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A language of actions in
ontological transition systems

Igor S. Anureev

Abstract. Ontological transition systems are a method of specification of com-
puter systems which integrates operational and ontological approaches to specifica-
tion of these systems. In the framework of development of a language of ontological
transition systems OTSL, a sublanguage of actions is defined. Actions are used to
specify transitions in ontological transition systems. Examples of formal semantics
of C# statements illustrate the method of ontological transition systems.

1. Introduction

Ontological transition systems (OTSs) [1] are an extension of transition
systems with ontologies.

An ontology of a computer system describes the conceptual structure of
the system (its concepts and the relations between them). In the context of
this paper, an ontology consists of a set of concepts and a set of relations.
Concepts define the kinds of sequences of objects of the system. In partic-
ular, they define the kinds of objects of the system. Relations define the
kinds of interrelations between objects.

An ontological transition system consists of a set of objects, a transition
system, an ontology and a function, called content retrieval, which defines
the content of concepts and relations for each state of the transition system.
The content of a concept is defined as a subset of the set of sequences of
objects. The content of a relation is defined as a binary relation on sequences
of objects.

On the basis of OTSs, the ontological transition system language OTSL
has been developed. It includes two sublanguages: a language of actions
and a language of formulas. Actions specify transitions of OTSs. Formulas
specify ontological entities of OTSs. In this paper, the language of actions
is presented. A description of the language of formulas can be found in [1].
The language of actions is a result of further development of ideas presented
in [2, 3, 4].

The paper has the following structure. Section 2 presents the language
of actions and defines their semantics. Actions are used to specify transition
relations of OTSs. Section 3 presents additional constructs which can be
used in actions. On the one hand, these constructs are reducible to the basic
action constructs. On the other hand, they enlarge a conceptual capacity
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of the OTSL language. In Section 4, the OTSL language is used to define
formal semantics for a number of C# statements.

The paper does not contain definitions of ontological transition systems
and related notions, as well as preliminary notions and denotations, since
all necessary notions and denotations are covered in paper [1] of this issue.

This research is partially supported by the grant 06-01-00464a from
RFBR, and by the integration grant 14 and the grant for young scientists
from SB RAS.

2. Actions

This section defines actions and related entities.
Actions. The set act of actions is built in the following way:

act ::= ass | gu | obAct | sel | qAct | blo | actCom.

The sets ass, gu, obAct, sel, loc, qAct, blo, and actCom of assignments,
guards, object actions, selections, quantified actions, blocks and action com-
positions, respectively, are defined below.

Actions change states of OTSs. They are used as labels for transition
relations. Therefore, semantics of an action is given by definition of the
transition relation tr with this action as a label. Semantics of actions is
defined in the context of an OTS declaration.
OTS declarations. OTS declarations are used to specify OTSs. The sets
otsDec and otsDecMem of OTS declarations and OTS declaration mem-
bers, respectively, are built in the following way:

otsDec ::= otsDecMem | otsDecMem otsDec.

otsDecMem ::= coDec | reDec | trDec.

The definitions of the sets coDec and reDec of concept declarations and
relation declarations, respectively, can be found in [1]. The set trDec of
transition declarations is defined below.
Transition Declarations. The set trDec of transition declarations is de-
fined as follows:

trDec ::= #t { act }.

Let OtsDec be an OTS declaration. Let us define different kinds of actions
in the context of OtsDec.
Assignments. The set ass of assignments is built in the following way:
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ass ::= sAss | cAss.

The sets sAss and cAss of simple assignments and compound assignments,
respectively, are defined below. An assignment changes the content of ob-
jects.
Simple Assignments. The set sAss of simple assignments is built in the
following way:

sAss ::= ob := te ; | obCon := te ; .

A simple assignment replaces the content of an object, which is the value of
the left-hand part of the assignment, by the value of its right-hand part:

tr(St, St′)(T := T ′; ) ⇔
val(St)(T ) ∈ ob ∧ St′ = upd(St, val(St)(T ), val(St)(T ′)).

Compound Assignments. The set cAss of compound assignments is built
in the following way:

cAss ::= ob += te ; | obCon := te ; .

A compound assignment replaces the content of an object, which is the value
of the left-hand part of the assignment, by a concatenation of the old content
of the object with the value of the right-hand part of the assignment:

tr(St, St′)(T := T ′; ) ⇔
val(St)(T ) ∈ object∧
St′ = upd(St, val(St)(T ), con(St(val(St)(T )), val(St)(T ′)).

Guards. The set gu of guards is built in the following way:

gu ::= fo ; .

A guard defines a condition of execution of a transition. If the formula de-
fined in the guard is true, execution of the transition is possible. Otherwise,
execution of the transition is impossible:

tr(St, St′)(F ; ) ⇔ St = St′ ∧ val(St)(F ) 6= ().

Object Actions. The set obAct of object actions is built in the following
way:

obAct ::= te ; ; .

An object action Ob; ; performs a transition initiated by the object Ob:
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tr(St, St′)(Ob; ; ) ⇔ ∃TrDec ∈ OtsDec(tr(St, St′)(TrDec(#i ← Ob))).

The special object #i is used in the transition declaration TrDec to refer
to the object which initiates the transition.

The definition of an object action is extended to the empty sequence

tr(St, St′)((); ; ) ⇔ St = St′,

an object content

tr(St, St′)(?Ob; ; ) ⇔ tr(St, St′)(St(Ob); ; ),

and a term composition

tr(St, St′)(T T ′; ; ) ⇔
∃St′′(tr(St, St′′)(T ; ; ) ∧ tr(St′′, St′)(T ′; ; )).

The Selection. The sets sel, casSe, cas, eCasSe, eCas, and casSt of
selections, case sequences, cases, else case sequences, else cases, and case
stops, respectively, are built in the following way:

sel ::= { cSe eCSeopt }
casSe ::= cas | cas casSe

cas = @ act
eCasSe ::= eCas | eCas eCasSe

eCas ::= # act
caseSt ::= # ; .

A selection performs a choice from the set of cases and else cases. It is a
generalization of selection statements of programming languages. Each case
and each else case is associated with a condition of its applicability. This
condition is an action and is defined by the function cond (see below). A
case or an else case with a condition P is applicable in a state St, if the
formula ∃St′(tr(St, St′)(P )) is true.

Selection is executed as follows. First, a nondeterministic choice of an
applicable case from the set of cases is performed and the chosen case is
executed. If none of cases is applicable, then the nearest (in the sequence
order) applicable else case is chosen and executed. If none of cases and else
cases is applicable, execution of the selection is impossible:

tr(St, St′)({A}) ⇔
∃q(Aq ∈ cas ∧ tr(St, St′)(Aq))∨
∃q(Aq ∈ eCas ∧ tr(St, St′)(Aq)∧
∀q′(q′ ≺c q ⇒ ¬tr(St, St′)(cond(Aq′)))).

The function cond. The property A of a case or else case is computed by
the function cond ∈ cas ∪ eCas → act. The function cond eliminates the
parts of A which follow the case stops #;, if these case stops do not occur
in formulas or selections which are parts of A:



A language of actions in ontological transition systems 23

cond(A) =





cond(A[P ]q), if
∃q((Aq = P #; P ′)∧
@q′(q ≺ q′ ∧Aq′ ∈ sel ∪ fo));

A, otherwise.

Case Sequences. Semantics of case sequences is defined as follows:

tr(St, St′)(CasSe CasSe′) ⇔
∃St′′(tr(St, St′′)(CasSe) ∧ tr(St′′, St′)(CasSe′)).

Cases. Semantics of cases is defined as follows:

tr(St, St′)(@ Act) ⇔ tr(St, St′)(Act).

Else Case Sequences. Semantics of else case sequences is defined as fol-
lows:

tr(St, St′)(ECasSe ECasSe′) ⇔
∃St′′(tr(St, St′′)(ECasSe) ∧ tr(St′′, St′)(ECasSe′)).

Else Cases. Semantics of else cases is defined as follows:

tr(St, St′)(# Act) ⇔ tr(St, St′)(Act).

Case Stops. The case stop marks the end of a case condition and does not
influence execution of an action:

tr(St, St′)(#; ) ⇔ St = St′.

Quantified Actions. The set qAct of quantified actions is built in the
following way:

qAct ::= { ? ( bin ) act } | { ! ( bin ) act }
bin ::= ob : coExp | bin bin.

The elements of the set bin are called bindings. A quantified action

{∗ (Ob1 : CoExp1 . . . Obn : CoExpn)Act},

where ∗ ∈ {?, !}, defines the parameters Ob1, . . . , Obn for the embedded
action Act.

If ∗ = ?, then semantics of the quantified action is a union of semantics
of actions which is obtained from the action Act by replacement of the
parameters Ob1, ..., Obn by arbitrary values from sets defined by the concept
expressions CoExp1, ..., CoExpn, respectively. Thus, this case models a
nondeterministic choice from specializations of the action Act defined by
the values of its parameters:
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tr(St, St′)({?(Ob1 : CoExp1...Obn : CoExpn)Act}) ⇔
∃[A1 ∈ val(St)(CoExp1), ..., An ∈ val(St)(CoExpn)]

(tr(St, St′)(Act(Ob1 ← A1, ..., Obn ← An))).

If ∗ = !, then semantics of the quantified action defines a set of pairs
(St, St′) such that a transition from the state St to the state St′ is pos-
sible for any specialization of the action Act defined by the values of its
parameters:

tr(St, St′)({!(Ob1 : CoExp1...Obn : CoExpn)Act}) ⇔
∀[A1 ∈ val(St)(CoExp1), ..., An ∈ val(St)(CoExpn)]

(tr(St, St′)(Act(Ob1 ← A1, ..., Obn ← An))).

Blocks. The set blo of blocks is built in the following way:

blo ::= { act }.

Blocks are used to structure actions. Semantics of a block coincides with
semantics of the action defined in the block:

tr(St, St′)({A}) ⇔ tr(St, St′)(A).

Action Compositions. The set actCom of action compositions is built in
the following way:

actCom ::= act act.

An action composition Act Act′ is defined as the sequential execution of
actions Act and Act′:

tr(St, St′)(Act Act′) ⇔ ∃St′′(tr(St, St′′)(Act) ∧ tr(St′′, St′)(Act′)).

3. Additional action constructs

This section presents additional constructs which can be used in actions. On
the one hand, these constructs are reducible to the basic action constructs.
On the other hand, they enlarge the conceptual capacity of the OTSL lan-
guage. These constructs include localization and new objects. Localizations
are used in place of actions. New objects are used in place of terms. To
introduce them, the sets act and te of actions and terms, respectively, are
redefined.
Redefining Actions. The set act of actions is built in the following way:

act ::= ass | gu | obAct | sel | qAct | blo | actCom | loc.

The set loc of localizations is defined below.
Localizations. The set loc of localizations is built in the following way:
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loc ::= { : ( obList ) act } | { : ob act }
obList ::= ob | ob obList.

A localization {: (Ob1 . . . Obn) Act} guarantees that the change of the
content of the objects Ob1, . . . , Obn by the action Act is local, i.e. the
content is restored after termination of the action Act. Its semantics is
defined by the reduction function red : act → act which normalizes actions,
eliminating localizations:

red(Act) =



red(Act[{?(X1 :s . . . Xn :s)
X1 = ?Ob1; . . . Xn = ?Obn; Act′

Ob1 := X1; . . . Obn := Xn; }]q), if ∃q(Actq = {: (Ob1 . . . Obn) Act′});
Act, otherwise.

The localization {: Ob Act} is short for {: (Ob) Act}.
Redefining Terms. The set te of terms is built in the following way:

te ::= eSe | ob | obC | teCom | newOb.

The set newOb of new objects is defined below.
New Objects. The set newOb of new objects is built in the following way:

newOb ::= ( te ) | ∗ : coExp.

A new object (Te) in a state St represents any object Ob taken from the
content of a special object new in the state St such that the content of the
object Ob is equal to the value of the term Te in the state St, i.e.

Ob ∈ St(new) ∧ St(Ob) = val(St)(Te).

A new object ∗ :CoExp in a state St represents any object Ob taken from
the content of the special object new in the state St such that the content
of the object Ob belongs to the value of the concept expression CoExp in
the state St, i.e.

Ob ∈ St(new) ∧ St(Ob) ∈ val(St)(CoExp).

After taking the object Ob, this object is removed from the content of
new. The object Ob is implicitly bound by an existential quantifier ?, that
guarantees existence of at least one new object in the content of new.
Elimination of new object constructs. Semantics of new object con-
structs is defined by the reduction function

red ∈ ass ∪ obAct → qAct.

This function normalizes assignments and object actions, eliminating new
objects from them:
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red(Act) =





{?(Ob :o Se :s) ?new ∼ Ob Se;
new := Se; red(Ob := Te; )
red(Act[Ob]q)}, if Actq = (Te),

{?(Ob :o Se :s Se′ :CoExp)
?new ∼ Ob Se; new := Se;
red(Ob := Se′; ) red(Act[Ob]q)}, if Actq = ∗ :CoExp,

Act, otherwise.

4. Examples of formal semantics of C# statements

This section illustrates the method of OTSs by an example of development
of formal semantics of a number of C# statements.

The concept statement is defined by the concept declaration

#dc statement {#i:o and (#i:block or #i:ifStatement or otherStat)}

The record otherStat denotes disjunction of the other kinds of C# statements.
Semantics of blocks is defined in detail to understand a general idea of

application of the method of OTSs. Semantics of the rest statements is given
without additional comments.

4.1. Blocks

Semantics of blocks is defined by the following declarations:

#c block {#i:o and ?#i = block *:s}
#r statements {#i:block and #o:s and ?#i ~ (= statements #o) *:s}
#t {#i:block;
{?(A:statements<#i)
{@val:jump or A:e;
#A;; {:blockStop blockStop := (statements A);

blockStop;;}}}}

The first declaration defines the concept block.
The formula #i:o means “The block #i of the concept block is an ob-

ject”.
The formula ?#i = block *:s means “The content of #i starts with the

object block”. The object block can be considered as a tag which marks
all instances of the concept block.

The second declaration defines the relation statements.
The formula #i:block means “The input #i of instances of the relation

statements is a block”.
The formula #o:s means “The output #o of instances of the relation

statements is a sequence”.
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The formula

?#i ~ (= statements #o) *:s}

means “The output #o is the statement list of the block #i, if there is
an object X such that X is contained in the content of the block #i and the
content of X starts with the object statements and #o follows statements.”
The object X can be considered as a container which contains the statement
list of the block #i. The object statements can be considered as a tag
which marks the container X.

Also, the object statements can be considered as an attribute of in-
stances of the concept block. The value of this attribute for the block #i
in a state St is defined as the only element of the set St(statements<#i).

The third declaration defines transitions which are initiated by blocks.
The guard #i:block; means “Only if #i is a block, a transition is pos-

sible”.
The quantified action {?(A:statements<#i) X}means “Let A be a state-

ment list of the block #i in the action X (A is the value of the attribute
statements for #i)”.

The case @val:jump or A:e; of the selection action means “If the object
val is an instance of the concept jump or the statement list A is empty, then
do nothing”.

The concept jump describes a kind of objects which are initiated by jump
statements of the C# language:

#c jump {#i:breakJump or #i:continueJump or #i:returnJump or
#i:exceptionJump or #i:labelJump or #i:caseJump or
#i:defaultJump}

Instances of the concept breakJump are initiated by break statements. In-
stances of the concept continueJump are initiated by continue statements.
Instances of the concept returnJump are initiated by return statements.
Instances of the concept exceptionJump are initiated by throw statements
and execution environment. Instances of the concepts labelJump, caseJump
and defaultJump are initiated by different kinds of goto statements.

The object val is a special object. It is used to keep the values of C#
expressions and instances of the concept jump.

The else case

#A;; {:blockStop blockStop := (statements A); blockStop;;}

of the selection action means ”Otherwise, execute the statement list A and
exit the block by the procedure blockStop”.

The localization

{:blockStop blockStop := (statements A); blockStop;;}
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locally sets the content of the procedure blockStop (which can be considered
as the argument of blockStop) to the statement list A, executes blockStop,
and restores the old value of the content of blockStop.

The procedure blockStop is defined by the following declarations:

#c blockStop {#i = blockStop}
#r statements {#i:blockStop and #o:ns and ?#i = (statements #o)}
#t {#i:blockStop;
{@val:labelJump;
{?(A:gotoLabel B:value<A B:value<val

C:statements<#i D:s)
C = *:s A D; #; D;; blockStop;;}

#}}

The first declaration defines the concept blockStop.
The content declarator #i = blockStop means ”The content of the con-

cept blockStop is a set consisting of the only object blockStop in any
state”.

The second declaration defines the relation statements. As shown
above, the object statements can be considered as an attribute of the in-
stance blockStop of the concept blockStop.

The third declaration defines transitions which are initiated by the pro-
cedure blockStop. For simplicity, elimination of local variables of blocks is
not considered.

The quard #i:blockStop; means ”Only if #i is a block stop, this tran-
sition is possible”.

The case

@val:labelJump;
...

of the selection action means ”If the object val is an instance of the concept
labelJump (val:labelJump;), the statement list C of the block #i contains
the goto label A (C = *:s A D;), the value B of A (B:value<A) coincides
with the value of the attribute value for the object val, then execute the
sequence D of statements (D;;) which follows A (C = *:s A D;) and then
execute the procedure blockStop again (blockStop;;).

The concept labelJump describes a kind of objects which are generated
by goto statements. These objects have the attribute value. The value of
the attribute is the label of a goto statement. The value of the attribute for
an object Ob in a state St is defined as St(value<Ob):

#c labelJump {#i:o and ?#i = labelJump *:s}
#r value {#i:labelJump and #o:o and ?#i ~ (value #o) *:s}

The else case # of the selection statement means ”Otherwise, do nothing”.
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4.2. Empty statements

Semantics of empty statements is defined by the following declarations:

#c emptyStatement {#i = emptyStatement}
#ru {.:emptyStatement;}

4.3. Labeled statements

Semantics of labeled statements is reduced to semantics of labels:

#c gotoLabel {#i:o and ?#i = gotoLabel *:s}
#r value {(gotoLabel i)}{?#i ~ (gotoLabel #o) *:s}
#t {.:gotoLabel;}

4.4. Declaration statements

Semantics of local variable declarations is defined by the following declara-
tions:

#c localVariableDeclaration
{#i:o and ?#i = localVariableDeclaration *:s}

#r type
{#i:localVariableDeclaration and #o:s and ?#i ~ (type #o) *:s}

#r localVariableDeclaratorList
{#i:localVariableDeclaration and #o:ns and
?#i ~ (localVariableDeclaratorList #o) *:s}

#c type {#i = type}
#r value {(type i)}{#i:type and #o:o and ?#i ~ (value #o) *:s}
#t {#i:localVariableDeclaration;
{@val:jump;
#{?(A:type<#i B:localVariableDeclaratorList<#i)

{:type type = A; B;;}}}}

Formal semantics of local variable declarators is defined by the following
declarations:

#c localVariableDeclarator
{#i:o and ?#i = localVariableDeclarator *:s}

#r name
{#i:localVariableDeclarator and #o:identifier and
?#i ~ (= name #o) *:s}

#r initializer
{#i:localVariableDeclarator and
(#o:expression or #o:arrayInitializer) and
?#i ~ (= initializer #o) *:s}
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#c localVariable {#i:o and ?#i = localVariable *:s}
#r name
{#i:localVariable and #o:identifier and ?#i ~ (name #o) *:s}

#r type
{#i:localVariable and #o:type and ?#i ~ (type #o) *:s}

#r location
{#i:localVariable and #o:location and ?#i ~ (location #o) *:s}

#r value
{#i:localVariable and #o:o and (?(A:location<#i) #o:value<A)}

#c location {#i:o and ?#i = location *:s}
#r value {#i:location and #o:o and ?#i ~ (= value #o) *:s}

#t {#i:localVariableDeclarator;
{@val:jump;
#{?(A:name<#i B:value<type C:o)

{:val val := (location); C = ?val;
val := (localVariable (name A) (type B) (location C));}
{@{?(D:initializer<#i) D;;

{@val:jump;
#C += (value ?val);}}

#}}}}

Semantics of local constant declarations is defined in a similar way.

4.5. Expression statements

Semantics of local variable declarations is defined by the following declara-
tions:

#c expressionStatement {#i:o and ?#i = expressionStatement *:s}
#r expression {#i:expressionStatement and #o:expression and
?#i = (expression #o) *:s}

#t {#i:expressionStatement; {?(A:expression<#i) A;;}}

4.6. If statements

Semantics of if statements is defined by the following declarations:

#c ifStatement {#i:o and ?#i = ifStatement *:s}
#r condition {#i:ifStatement and #o:expression and
?#i ~ (condition #o) *:s}

#r thenStatement {#i:ifStatement and #o:statement and
?#i ~ (thenStatement #o) *:s}
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#r elseStatement {#i:ifStatement and #o:statement and
?#i ~ (elseStatement #o) *:s}

#t {#i:ifStatement;
{@val:jump;
#{?(A:condition<#i) A;;

{@val:jump;
#{@?val = true; #; {?(B:thenStatement<#i) B;;}
@val = false;
{@{?(B:elseStatement<#i) #; B;;}
#}}}}}}

4.7. Switch statements

Semantics of switch statements is defined by the following declarations:

#c switchStatement {#i:o and ?#i = switchStatement *:s}
#r switchExpression {#i:switchStatement and #o:expression and
?#i ~ (switchExpression #o) *:s}

#r switchBlock {#i:switchStatement and #o:switchBlock and
?#i ~ (switchBlock #o) *:s}

#c switchBlock {#i:o and ?#i = switchBlock *:s}
#r statementList {#i:switchStatement and #o:expression and
?#i ~ (statementList #o) *:s}

#c caseLabel {#i:o and ?#i = caseLabel *:s}
#r value {#i:caseLabel and #o:o and ?#i ~ (value #o) *:s}

#c defaultLabel {#i = defaultLabel}

#c governingTypeConversion {#i = governingTypeConversion}
#r value {#i:governingTypeConversion and #o:type and
?#i ~ (value #o) *:s}

#t {#i:switchStatement;
{@val:jump;
#{?(A:switchExpression<#i) A;;

{@val:jump;
#{?(B:switchBlock<#i C:statementList<B)
{:governingTypeConversion
governingTypeConversion := (value ?val);
governingTypeConversion;}
{@{@{?(D:caseLabel D:value>?val E:s)

?C = *:s D E; #; E;;}
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#{?(D:s) ?C = *:s *:defaultLabel D; #; D;;}}
#; {:switchBlockStop

switchBlockStop := (statements C);
switchBlockStop;;}}

#}}}}}}

The procedure switchBlockStop is defined as follows:

#c switchBlockStop {#i:o and ?#i = switchBlockStop *:s}
#r statements {#i:switchBlockStop and #o:ns and
?#i ~ (statements #o) *:s}

#t {#i:switchBlockStop;
{@val:breakJump; #; val := ();
#val:labelJump;

{?(A:label<val B:gotoLabel B:value>A C:s
D:statementList<#i) D = *:s B C; #; C;; #i;;}

#val:caseJump; #;
{?(A:value<val B:caseLabel B:value>A C:s
D:statementList<#i) D = *:s B C; #; C;; #i;;}

##defaultJump(val); #;
{?(A:s B:statementList<.)
B = *:s *:defaultLabel A; A;; #i;;}

#}}

5. While statements

Semantics of switch statements is defined by the following declarations:

#c whileStatement {#i:o and ?#i = whileStatement *:s}
#r condition {#i:whileStatement and #o:expression and
?#i ~ (condition #o) *:s}

#r body {#i:whileStatement and #o:statement and
?#i ~ (body #o) *:s}

#t {#i:whileStatement;
{@val:jump;
#{?(A:condition<#i B:body<#i)

{:loop loop := (condition A) (body B); loop;;}}}}

Semantics of the procedure loop is defined as follows:

#c loop {#i = loop}
#r condition {#i:loop and #o:expression and
?#i ~ (condition #o) *:s}

#r body {#i:loop and #o:statement and ?#i ~ (body #o) *:s}
#t {#i:loop;
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{@val:breakJump; #; val := ();
#val:continueJump; #; val := (); loop;;
#val:jump;
#{?(A:condition<#i) A;;

{@not val:jump and ?val = true; #; {?(B:body<#i) B;; .;;}
#}}}}

Semantics of dowhile statements, for statements and foreach statements
are defined in a similar way.

5.1. Break statements

Semantics of break statements is defined by the following declarations:

#c breakStatement {#i = break}
#c breakJump {#i:o and ?#i = breakJump *:s}
#t {#i:breakStatement;
{@val:jump;
#val := breakJump;}}

5.2. Continue statements

Semantics of continue statements is defined by the following declarations:

#c continueStatement {#i = continue}
#c continueJump {#i:o and ?#i = continueJump *:s}
#t {#i:continueStatement;
{@val:jump;
#val := continueJump;}}

5.3. Goto statements

Semantics of goto statements is defined by the following declarations:

#c gotoLabelStatement {#i:o and ?#i = gotoLabel *:s}
#r label {#i:gotoLabelStatement and #o:o and
?#i ~ (= label #o) *:s}

#c labelJump {#i:o and ?#i = labelJump *:s}
#r value {#i:labelJump and #o:o and ?#i ~ (= value #o) *:s}
#t {#i:gotoLabelStatement;
{@val:jump;
#{?(A:label<#i) val := labelJump (value A);}}}

#c gotoCaseStatement {#i:o and ?#i = gotoCase *:s}
#r expression {#i:gotoCaseStatement and #o:expression and
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?#i ~ (= expression #o) *:s}
#r value {#i:gotoCaseStatement and #o:o and
?#i ~ (= value #o) *:s}

#c caseJump {#i:o and ?#i = caseJump *:s}
#r value {#i:caseJump and #o:o and ?#i ~ (= value #o) *:s}
#t {#i:gotoCaseStatement;
{@val:jump;
#{?(A:value<#i) val := caseJump (value A);}}}

#c gotoDefaultStatement {#i = gotoDefault}
#c defaultJump {#i = defaultJump}
#t {#i:gotoDefaultStatement;
{@val:jump;
#val := defaultJump;}}

5.4. Return statements

Semantics of return statements is defined by the following declarations:

#c returnStatement {#i:o and ?#i = return *:s}
#r expression {#i:returnStatement and #o:o and
?#i ~ (= expression #o) *:s}

#c returnJump {#i:o and ?#i = returnJump *:s}
#r value {#i:returnJump and #o:o and ?#i ~ (= value #o) *:s}

#c conversion {#i = conversion}
#r value {#i:conversion and #o:o and ?#i ~ (= value #o) *:s}
#r type {#i:conversion and #o:type and ?#i ~ (= type #o) *:s}
#c returnType {#i = returnType}
#r value {#i:returnType and #o:type and ?#i ~ (= value #o) *:s}
#t {#i:returnStatement;
{@val:jump;
#{?(A:expression<#i) #; A;;
{@val:jump;
{:conversion {?(B:value<returnType) conversion := ?val B}
conversion;;}
#val := returnJump (value ?val);}}

#val := returnJump;}}
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5.5. Throw statements

Semantics of throw statements is defined by the following declarations:

#c throwStatement {#i:o and ?#i = throw *:s}
#r expression {#i:throwStatement and #o:expression and
?#i ~ (= expression #o) *:s}

#c exceptionJump {#i:o and ?#i = exceptionJump *:s}
#r exception {#i:exceptionJump and #o:o and
?#i ~ (= exception #o) *:s}

#c catchedException {#i = catchedException}
#c nullReferenceException {#i = nullReferenceException}
#t {#i:throwStatement;
{@val:jump;
#{?(A:expression<#i) #; A;;} #;
{@val:jump;
#val = null; #; val := nullReferenceException;
#val := exceptionJump (exception ?val);}

#val := exceptionJump (exception ?catchedException);}}

5.6. Try statements

Semantics of try statements is defined by the following declarations:

#c tryStatement {#i:o and ?#i = try *:s}
#r block {#i:tryStatement and #o:statement and
?#i ~ (= block #o) *:s}

#r catchClauseList {#i:tryStatement and #o:ns and
?#i ~ (= catchClauseList #o) *:s}

#t {#i:tryStatement;
{@val:jump;
#{(A:block<#i B:catchClauseList<#i) A;;
{:catchedException catchedException := (); B;;}}}}

The value of the attribute catchClauseList is a sequence of specific
catch clauses, a general catch clause, and a finally clause.

Semantics of specific catch clauses is defined as follows:

#c specificCatchClause {#i:o and ?#i = specificCatchClause *:s}
#r type {#i:specificCatchClause and #o:type and
?#i ~ (= type #o) *:s}

#r name {#i:specificCatchClause and #o:identifier and
?#i ~ (= name #o) *:s}

#r block {#i:specificCatchClause and #o:block and
?#i ~ (= block #o) *:s}

#r subtype {#i:type and #o:type and ...}
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#t {#i:specificCatchClause;
{@not val:exceptionJump or ?catchedException;
#{?(A:type<#i B:i C:i) B = ?val;
{:type type := B; type;;} C = ?val;
{@C:subtype<A; #; catchedException := B;
{@{?(D:name<#i) #;
val := (localVariable D C (location B));}
#}

val := (); {?(E:block<#i) E;;}
#}}}}

Semantics of general catch clauses is defined as follows:

#c generalCatchClause {#i:o and ?#i = generalCatchClause *:s}
#r block {#i:generalCatchClause and #o:block and
?#i ~ (= block #o) *:s}

#t {#i:generalCatchClause;
{@not val:exceptionJump or ?catchedException;
#catchedException := ?val; val := (); {?(A:block<#i) A;;}}}

Semantics of finally clauses is defined as follows:

#c finallyClause {#i:o and ?#i = finallyClause *:s}
#r block {#i:finallyClause and #o:block and
?#i ~ (= block #o) *:s}

#c exceptionBeforeFinally {#i = exceptionBeforeFinally}
#t {#i:generalCatchClause;
{:exceptionBeforeFinally
{@val:jump; exceptionBeforeFinally := ?val;
#?catchedException;
exceptionBeforeFinally := exceptionJump ?catchedException;

#exceptionBeforeFinally := ();}
val := (); {?(A:block<#i) A;;}
{@val:jump;
#val := ?exceptionBeforeFinally;}}}

5.7. Checked and unchecked statements

Semantics of checked and unchecked statements is defined as follows:

#c checkedStatement {#i:o and ?#i = checkedStatement *:s}
#r block {#i:checkedStatement and #o:block and
?#i ~ (= block #o) *:s}

#t {#i:checkedStatement;
{@val:jump;
#{?(A:block<#i)
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{:checkedContext {checkedContext := true; A;;}}}}}

#c uncheckedStatement {#i:o and ?#i = uncheckedStatement *:s}
#r block {#i:uncheckedStatement and #o:block and
?#i ~ (= block #o) *:s}

#t {#i:uncheckedStatement;
{@val:jump;
#{?(A:block<#i)
{:uncheckedContext {checkedContext := (); A;;}}}}}

6. Conclusion

This paper is further development of the language OTSL destined for de-
scription of ontological transition systems. This language is divided into
two sublanguages: a language of formulas and a language of actions. The
sublanguage of formulas which specify the ontological entities in OTSs was
presented in [1]. A sublanguage of actions which specify the transitions in
OTSs was presented in this paper.

The advantages of the language of actions are as follows:

• the language of actions has a formal operational semantics;

• this language is a verification-oriented language, since the operational
semantics of this language is easily inserted to a first-order program
logics;

• integration of languages of actions and formulas in ontological transi-
tion systems allows us to change the content of concepts and relations
during transitions.

At present, we use our method to define a complete operational semantics
of the sequential subset of C# language in the framework of the project of
C# program verification [5].
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