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A multi-branh narrowing: satis�ability and termination

�

I. S. Anureev

A new notion of a multi-branh narrowing that allows ase analysis to be built in is introdued. A narrowing strategy

that preserves formula satis�ability is suggested. A formalism alled formula rewriting systems speifying the strategy

is de�ned. The termination of formula rewriting systems is onsidered.

Introdution

Automatization of formula proving have an important value for program veri�ation and onstraint

satisfation. Deision proedures for partiular theories form the basis for automatization. Design of

new deision proedures is often based on term rewriting systems. The formulas of base theories are

onsidered as normal forms, and rewriting redues wider lass of formulas to normal forms.

Narrowing is a relation on terms that generalizes rewriting by using uni�ation instead of mathing.

Therefore its usage in reduing formulas to their normal forms allows us to design more powerful

deision proedures.

Narrowing was �rst introdued in [8, 9, 10℄ to perform uni�ation in equational theories presented

by a onuent and terminating rewriting system R. The narrowing proess onsists of building all

possible narrowing derivations starting from the equation to be solved and omputes in this way a

omplete set of uni�ers modulo the equational theory de�ned by R.

Di�erent strategies that restrit the size of the narrowing derivation tree have been proposed

[5, 7, 9, 12, 14, 17, 18, 19, 20℄.

The problems of onstrution of a omplete set of uni�ers and proof of ompleteness of term

rewriting systems are removed if narrowing is used as a method of redution to normal forms. However,

new problems of satis�ability preservation in eah narrowing step and termination of the narrowing

proess need to be solved.

In this paper these problems are studied and some solutions are proposed.

To extend appliability of narrowing-based simpli�ations, a notion of a multi-branh narrowing is

introdued in Setion 2. It allows ase analysis to be built in. In the same setion the onditions that

guarantee that narrowing preserves satis�ability are formulated. In Setion 3 a formalism speifying

the narrowing strategy that preserves satis�ability is onsidered. It is alled formula rewriting systems.

SuÆient onditions of satis�ability preservation for formula rewriting systems are stated. In Setion

4 a speial lass of formula rewriting systems (onstrutor formula rewriting systems) is desribed.

Termination of speial lasses of onstrutor formula rewriting systems w.r.t. innermost redution

strategy is onsidered in Setions 5, 6 and 7.

1. Preliminaries

The reader may refer to [6℄ for the onepts of terms, substitutions and rewriting systems. Notations

used in this paper are listed below. Let � be the �rst-order signature (F ;P;X ) omposed of the set

F of funtion symbols, the set P of prediate symbols and the set X of variables, T (�) denotes the

set of terms over �, F(�) denotes the set of �rst-order formulas over �, UF(�) denotes the set of

unquanti�ed formulas over �, E(�) denotes the set T (�) [ UF(�) of expressions over � and S(�)

denotes the set of substitutions over T (�), Ar(f) is the arity of f 2 F [ P, K denotes a �rst-order

�
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algebrai �-struture. Whenever � ontains the prediate symbol =, it will be interpreted as the

equality relation in K.

Given an expression u 2 E(�), a set of expressions E, and a substitution � 2 S(�), Var(u)

denotes the set of variables of u, MVar(u) denotes the multiset of variables of u, MVar

E

(u) denotes

the multiset of variables of u exept the variables ouring in subexpressions of u that belong to

E, root(u) denotes the root of u, juj denotes the number of ourenes of funtional and prediate

symbols in u, juj

E

denotes the number of ourenes of funtional and prediate symbols in u exept

the symbols ouring in subexpressions of u that belong to E, P(u) denotes the set of positions of

u with � as the topmost position, Dom(�) = fxjx 2 X and x� 6= xg denotes the domain of � and

VRange(�) = [

x2Dom(�)

Var(x�) denotes the variable range of �.

For distint variables x

1

; : : : ; x

n

and t

1

; : : : ; t

n

2 T (�), (x

1

! t

1

; : : : ; x

n

! t

n

) denotes the substi-

tution � suh that Dom(�) � fx

1

; : : : ; x

n

g and x

i

� = t

i

for eah 1 � i � n. In partiular, ( ) is an

identity substitution.

Given a set S and a multiset M , FM(S) denotes the set of all �nite multisets of the elements of

S and O(m;M) denotes the number of ourenes of an element m in M .

De�nition 1.1 A multiset W � FM(UF(�)) is satis�able in K if the formula _

A2W

A is satis�able

in K. A binary relation! on the set UF(�)[FM(UF(�)) is said to preserve satis�ability in K if W

is satis�able in K i� W

0

is satis�able in K for all W;W

0

2 UF(�)[FM(UF(�)) suh that W ! W

0

.

Given a partial order � on T (�), �

m

denotes the multiset extension of �. Let N be a set of

nonnegative integers with a usual relation >.

De�nition 1.2 Let t

1

; t

2

2 T (�), �; �; �; �

1

; �

2

2 S(�). The substitution � is a uni�er of t

1

and t

2

if t

1

� = t

2

�. A uni�er � is a most general uni�er (MGU for short) of t

1

and t

2

if for eah uni�er

� of t

1

and t

2

there exists a substitution � suh that � = �� . The terms t

1

and t

2

are uni�able if

there exists a uni�er of t

1

and t

2

. The substitution � is a uni�er of �

1

and �

2

if x�

1

� = x�

2

� for eah

x 2 Dom(�

1

) [ Dom(�

2

). A uni�er � of �

1

and �

2

is a most general uni�er if for eah uni�er � of �

1

and �

2

there exists a substitution � suh that � = �� . The substitutions �

1

and �

2

are uni�able if

there exists a uni�er of �

1

and �

2

Let us remind the uni�ation algorithm.

De�nition 1.3 Let U and V be sets of equalities, x 2 X , t 2 T (�), and U

x

t

denote the result of

replaement of all ourenes of the variable x in U by the term t. The uni�ation algorithm onsists

in indeterministi appliation of the following rules:

{ (U [ fx = xg; V )! (U; V ),

{ (U [ fx = tg; V )! (U

x

t

; V

x

t

[ fx = tg) if x 62 Var(t),

{ (U [ ft = xg; V )! (U

x

t

; V

x

t

[ fx = tg) if x 62 Var(t),

{ (U [ ff(t

1

; : : : ; t

n

) = f(t

0

1

; : : : ; t

0

n

)g; V )! (U [ ft

1

= t

0

1

; : : : ; t

n

= t

0

n

g; V ).

Let W

0

be the result of appliation of the uni�ation algorithm to the set

W = (fx�

1

= x�

2

jx 2 Dom(�

1

) [ Dom(�

2

)g; ;):

If W

0

has the form (;; fx

1

= t

1

; :::; x

n

= t

n

g) where x

i

2 X and t

i

2 T (�) for all 1 � i; j � n, then

the substitution � = (x

1

! t

1

; :::; x

n

! t

n

) is a uni�er of the substitutions �

1

and �

2

. If W

0

does not

have the above form, then the substitutions �

1

and �

2

are not uni�able.

To guarantee preservation of satis�ability, we separately onsider the ase when an MGU is found

without appliation of the deomposition rule. In this ase the uni�ation algoritm takes the form

{ (U [ ft = tg; V )! (U; V ),

{ (U [ fx = tg; V )! (U

x

t

; V

x

t

[ fx = tg) if x 62 Var(t),

{ (U [ ft = xg; V )! (U

x

t

; V

x

t

[ fx = tg) if x 62 Var(t).
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De�nition 1.4 The terms t

1

and t

2

is said to be uni�able without deomposition if a uni�er of t

1

and t

2

is found with the help of the above rules.

Example 1.5 The substitution (z ! su(x)) is an MGU of the substitutions (y ! z) and (y !

su(x)). It is found by applying the rule (fz = su(x)g; ;) ! (;; fz = su(x)g). Therefore the

substitutions (y ! z) and (y ! su(x)) are uni�able without deomposition. 2

The following example will illustrate the paper.

Example 1.6 Let F

nat

= fsu; pred; 0g with arities 1, 1, and 0, respetively. Then �

nat

denotes the

signature fF

nat

; f=g;Xg and the �

nat

-struture K

nat

spei�es the natural numbers with a suessor,

predeessor (pred(0) = 0) and zero. 2

2. Narrowing with satis�ability preservation

Our aim is to state the onditions guaranteeing that narrowing preserves satis�ability. But �rst we

generalize narrowing to ase analysis, the same onditions guaranteeing satis�ability preservation for

the extension alled multi-branh narrowing.

Let B be the onditional term rewriting system fp

i

jl

i

! r

i

j i 2 Ig over �. Here p

i

are arbitrary

unquanti�ed formulas.

De�nition 2.1 A multi-branh B-narrowing ;

B

is a set of pairs (A; f(p

i

^ A[r

i

℄

q

)�

i

j i 2 Ig) suh

that A 2 UF(�), q 2 P(A), and �

i

is an MGU of the terms l

i

and A

q

.

Let R be a set of CTRSs.

De�nition 2.2 A multi-branh R-narrowing ;

R

is a set of pairs (U [ fAg; U [ W ) suh that

U;W 2 FM(UF(�)), A 2 UF(�), and A;

B

W for some B 2 R.

De�nition 2.3 A term t is alled a B-redex if the terms l

i

and t are uni�able for eah i 2 I. A term

t is alled a redex of R if t is a redex of some B 2 R. The relation ;

B;t

is de�ned by the set of pairs

(A; f(p

i

^A[r

i

℄

q

)�

i

j i 2 Ig) suh that A 2 UF(�), q 2 P(A), t = A

q

, and �

i

is an MGU of the terms

l

i

and A

q

for eah i 2 I.

The satis�ability preservation of a multi-branh narrowing imposes a limitation on redexes and

onditional term rewriting systems (or CTRS for short). Let us desribe the limitations.

Let K be a �-struture.

De�nition 2.4 Let t be a redex of B and �

i

be an MGU of the terms l

i

and t for eah i 2 I. The

term t is said to have the ompleteness property in K if the formula 8�x_

i2I

(9�y

i

(p

i

^ �x = �x�

i

)) is valid

in K where �x is the set Var(t) and �y

i

is the set Var(p

i

) [ VRange(�

i

) for eah i 2 I. A CTRS B is

orret in K if p

i

) l

i

= r

i

is valid in K for eah i 2 I.

Theorem 2.5 If B is orret in K and a redex t of B has the ompleteness property in K, then ;

B;t

preserves satis�ability in K.

Proof Let W = f(p

i

^A[r

i

℄

q

)�

i

j i 2 Ig, A 2 UF(�), q 2 P(A), A

q

= t, and A;

B;t

W .

Let A be satis�able in K. It follows from the ompleteness property that there exists i 2 I suh

that the formula p

i

�

i

^A�

i

is satis�able in K.

Sine t�

i

= l

i

�

i

, p

i

�

i

is satis�able in K, and the formula p

i

) l

i

= r

i

is valid in K, the formula

p

i

�

i

^A[r

i

℄

q

�

i

is satis�able in K. Then W is also satis�able in K.

Let W be satis�able in K. Then there exists i 2 I suh that the formula p

i

�

i

^ A�

i

is satis�able

in K.
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Sine s�

i

= l

i

�

i

, p

i

�

i

is satis�able in K, and the formula p

i

) l

i

= r

i

is valid in K, the formula A�

i

is satis�able in K. Then A is also satis�able in K. 2

Proposition 2.6 formulates the onditions when an instane of a redex is a redex.

Proposition 2.6 Let s be a redex of B, �

i

be an MGU of the terms s and l

i

for eah i 2 I, � 2 S(�),

and the substitutions � and �

i

are uni�able for eah i 2 I. Then s� is a redex of B.

Proof Let �

i

be an MGU of �

i

and � for eah i 2 I. Sine

(s�)�

i

= (s�

i

)�

i

= (l

i

�

i

)�

i

= (l

i

�)�

i

= l

i

�

i

for eah i 2 I, the substitution �

i

is a uni�er of s� and l

i

. Then s� is a redex of B. 2

Let us de�ne the onditions when satis�ability is preserved for an instane of a redex that has the

ompleteness property.

Theorem 2.7 Let s be a redex of B, �

i

be an MGU of l

i

and s for eah i 2 I, and � 2 S(�). If B

is orret in K, s has the ompleteness property, and the substitutions � and �

i

are uni�able without

deomposition for eah i 2 I, then ;

B;s�

preserves satis�ability in K.

Proof Let W = f(p

i

^A[r

i

℄

q

)�

0

i

j i 2 Ig where �

0

i

is an MGU of s� and l

i

for eah i 2 I, A 2 UF(�),

A

q

= s�, and A ;

B;s�

. The substitution �

0

i

exists for eah i 2 I, sine s� is a redex of B by

Proposition 2.6.

Let �x be the set Var(s), �x

0

be the set Var(s�), �

i

be an MGU of l

i

and s for eah i 2 I, and �y

i

be

the set Var(p

i

) [ VRange(�

i

) for eah i 2 I.

Let A be satis�able in K. It follows from the ompleteness property 8�x _

i2I

(9�y

i

(p

i

^ �x = �x�

i

))

that 8�x

0

_

i2I

(9�y

i

(p

i

^ �x� = �x�

i

)).

Let �

i

be an MGU of � and �

i

for eah i 2 I and �y

0

i

be the set VRange(�

i

) [ VRange(�) for eah

i 2 I.

From the form of the rules of uni�ation without deomposition it follows that formulas �x� = �x�

i

and �x

0

= �x

0

�

i

are equivalent. Then 8�x

0

_

i2I

(9�y

0

i

(p

i

�

i

^ �x

0

= �x

0

�

i

)).

Sine s�

i

= l

i

�

i

, p

i

�

i

is satis�able in K, and the formula p

i

) l

i

= r

i

is valid in K, there exists

i 2 I suh that the formula p

i

�

i

^A[r

i

℄

q

�

i

is satis�able in K.

By the proof of Proposition 2.6, the substitution �

i

is a uni�er of s� and l

i

for eah i 2 I. Sine

�

i

= �

0

i

� for some � 2 S(�), p

i

�

0

i

^A[r

i

℄

q

�

0

i

is satis�able in K. Then W is also satis�able in K.

Let W be satis�able in K. The proof that A is satis�able in K is analogous to that of Theorem 2.5.

2

3. Formula rewriting systems

Consider a formalism speifying the narrowing strategy that preserves satis�ability.

Let B = fp

i

jl

i

! r

i

j i 2 Ig be a CTRS over �.

De�nition 3.1 Let s 2 T (�) n X. A pair � = (B; s) is alled a formula rewrite rule over � if the

terms l

i

and s are uni�able for eah i 2 I. The term s is alled a sample of �. A �nite set of formula

rewrite rules over � is alled a formula rewriting system (or FRS for short) over �.

Note that a term rewrite rule l ! r an be treated as the formula rewrite rule (fl ! rg; l).

Therefore, term rewriting systems are a speial ase of FRSs.

Example 3.2 The pair �

nat

= (fpred(su(x)) ! x; pred(0) ! 0g; pred(y)) is a formula rewrite

rule over the signature �

nat

, sine the terms pred(su(x)) and pred(0) are uni�able with pred(y).

The substitution �

nat

1

= (y ! su(x)) is an MGU of pred(su(x)) and pred(y), and the substitution

�

nat

2

= (y ! 0) is an MGU of pred(0) and pred(y). 2
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Let � = (B; s) be a formula rewrite rule over �, �

i

be an MGU of the terms l

i

and s for eah i 2 I.

De�nition 3.3 A term t is alled a redex of the rule � if there exists a substitution � suh that t = s�

and substitutions � and �

i

are uni�able without deomposition for eah i 2 I. A term t is alled a

redex of an FRS R if t is a redex of some rule of R.

Let �

i

be an MGU of the substitutions � and �

i

for eah i 2 I.

Example 3.4 The term pred(z) is a redex of �

nat

, sine pred(z) = pred(y)�

nat

, where �

nat

= (y !

z), the substitution �

nat

1

= (z ! su(x)) is an MGU of the substitutions �

nat

and �

nat

1

and the

substitution �

nat

2

= (z ! 0) is an MGU of the substitutions �

nat

and �

nat

2

. These MGUs are found

without appliation of the deomposition rule of the uni�ation algorithm. 2

De�nition 3.5 An �-redution relation !

�

is a set of pairs (A; f(p

i

^ A[r

i

℄

q

)�

i

j i 2 Ig suh that

A 2 UF(�), q 2 P(A), and A

q

is a redex of �. Let R be an FRS. An R-redution relation!

R

is a set

of pairs (U [ fAg; U [W ) suh that � 2 R, U;W 2 FM(UF(�)), A 2 UF(�), and A!

�

W .

Term rewriting systems an be used for rewriting both formulas and terms. From the de�nition

of !

�

we see that FRSs an be used only for rewriting formulas. That is why they are alled formula

rewriting systems.

Example 3.6 pred(z) = z !

�

nat

fx = su(x); 0 = 0g. 2

For eah FRS R over � there is a orresponding abstrat redution system [13℄, namely

(FM(UF(�));!

R

):

Therefore, all onepts de�ned for abstrat redution systems (termination, normal form and so on)

are inherited by R.

The termination property is undeidable for FRSs [1℄. The onditions of satis�ability preservation

is given by the following theorem.

Theorem 3.7 Let K be a �-struture and � = (B; s) be a formula rewrite rule suh that B is orret

in K and the redex s of B has the ompleteness property in K. Then !

�

preserves satis�ability in K.

Proof Let t be a redex of �. Then there exists a substitution � suh that t = s� and substitutions �

and �

i

are uni�able without deomposition for eah i 2 I.

Sine B is orret in K and s has the ompleteness property in K, from Theorem 2.7 it follows that

;

B;t

preserves satis�ability in K.

By de�nition of !

�

, if A[t℄

q

!

�

W then A[t℄

q

;

B;t

W for all A 2 UF(�), q 2 P(A), and

W � UF(�).

Then A[t℄

q

is satis�able in K i� W is satis�able in K for all A 2 UF(�), q 2 P(A), W � UF(�),

and t 2 T (�) suh that A[t℄

q

!

�

W . Hene !

�

preserves satis�ability in K. 2

Example 3.8 The suÆient onditions of satis�ability preservation for the rule �

nat

are pred(su(x)) =

x, pred(0) = 0 and 8y(9x(y = su(x)) _ y = 0). It is obvious that the onditions are valid in K

nat

.2

4. Construtor formula rewriting systems

Many FRSs arising in pratie are onstrutor FRSs. A onstrutor FRS R is an FRS in whih the

set of funtional symbols an be partitioned into a set A of de�ned funtional symbols (or analyzers)

and a set C of onstrutors, suh that for every � 2 R its sample has the form f(t

1

; :::; t

n

) with f 2 A

and t

1

; :::; t

n

2 T ((C;P;X )). The related onept for term rewriting systems has been onsidered, for

instane, in [13℄.
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Let R be a onstrutor FRS over � with a set of analyzers A and a set of onstrutors C. Let us

introdue some onepts that allow us to analyze a struture of expressions w.r.t. R.

De�nition 4.1 An expression u is alled onstrutive if u 2 E((C;P;X )). A substitution � is on-

strutive if x� 2 T ((C;P;X )) for eah variable x 2 X . A term in whih no variable ours twie or

more is alled linear. A substitution � is linear on X � X if for all variables x; y 2 X the term x� is

linear and Var(x�) \ Var(y�) = ; if x 6= y. An expression u is nested if u has nested ourenes of

analyzers. An expression u is alled simple if u is not nested. A term t is a all if root(t) 2 A.

C

m

(u) denotes the multiset of all simple alls that our in u 2 E .

De�nition 4.2 A map �



: E(�)! FM(N) is a onstrutor measure if �



(u) = fjtj j t 2 C

m

(u)g. A

map De

v

: E(�)! FM(X ) is a variable deomposition if De

v

(u) = [

t2C

m

(u)

MVar(t).

Let C

e

(u) denote the multiset of all nested alls of u 2 E(�), �

a

and �

v

denote the maps suh that

�

a

(u) = jC

e

(u)j and �

v

(u) = fO(x;De

v

(u)) j O(x;De

v

(u)) 6= 0g, respetively.

Finding of lasses of terminating FRSs is a very diÆult problem. In the following setions three

speial lasses of onstrutor FRSs are onsidered. They all are terminating w.r.t. a speial strategy

of appliation of rules.

De�nition 4.3 Let R be the set of all FRSs over �. A funtion

s : R ! FM(UF(�))�FM(UF(�))

is alled a redution strategy for FRSs if s(R) �!

R

for all R 2 R. An FRS R is terminating w.r.t. s

if s(R) is terminating.

The following redution strategy guarantees the termination of lasses of FRSs mentioned above.

De�nition 4.4 A redution strategy for AESs is an innermost redution strategy if the rules of AESs

are applied to the redexes that do not ontain redexes as their proper subterms.

5. Analyzer elimination systems

The following lass of onstrutor FRSs (analyzer elimination systems or AESs for short) allows us to

design simpli�ers that eliminate analyzers. The idea of these systems onsists in perolating analyzers

through onstrutors to variables followed by their elimination by variable replaement. Unfortunately,

even very strong restritions imposed on AESs guarantee termination only w.r.t. a ertain redution

strategy.

De�nition 5.1 A onstrutor FRS R is an analyzer elimination system if any simple all is a redex

of R and for eah rule (fp

i

jl

i

! r

i

j i 2 Ig; s) 2 R and for eah i 2 I the following properties hold:

{ �

i

is linear on Var(s) and onstrutive,

{ p

i

and r

i

are simple,

{ p

i

and r

i

are onstrutive if l

i

6= s,

{ De

v

(s) � De

v

(p

i

) [De

v

(r

i

),

{ �



(s) >

m

�



(p

i

) and �



(s) >

m

�



(r

i

).

Example 5.2 Let R be an FRS that onsists of the following rules:

{ �

1

: pred(su(x))! x,

{ �

2

: pred(0)! 0,

{ �

3

: (fpred(su(x)) ! x; pred(0)! 0g; pred(y) ).

Show that R is an AES with the analyzer pred.

Let t be a simple all. By the de�niton of a simple all, t takes one of the following forms:

pred(su(t

0

)), pred(0) or pred(z), where t

0

is a onstrutive term and z 2 X .
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Considering these ases, we see that t is a redex of the rules �

1

, �

2

, and �

3

, respetively.

Conditions from the de�nition of AES for the rule �

1

with the sample s = pred(su(x)) take the

form:

{ the idential substitution �

1

= () is linear on fxg,

{ the right-hand side x is simple,

{ the right-hand side x is onstrutive if s = pred(su(x)),

{ De

v

(s) = fxg � ; = De

v

(x),

{ �



(s) = f1g >

m

; = �



(x).

Conditions from the de�nition of AES for the rule �

3

with the sample s = pred(y) take the form:

{ the substitutions �

1

= (y ! su(x)) and �

2

= (y ! 0) are linear on fyg,

{ the right-hand sides x and 0 are simple,

{ the right-hand sides x and 0 are onstrutive if s 6= pred(su(x)) and s 6= pred(0), respetively,

{ De

v

(s) = fyg � ; = De

v

(x) and De

v

(s) = fyg � ; = De

v

(0),

{ �



(s) = f0g >

m

; = �



(x) and �



(s) = f0g >

m

; = �



(0).

Veri�ation of onditions for the rules �

1

and �

3

is straightforward. The rule �

2

is onsidered in

similar way. 2

The termination property of AESs is given by the following theorem.

Theorem 5.3 AESs are terminating w.r.t. the innermost redution strategy.

Proof Let s

i

be the innermost redution strategy. To prove the termination of AESs w.r.t. s

i

, it is

suÆient to build a well-founded partial order � suh that s

i

(R) � � for any AES R.

The required partial order � is a multiset extension of �

0

suh that u �

0

v i� (�

a

(u); �

v

(u); �



(u))

is lexiographially bigger than (�

a

(v); �

v

(v); �



(v)) with orders >, >

m

, and >

m

on the �rst, the

seond, and the third elements of the tuple, respetively.

A multiset extension of a well-founded order and a lexiographial order on tuples of the same

number of elements with well-founded orders on the elements are well-founded. Therefore � is well-

founded. The hek of s

i

� � is redued to the routine ase analysis and, therefore, is dropped.

2

Let us show that the use of the redution strategy for AESs is a neessary ondition of termination

of AESs.

Example 5.4 Let R be the FRS that onsists of the following rules:

�

1

: (ff((z)) ! zg; f(x))

�

2

: (ff((z)) ! zg; f((z)))

�

3

: (ff(d(x; y)) ! d(f(y); f(x))g; f(d(x; y)))

�

4

: (fh((z)) ! d(h(z); z)g; h((z)))

�

5

: (fh(d(x; y)) ! xg; h(d(x; y)))

�

6

: (fh(d(x; y)) ! xg; h(z))

The FRS R is an AES with analyzers f and h. However the following hain of redutions

d(f(x); f(h(x))) !

�

1

d(z; f(h((z)))) !

�

4

d(z; f(d(h(z); z))) !

�

3

d(z; d(f(z); f(h(z)))) !

�

1

: : :

is in�nite. In the hain the rule �

3

is applied to the redex f(d(h(z); z)) of R that ontains the redex

h(z) as its proper subterm. 2

6. Analyzer elimination systems with argument status

Consider the generalization of AESs (AESs with argument status, or SAES, for short) that also has

the termination property w.r.t. the innermost redution strategy.
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Example 6.1 Let R be the onstrutor system (ff(g(g(x)); y) ! f(x; f(a; y))g; f(g(g(x)); y)) with

the analyzer f and onstrutors g and a. It is obvious that R is terminating w.r.t. the innermost

redution strategy. However, R is not an AES, sine the term f(x; f(a; y)) is nested. 2

This problem an be deided if we take into aount only ertain arguments of funtion symbols.

In the example the term f(x; f(a; y)) is simple if we take into aount only the �rst argument of f .

Let us introdue the orresponding de�nition.

De�nition 6.2 A map arg : A ! P(N) is alled an argument status if arg(f) � f1; :::;Ar(f)g.

The de�nitions of a nested expression, a all, a onstrutor measure and a variable measure are

modi�ed so as to take into aount an argument status.

De�nition 6.3 An expression u is nested w.r.t. arg if there is a position q 2 P(u) suh that

u

q

= f(t

1

; :::; t

n

), f 2 D and the term t

i

is not onstrutive for some i 2 arg(f). An expression u is

alled simple if u is not nested w.r.t. arg.

C

m

(u) denotes the multiset of all alls whih are simple w.r.t. arg and our in expression u.

De�nition 6.4 A map �

arg



: E(�)! FM(N) is a onstrutor measure w.r.t. arg if

�

arg



(u) = f

X

i2arg(f)

jt

i

j j f(t

1

; :::; t

n

) 2 C

m

(u)g:

De�nition 6.5 A map De

arg

v

: E(�)! FM(X) is a variable deomposition w.r.t. arg if

De

arg

v

(u) = [

f(t

1

;:::;t

n

)2C

m

(u)

[

i2arg(f)

MVar(t

i

):

De�nition 6.6 A onstrutor FRS R is an analyzer elimination system with an argument status arg,

if any simple all is a redex of R and for eah rule (fp

i

jl

i

! r

i

j i 2 Ig; s) 2 R and for eah i 2 I the

following properties hold:

{ �

i

is linear on Var(s) and onstrutive,

{ p

i

and r

i

are simple w.r.t. arg,

{ p

i

and r

i

are onstrutive if l

i

6= s,

{ De

arg

v

(s) � De

arg

v

(p

i

) [De

arg

v

(r

i

),

{ �

arg



(s) >

m

�

arg



(p

i

) and �

arg



(s) >

m

�

arg



(r

i

),

{ t

ij

= t

j

for eah j 2 arg(f) where l

i

= f(t

i1

; : : : ; t

in

) and s = f(t

1

; : : : ; t

n

).

AESs are a speial ase of SAESs. It is obtained by taking arg(f) = f1; : : : ;Ar(f)g for eah f 2 A.

The termination property of SAESs is given by the following theorem.

Theorem 6.7 SAESs are terminating w.r.t. the innermost redution strategy.

Proof Let s

i

be the innermost redution strategy. To prove the termination of AESs w.r.t. s

i

it is

suÆient to build a well-founded partial order � suh that s

i

(R) � � for any AES R.

Let C

arg

e

(u) denote the multiset of all nested alls of u 2 E(�) w.r.t. arg, �

arg

a

and �

arg

v

denote

the maps suh that �

arg

a

(u) = jC

e

(u)

arg

j and �

arg

v

(u) = fO(x;De

arg

v

(u)) j O(x;De

arg

v

(u)) 6= 0g,

respetively.

The required partial order � is a multiset extension of �

0

suh that u �

0

v i�

(�

arg

a

(u); �

arg

v

(u); �

arg



(u))

is lexiographially bigger than
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(�

arg

a

(v); �

arg

v

(v); �

arg



(v))

with orders >, >

m

, and >

m

on the �rst, the seond, and the third elements of the tuple, respetively.

A multiset extension of a well-founded order and a lexiographial order on tuples of the same

number of elements with well-founded orders on the elements are well-founded. Therefore � is well-

founded. The hek of s

i

� � is redued to the routine ase analysis and, therefore, is dropped.

2

7. Analyzer elimination systems with a substitution base

The third lass of onstrutive systems that are terminating w.r.t. the innermost redution strategy

are analyzer elimination systems with a substitution base. These systems are built in the following

way:

1. A lass of expressions alled a substitution base is hosen. The expression analysis does not

take into aount expressions of the substitution base. An example of suh analysis of the expression

struture is appliation of funtions Var

E

jj

E

. These funtions do not take into aount subexpressions

that our in E.

2. Narrowing is restrited by MGUs that replae the variables by expressions of the substitution

base.

De�nition 7.1 Let E � E , S � S. E is alled losed w.r.t. S, if u� 2 E for every u 2 E

and � 2 S. E is omplete w.r.t. S, if the sets E, E n (E [ V) are losed w.r.t. S. E is losed

(omplete) w.r.t. substitutions, if E is losed (omplete) w.r.t. S. A map �

E



is a onstrutor

measure w.r.t. E if �

E



(u) = fjtj

E

jt 2 C

m

(u)g. A map De

E

v

is a variable deomposition w.r.t. E, if

De

E

v

(u) = fMVar

E

(t)jt 2 C

m

(u)g.

Example 7.2 Let E = fh(x)�j� 2 Sg, E

0

= fh(x)�j� is a onstrutive substitutiong. Then E is

omplete w.r.t. substitutions, E

0

is omplete w.r.t. onstrutive substitutions. 2

De�nition 7.3 Let E be a set of expressions omplete w.r.t. onstrutive substitutions. A onstrutor

FRS R is an analyzer elimination system with the substitution base E, if any simple all is a redex of

R and for eah rule (fp

i

jl

i

! r

i

j i 2 Ig; s) 2 R and for eah i 2 I the following properties hold:

{ fx�

i

j x 2 Var(s)g � E,

{ p

i

and r

i

are simple,

{ p

i

and r

i

are onstrutive if l

i

6= s,

{ De

E

v

(s) � De

E

v

(p

i

) [De

E

v

(r

i

),

{ �

E



(s) >

m

�

E



(p

i

) and �

E



(s) >

m

�

E



(r

i

).

Example 7.4 Let R be a onstrutive FRS with the analyzer f that onsists of the following rules:

{ �

1

: (ff(h(x))! xg; f(y)),

{ �

2

: f(h(x))! x,

{ �

3

: f(g(x))! g(f(x)).

Let S



be a set of all onstrutive substitutions. Show that R is an AES with the substitution base

E = fh(x)�j� 2 S



g.

Conditions from the de�nition of AES with the substitution base for the rule �

1

with the sample

s = f(y) take the form:

{ true and x are simple,

{ fy(x! z; y ! h(z))g = fh(z)g � E,

{ true and x are onstrutive if f(h(x)) 6= s,

{ De

E

v

(s) � De

E

v

(p

i

) [De

E

v

(r

i

),

{ �

E



(s) >

m

�

E



(p

i

) and �

E



(s) >

m

�

E



(r

i

).
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Conditions from the de�nition of AES with the substitution base for the rule �

2

with the sample

s = f(h(x)) take the form:

{ true and x are simple,

{ fx(x! z)g = fzg � E,

{ true and x are onstrutive if f(h(x)) 6= s,

{ De

E

v

(s) = ; � ; [ ;,

{ f1g >

m

; and f1g >

m

;.

Conditions from the de�nition of AES with the substitution base for the rule �

3

with the sample

s = f(g(x)) take the form:

{ true and g(f(x)) are simple,

{ fx(x! z)g = fzg � E,

{ true and g(f(x)) are onstrutive if f(g(x)) 6= s,

{ fxg =�

m

; [ fxg,

{ f3g >

m

; and f3g >

m

f2g.

Veri�ation of onditions for the rules �

1

, �

2

, and �

3

is straightforward. The form of the samples

of the rules of R guarantees that any simple all is a redex of R. So R is an AES with a substitution

base. 2

AESs is a speial ase of AESs with a substitution base. It is obtained by taking E = ;.

The termination property of AESs with a substitution base is given by the following theorem.

Theorem 7.5 Analyzer elimination systems with a substitution base is terminating w.r.t. the inner-

most redution strategy.

Proof Let s

i

be the innermost redution strategy. To prove the termination of AESs with a substitu-

tion base w.r.t. s

i

, it is suÆient to build a well-founded partial order � suh that s

i

(R) � � for any

AES R.

Let R be an AES with the substitution base E. The required partial order � is a multiset extension

of �

0

suh that u �

0

v i� (�

a

(u); �

E



(u)) is lexiographially bigger than (�

a

(v); �

E



(v)) with orders >

and >

m

on the �rst and the seond elements of the tuple, respetively.

A multiset extension of a well-founded order and a lexiographial order on tuples of the same

number of elements with well-founded orders on the elements are well-founded. Therefore � is well-

founded. The hek of s

i

� � is redued to the routine ase analysis and, therefore, is dropped.

2

Conlusion

The paper presents a method of appliation of narrowing to formula simpli�ation. The method

inludes the following new features:

{ the onept of a multi-branh narrowing that allows ase analysis to be built;

{ formula rewriting systems formalizing narrowing strategy that preserves satis�ability;

{ the method for proving termination of formula rewriting systems.

Proving orretness onditions that appear in program veri�ation is an important area of appli-

ation of the method. Proving orretness onditions is performed in the interative mode in most

veri�ation systems. Our method allows the proof of orretness onditions to be done automati-

ally. The program veri�ation system SPECTRUM [15, 16℄ has been developed for whih a new

prover based on the method is being designed. In partiular, experiments on automati veri�ation

of programs of array sorting and �le sorting have been performed in the framework of the projet

SPECTRUM by this method.

Some details of the theory of formula rewriting systems and their appliation to problem-oriented

veri�ation has been onsidered in [1, 2, 3, 4℄. The methods of proving termination of formula rewriting
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systems have been studied in [2℄. In partiular, other lasses of terminating formula rewriting systems

have been proposed [1, 2℄.
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