaghi, Pettorossi, and
Proietti [6] has contributed to this area. They introduce the concept of ez-
istential termination. A program P existentially terminates with respect to
a goal G iff there exists an SLD-tree for P U {G} which either has at least
one success branch or it is finitely failed. They describe powerful classes of
transformations which appear to be correct if existential termination of an
initial program implies existential termination of the program that is final
in a transformation chain. Clearly, such a condition is undecidable in the
general case.

A common approach consists in fixing a (maybe infinite) set of ground
goals. In such a definition, conditions necessary for proof of correctness are
either very constraining or they require the verification of complex, some-
times undecidable, properties.

Our conception is different. We fix an arbitrary single goal. This ap-
proach allows us to check the applicability of transformations and carry out
transformations effectively. At the same time, our transformations let us
detect non-trivial properties and considerably improve programs. Minimal
restrictions on the use of transformation rules are imposed

Correct transformations of logic programs 67

References

(1] H. Tamaki, T. Sato, Unfold/fold transformation of logic programs, Proc. of
the Second International Conference on Logic Programming, Uppsala, Sweden,
Uppsala University, 1984, 127-138.

[2] J.W. Lloyd, Foundations of Logic Programming, Springer-Verlag, Berlin, Second
Edition, 1987.

[3] V.E. Kotov, V.K. Sabelfeld, Theory of program schemes, Nauka, Moscow, 1991
(In Russian).

[4] A. Bossi, N. Cocco, Preserving universal termination through unfold/fold, Proc.
ALP’94, LNCS, Springer-Verlag, 850, 1994, 269-286.

[5] A. Bossi, S. Etalle, Transforming acyclic programs, ACM Transactions on Pro-
gramming Languages and Systems, 16, No. 4, July 1994, 1081-1096.

(6] K.-K. Lau, M. Ornaghi, A. Pettorossi and M. Proietti, Correctness of Logic
Program Transformations Based on Ezistential Termination, Proc. of the Sym-
posium on Logic Programming, Oregon, USA, Springer-Verlag, 1995, 480494,

