Joint NCC & IIS Bull., Comp. Science, 8 (1998), 1-18
© 1998 NCC Publisher

A method for simplification procedure
design based on formula rewriting
systems”*

1.S. Anureev

We generalize the notion of formula rewriting systems proposed in the prelim-
inary work, extend the class of such systems and expand our previous results for
the new class. We demonstrate that the well-known techniques of formula simpli-
fication can be represented in terms of this formalism and investigate termination
problem for such systems in detail.

Introduction

A powerful method for design of simplification procedures preserving sat-
isfiability is proposed. The need for such method can be motivated by
the following reasons: (i) There are important applications of simplification
procedures preserving satisfiability; (ii) Known methods of simplification
procedures design do not cover all such applications.

Let us consider two applications of simplification procedures preserv-
ing satisfiability (constraint-based deduction and program verification) and
two well-known methods of simplification procedures design (term rewriting
systems and narrowing).

Constraint-based deduction. In constraint-based deduction it is often
sufficient to check constraints for satisfiability and postpone their solving
until a later stage [1]. Formula rewriting is one of the methods of checking
constraints for satisfiability [2]. A particular set of formulas (called solved
forms) and associated set of elementary constraint solvers (checking any
solved forms for satisfiability) are distinguished. Then a set of terminating
rewriting rules on formulas preserving satisfiability, is designed. If every ir-
reducible formula is a solved form, then a method of reducing a wider class
of formulas to the set of solved forms is obtained. Therefore, formula rewrit-
ing is a method of design of constraint simplifiers preserving satisfiability,
and development of formula rewriting formalisms is an important problem.

Program verification. In the classical program verification, the problem

*Partially supported by INTAS-RFBR under Grant 95-0378.

2 I S. Anureev

of program correctness is reduced to proving validity of several formulas
(verification conditions). Since a formula is valid iff its negation is not satis-
fiable, validity problem can be reduced to satisfiability problem and design
of simplification procedures preserving satisfiability plays an important role
in this case, too. '

Term rewriting systems. Nowadays the use of term rewriting systems is
the most wide-spread method of designing simplification procedures. How-
ever, the replacement ’equal by equal’ (underlying term rewriting systems)
is inhibitory for the use of more powerful simplifications. In particular, we
cannot apply such simplifications to case analysis and replacement of vari-
ables since they are not equivalent formula transformations. '

Narrowing. A well-known technique to solve equations in equational the-
ories is the 'narrowing’ transformation on terms. Narrowing can be also
considered as a method of designing simplification procedures. The advan-
tage of this method, in particular, is simulation of replacement of variables,
Unfortunately, in the general case narrowing does not preserve satisfiability.

The technique of formula rewriting systems ([3, 4]) can simulate both for-
mula rewriting technique (based on term rewriting systems) and narrowing
as well as replacement of variables and case analysis. The other impor-
tant feature of formula rewriting systems is that the sufficient conditions of
preserving satisfiability for such systems are related to algebraic structures.
This allows us to design problem-oriented simplification procedures.

A structure of the paper. In Section 1 we remind the well-known logical
and set-theoretic notions. Generalized definitions of formula rewriting sys-
tem and reduction relation generated by it are presented in Section 2. In the
same section we demonstrate that the termination property is undecidable
for formula rewriting systems. In Section 3 we explain the way the well-
known techniques of formula simplification can be embedded into formalism
of formula rewriting systems. Sufficient conditions of preserving satisfiability
for formula rewriting systems are stated in Section 4. The rest of the paper
is devoted to termination property for formula rewriting systems. Relation
between the termination of formula rewriting systems and simplification or-
dering is studied in Section 5. A termination of formula rewriting systems
with respect to reduction strategies is considered in Sections 6 and 7. A
special class of formula rewriting systems (selector elimination systems) is
introduced in Section 6. In Section 7 selector elimination systems are gen-
eralized to argument status. In Section 8 the main introduced concepts are
illustrated by examples from the tuple theory. In the conclusion further
research is discussed. '

A method for simplification procedure design 3

1. Preliminaries

1.1. Terms, formulas and substitutions

The reader may refer to [5] for the concepts of terms, substitutions and
unifiers. The notations used in this paper are listed below.

~ For a set S, multiset U and u € U, |S| denotes the cardinality of S,
FS(S) denotes the set of all finite subsets of S, FM(S) denotes the set
of all finite multisets of elements of S and O(u,U) denotes the number of
occurrences u in U.

For a signature ¥ = (F,P,V) with the set of function symbols F, the
set of predicate symbols P and the set of variables V, 7 denotes the set
of T-terms, UF denotes the set of unquantified E-formulas with equality
=, £ = T U UF denotes the set of T-expressions and S denotes the set of
substitutions over £.

For u € £ and o € 8, Var(u) denotes the set of variables of u, MVar(u)
denotes the multiset of variables (in respect of their occurrences) of u,
root(u) denotes the root of u, |u| denotes the number of occurrences of
functional and predicate symbols into u, P(u) denotes the set of positions
of u with A as the top most position, Dom(c) denotes the domain of o and
VRange(c) denotes the variable range of o.

For distinct variables zi,...,z, and t1,...,tn € T,

(1 = t1y. ..y Zn — tn)

denotes the substitution o such that Dom(c) C {z1,...,%x} and z;0 = ¢;
for each 1 < i < n. In particular, () is an identity substitution.

A renaming substitution is a bijective substitution. This implies that a
renaming T, restricted to the set of variables X = Dom(7), is a permutation
of X. Note that the composition o7 of renamings o, 7 is also a renaming,
and that the inverse 7~! of a renaming T exists and it is also a renaming.
We call @ a unifier of substitutions ¢ and ¢’ if 8 = ¢'f. It is a most general
unifier (mgu) of o and o if for every uinfier 8’ of o and o there exists a
renaming 7 such that ' = 6. Any two substitutions which are unifiable
(have a unifier) have a mgu. It is unique modulo renamings.

Problem of finding a mgu of substitutions o and ¢’ can be viewed as the
problem of solving the set of equations {zo = zo'|z € Dom(o) U Dom(d')}.
Let E be a set of equations and let t,¢1,...,tn,81,...,9, € T, f € F and
z € V. The algoritm exploiting this representation consists of the following
rules which transform one set of equations into another one:

1. Term decomposition:

{f(tl,...,tn) = f(sl,...,sn)}UE () {t1 =81,...,tn = sn} UE;

4 _ L S. Anureev

2. Removal of trivial equations: {t =t} UE — () E;
3. Swap: {t=2}UE —() {z =t} UE if t is not a variable;

4. Variable elimination: {¢ =t} UE —(,4) E(z — t) if € Var(t). For
E ={ey,...,en}, Bo = {ei0,...,en0}.

A finite derivation sequence £ = Ey =4, E1 =4, ... ¢, By is success-
ful if none of the above rules is applied to E,. In this case, the substitution
0103 ...0y is called a computed answer substitution of the successful deriva-
tion £. We have the following well-known theorem:

Theorem. Let E = {zo = zo'|z € Dom(o) U Dom(c')}. Then the follow-
ing statements are equivalent: (i) The substitutions o and o' are unifiable;
(i) There is a mgu of the substitutions o and o'; (iii) The derivation tree
with the root E and constructed with the above rules is finite and has only
successful branches, all yielding a mgu of the substitutions o and o as the
computed answer substitution. Furthermore, if the substitutions o and o
are not unifiable, the derivation tree is also finite, but now with all branches
ending unsuccessfully.

1.2. Relations and orderings

Let us remind some properties of relations and orderings. Let S be a set and
— be a binary relation on S. As usual, &% denotes the transitive closure
of —.

Definition. A relation — is terminating if there are no infinite chains
81 — 82 — ... of elements of S.

Let u,v € § and U,W € FM(S). For a binary relation — on §, —»™
denotes the relation {({u} U W, {v} UW)|u — v}*. For a relation — on
S x FM(S), =™ denotes the relation {({u} UW,UUW)|u — U}*.

Let u,v € UF, U,V € FM(UF) and 7 be a renaming. Then = denotes
" the minimal relation such that (i) u = ur for any u and T; (ii) @ = @; (i)
for any U, V,uand v, UU{u} =V U{v} if U=V and u =v.

For u,v,u’,v' € UF, the relations —, and —p, u =, v and v’ — ¢,
C denotes the relation {(—q, —)|VuVvIu'3’ (u = «' and v = v')} and =
denotes the relation {(—4, —)| —aC— and —5C—3,}. Let =" denote the
relation {(—q,)| 23'=—7"}.

Definition. Let > be a strict partial ordering on S. > is well-founded if
there are no infinite descending chains s; >~ 82 > ... of elements of S.

A method for simplification procedure design) 5

Let M\M')Y € FM(S),0 # X C M and M' = (M\ X)UY and
let £ € X and y € Y. A relation >, is a multiset extension of - if
m= {(M,M")|3X3YVy3Iz(z >~ y)}.

Definition. Let > be a strict partial ordering on 7, ¢,s € T, f € F and
o € 8. So, > is monotonic if VsVtVf (s =t = f(...,8,...) = f(...,t,...));
» is a reduction ordering if > is monotonic and well-founded; > is stable
w.r.t. substitutions if VsVtVo (t = s = to > sg); > is a term ordering if
» is reduction ordering stable w.r.t. substitutions; > possesses the subterm
property if VtVf (s =t => f(...,t,...) > t); > is a simplification ordering if
- is monotonic and > possesses the subterm property.

Hereinafter, the set of natural numbers is denoted by A and > denotes
the natural ordering on N.

2. Formula rewriting systems

2.1. Definitions

Throughout the paper, we use the letters p, A and B to represent unquan-
tified formulas, the letters u, v/, v, [, r and s to represent expressions, the
letters z, y and z to represent variables and the letters o, o,0,¢, pand T
to represent substitutions.

Definition. A triple p|l — r is a conditional term rewriting rule if I and r
are both either terms or formulas. A finite set of conditional term rewriting
rules is called a conditional term rewriting system (CTRS).

Let us note that there are no usual restrictions [6] of the form I ¢ V or
Var(r) C Var(l) in this definition. Throughout the paper, B denotes some
CTRS, 7 € B, mr=p|l = r and p = (B, 3).

Definition. A pair p is a formula rewriting rule if Vx (I and s are unifiable).
Here B is called a base of p, 7 is called a branch of p and s is called a sample
of p. A set of formula rewriting rules is called a formula rewriting system
(FRS).

Definition. Let 6 be a mgu of ¢ and o', and let Z = Dom(o) U Dom(c'),
§ = Var(Zo = &0') and Z = VRange(f). 0 is a trivial unifier of o and o’ if
the formula V§3z(Zo = Zo' = § = §0) is valid. Substitutions o and o’ are
trivially unifiable if they have a trivial unifier.

As an obvious consequence of the definition we have

6 1. S. Anureev

Proposition 1. Two substitutions are trivially unifiable iff a trivial unifier
of these substitutions can be found by the unification algorithm without the
term reduction rule.

Throughout the paper, let ¢ € P(A) and lo = Ay, let 6 be a mgu of [and
s, ¢ be a trivial unifier of o and 8, and R be a FRS, and let p € R. To avoid
variable confusion, the following restrictions hold: A and R do not contain
common variables,

Dom(#) = Var(l) U Var(s),
Dom(¢) = Var({zo = 28|z € Dom(c) UDom(0)})

and the sets VRange(d) and VRange(¢) consist of new variables.

Definition. A relation —p is a reduction relation generated by R if

—r={(4, {(po A Alraly)¢7})|4, 4, p}-

Let W € FM(UF) and w € W. A relation (—g)p is a branch relation
generated by R if

(—=r)s = {(4,w)|3W (A =r W)}.

2.2. Properties

Let A= (FM(UZF),(—gr)™). For each R there is a corresponding abstract
reduction system [6], namely A. Therefore all notions (termination, conflu-
ence, normal form and so on) and their properties defined in the theory of
abstract reduction systems are carried over to FRSs via the associated ab-
stract reduction system. For instance, R is terminating if .4 is terminating.
Let us examine thoroughly the termination property which is of a consid-
erable importance in the simplification procedures design. Unfortunately,
the termination property is in general undecidable for formula rewriting
systems. '

Theorem 1. The termination property is undecidable for formula rewriting
systems.

Proof. Suppose, for a proof by contradiction, that the termination prop-
erty is decidable for formula rewriting systems. Let R; = {{ — r} be a TRS.
Let s=1,mr=1—->r,p=({r},8), R={p} and FP = UF x UF. We
have the following chain of easily proved conjectures: (i) R; is terminating
iff &+ = ((—r)Fp)" is terminating; (ii) — is terminating iff ((—r)s)*
is terminating; (iii) ((—gr)s)" is terminating iff R is terminating. By the

A method for simplification procedure design 7

conjectures, R is terminating iff R; is terminating. However, this is in con-
tradiction with the fact the termination property is undecidable for term
rewriting systems with only one rule [7]. O

_There are two ways to design terminating simplification procedures based
on formula rewriting systems: (i) to distinguish some classes of terminating
formula rewriting systems; (ii) to impose restrictions (strategies) on the
order of formula rewriting. Both ways will be considered in the next sections.
Here, we only give definitions of several strategies.

Definition. A relation -»C— g is called a strategy for R. Let —g, be a
strategy for R, ¢ = A, o = (). Thus, — g, is an apply-to-sample strategy if

—tRs= {(Ay {(pa A A[TU]q)¢|W})lA, Qap}:

and u is a redex of R if
3pIo3qI0(u = so and Vr(c and 6 are trivially unified)).

Let —g; be a strategy for R and u be a proper subexpression of 4, and let
Vu(u is not redex of R). The relation —g; is an any-innermost strategy if

—gi = {(4,{(po A Alrclg)¢|r})|A, g, p}-

3. Representation of simplifying transformations
by formula rewriting systems

Let us demonstrate how well-known techniques of formula simplification can
be embedded into formalism of formula rewriting systems.

Term rewriting systems. A pair | — r is a term rewriting rule if is
not a variable and Var(r) C Var(l). A set of term rewriting rules is called
a term rewriting system (TRS). Let R; be a TRS and let p: =1 = r € R;
and A, = lo. A relation —p, is a reduction relation generated by R; if

—r,.= {(4, Alraly)|4, ¢, pt}-

Proposition 2. Let R = {({{ = r},1)|p} and FP = UF X UF. Then
. m
(mR)iFP = —R-

Narrowing. Let ~»p, be a binary relation on /¥ and let A; V. A relation
~+g, is a narrowing relation if ~ g, = {(4, A[r]¢6)lq, A, pt}. Let u,v,w € E.
An expression u is an example of v if Jo(u = vo).

8 ' LS. Anureev

Let £z(v) = {u|u is an example of v} and let U C €, u,v € U, p € S,
u =ovuand z € V. /A set U covers w if VuVv3z (root(zu) € V) and
Vu(w € Ez(u) and u € V).

Example. Let U = {f(z,2),f(g(2),2'), f(2,h(2")), f(9(2), h(2'))} and
w = f(g(z),h(y)). Then U covers w.

Proposition 3. Let U coverl, s € U and R = {({l — r},3)|s,pt}. Then
. m

R —R-

Case analysis. A relation on UF x FS(UF) is called a case analysis.

Proposition 4. Let — be a case anal%sis and let A - U, u € U and
R ={({A - u|u}, A)|A,U}. Then - = —p,.

Replacement of variables. Let — be a binary relation on U4F and let
Dom(co) = Var(A), Dom(o) N VRange(c) = @ and B € UF. A relation —
is a replacement of variables if VAVB(A — B = Jo(B = Aog)).

Proposition 5. Let — be a replacemegi,t of variables and let A — B and
R={({B — B},A)|A,B}. Then - = —p,.
The proof of the above propositions is straightforward from definitions.

4. Preserving satisfiability

Let us propose sufficient conditions of preserving satisfiability for formula
rewriting systems. Throughout the rest of the paper, we consider only finite
formula rewriting systems (finite sets of rules) and use the letter .A to denote
algebraic structures. A validity and a satisfiability will be considered to
mean a validity and a satisfiability in .4, unless otherwise stated.

Definition. Let U,W C FM(UF) and u € U, let — be a binary relation
on FM(UF) and let U — W. As for sets of formulas, U is said to be
satisfiable if Ju(u is satisfiable). The relation — preserves satisfiability if
VYUVW (U is satisfiable iff W is satisfiable).

Theorem 2. Let 2° = Var(s), ' = Var(l), Z = (Var(p) U Var(r)) \ &
and % = VRange(d). For §,Z C V, let B(§,%,7) denote the formula
Vi§(VaIZ(poTAG = §7)). IfVpVr(formulap = | = r is valid) and Vp(formula
B(z*U&,z Uz’ 0) is valid), then —p preserves satisfiability.

A method for simplification procedure design 9

Proof. Let ° = VRange(c), 24 = Var(4) and % = VRange(¢). The
conclusion immediately follows from the following two claims.

Claim 1. If B(z* U&',2U z°,0) is valid, then B(24,2U 2%, ¢) is valid.

Claim 2. Let Vr(p = | = r is valid) and B(z4,Z U %, ¢) is valid. Then A
is satisfiable iff {(po A A[ro]y)¢|n} is satisfiable.

Proof of Claim 1. Let 4 be an assignment. It is sufficient to prove

that there is a branch 7 and an assignment v such that Y34 = 7z4,
g |z |z

+"(54) = v"(34¢) and 7" (po¢) = true. Let Z = AUz Uz’ For v,
there is an assignment +' such that ' coincides with « everywhere except Z°
and v'(Z*) = v'(&°¢). By the premise of the claim, there is a branch = and
an assignment 4" such that 4" coincides with 7' everywhere except Z U z°,
+"(3%) = " (2*0), v"(z') = 7v"(z'0) and v"(pof) = true. Thus

v'(&0) = 7/ (&0) = (&°) = 7"(2") =7"(2°0)

and

y'(#'0) =+ (#o) =7/ (&) = +"(&) ="(&'9).
Since Dom(c) U Dom(f) C Z* U &', by the definition of trivial unifier,
there is an assignment v" such that v coincides with 7" everywhere ex-
cept 24, 7"(&) = 7"(2'¢) and 7"(24) = 7"(2¢). So Yza = Va4,

'y"'(:EA) = 4" (z4¢) and 7" (pod) :',Ym(Pa) = v"(po) = v"(pob) = true.
O

Proof of Claim 2. Suppose A is satisfiable. Hence there is an assignment
~ such that y(A) = true. By the definition of unifier,

Agp = s0¢p = 809 =10¢ = log

and, hence, A¢ = A[lo]¢. By the second premise of the claim, there is a
branch 7 and an assignment 7' such that ;4 = 7|34, v'(24) = v'(z4¢) and

v'(po¢) = true. So
v(4) = v'(A) = 7'(4¢) = 7' (Allo)g9) = 7' (Alraled) = 7' ((po A Alrale)9)-

Hence (po A A[rol,)¢ is satisfiable. Suppose there is a branch x such that
(po A Afrolg)¢ is satisfiable. Hence there is an assignment v such that
v(A[roly)¢ = true and y(po¢) = true. By the first premise of the claim,
v(A[ro],9) = v(Allo]q¢) = 7(A). For v, there is an assignment v’ such
that ' coincides with -y everywhere except Z7 and ¥'(27) = v'(Z°¢). Hence
4'(A) = 9'(A¢) = true and A is satisfiable. O

10 1. 5. Anureev

5. Relation between termination and
simplification orderings

A relation between termination of term rewriting systems and simplification
orderings can be found in [8]. We would like to prove similar result for our
formalism.

Definition. Let * denote the logical connectives =, V or A and ¢, teT.
A map Dec is called an expression decomposition if (i) Dec(true) = @ and
Dec(false) = 0; (ii) Vtvt'(Dec(t = t') = {t,t'}); (iii) Dec(-A) = Dec(4)
and Vx(Dec(A * B) = Dec(A) U Dec(B)). Let > be a strict partial ordering.
R decreases w.r.t. > if VpVr (Dec(l) >m Dec(r) U Dec(p)). The branch
is uniform if [= s. The rule p is uniform if Va (7 is uniform). R is uniform
if Vp (p is uniform).

Theorem 3. Let R be a uniform FRS and >~ be simplification ordering
stable w.r.t. substitutions. R is terminating if 3 = (R decreases w.r.t. >).

Proof. Let >n= {(u,v)|Dec(u) =m Dec(v)}. In the proof we will use the
following claim.

Claim. VuVu'3pu (u(—gr)su’ = u >n u'p).

Suppose, for a proof by contradiction, that R is not terminating. Since
R is not terminating, there is an infinite chain uo(—g)su1(—=r)s... - By
the claim, there is an infinite sequence p1,pt2,... of renamings such that
wi—1 >=n uip; for each i > 1. Let uy = ug and u{ = uipipi—1 ... p for each
i > 1. Since > is stable w.r.t. substitutions, > is stable w.r.t. substitutions
and, hence, u}_, >, u} for each i > 1. By the definition of simplification
ordering, > is well-founded and, hence, > is well-founded. However, this
contradicts the existence of infinite chain ug >pn u1 >n Hence R is
terminating.

Proof of Claim. Let A[so]q(—R)s(po A Alroly)¢. 1t is sufficient to prove
that Ju(A[sc]q =n (poAA[re]q)¢u). By the definition of ¢ and uniformness,
there is a renaming 7 such that ¢ = or. Thus A¢p = Aor = A7 and
(po A Alraly)¢ = (po A Alro]y)r. Since R decreases w.r.t. >, we have
Dec(l) >m Dec(p) U Dec(r). By the definition of simplification ordering, -
is stable w.r.t. substitutions and has a subterm property.

So Dec(A[sc];) =m Dec(po) U Dec(A[ro],) and the conclusion of the
claim is obtained for g = 771. i

A method for simplification procedure design 11

6. Selector elimination systems

For C C FUP, £(C) (T(C)) denotes the set of all expressions (terms) built
up only from symbols of the set CU V. '

Many FRSs arising in practice are constructor FRSs. A constructor
FRS R is a FRS in which the set of function and predicate symbols can be
partitioned into a set D of selectors and a set C of constructors, such that
for every rule r € R its sample has the form f(t1,.. .,tn) with f € D and
t1,...,tn € T(C). Note tha.t the related concept for term rewriting systems
is consxdered for instance, in [6]. The following class of constructor FRSs
(selector elimination systems or SESs for short) allows us to design simpli-
fication procedures eliminating selectors. The idea of such systems is per-
colating selectors through constructors down to variables followed by their
elimination by replacement of variables. Unfortunately, even very strong
restrictions imposed on AES guara.ntee the termination only w.r.t. a certain
strategy.

Throughout the rest of the paper, R is a constructive FRS w.r.t. a set C
of constructors and a set D of selectors. Let us first introduce some concepts
which allow us to analyze a structure of expressions w.r.t. C and D.

Definition. Let X C V and z,y € X. An expression u is constructive if
u € E(C). A substitution o is constructive if Vz(zo € T(C)). An expression
u is linear if Vz(|O(z, MVar(u))| < 1). A substitution o is linear on X if
Vz,y(zo is linear and = # y = Var(zo) N Var(yo) = 0). Let g1,92 € P(u)
and g2 # q1, and let g2 be a prefix of ¢;. An expression u is embedded
if 3g13q2 (root(ug,),To0t(ug,) € D). An expression u is simple if u is not
embedded. An expression u is a call if root(u) € D.
Let Cp,(u) denote the multiset of all simple calls of u.

Definition. A map p. is a constructor measure if p(u) = {|t||t € Crn(u)}-
A map Dec, is a variable decomposition if Dec,(u) = Usec,, () MVar(t).

Let us now define selector elimination systems.

Definition. A branch 7 is percolating if 7 is uniform, p and r are simple,
Decy(l) 2 Decy(p) U Decy(r), pe(l) >m pc(r) and pe(l) >m pe(p). A branch
 is eliminating if V#(8 is linear on Var(s) and constructive), p and r are con-
structive. Let ¢ be a simple call. An FRS R is a selector elimination system
if Vi(t is a redex of R) and VpVr(r is either percolating or eliminating).

As mentioned above, SESs are not terminating in the general case.

Example. Let the FRS R consist of the following rules:
r1: ({£f(c(2)) = 2}, f(2)),

12 I S. Anureev

r2 : ({£(c(2)) = z}, f(c(2))),

rs : ({f(d(z,y)) = d(f(v), F (=)}, f(d(=',))),
r4 : ({h(c(2)) — d(h(2), 2)}, h(c(2))),

rs : ({h(d(z,y)) - =}, h(d(z",3))),

re : ({h(d(z,y)) - z}, h(2)).

We prove first that R is a SES. Let ¢ be a simple call. By the definition
of R, t has one of the following forms: f(.), f(c(-)), f(d(--)), h(-), h(e(-))
or h(d(_,.)). It is obvious that ¢ is a redex of R. Since § = (z — ¢(2)) is
constructive and linear on {z} and s = f(z) is constructive, {r1} is a SES.
Since 7 = f(d(z,y)) — d(f(y), f(=)) is uniform, s = f(d(z,y)) is simple,
{z,y} 2 {z,y} and {2} >, {1,1}, {rs} is a SES. For other rules the proof
is analogous. Therefore R is a SES.

However R is not terminating, since the chain d(f(z), f(h(z))) —r,
d(z, F(R(e(2)))) —ry d(z, F(d(R(2),2))) —ry d(z,d(F (), FTR())) —r, -
is infinite.

However, SESs are terminating w.r.t. the any-innermost strategy.

Theorem 4. Let R be a selector elimination system. Then R is terminating
w.r.l. the any-innermost strategy.

Proof. Theorem 4 is an immediate corollary of Theorem 5 which we shall
consider below. m]

7. Selector elimination systems with argument
status

Consider the generalization of SESs (SESs with argument status) which also
has the termination property w.r.t. the any-innermost strategy.

Example. Let R = ({f(g9(9()),y) — f(=,f(a,9))}, fg(g(=)),v)). It is
obvious that R is terminating w.r.t. the any-innermost strategy. However R

is not a SES, since the term f(z, f(a,y)) is embedded.

The problem of extending SESs to examples of such kind can be decided
if we take into account only certain arguments of function symbols. In this
example the term f(z, f(a,y)) is simple if we take into account only the first
argument of f. Let us introduce the corresponding definition.

Definition. A map A: D — P(N) is an argument status if
A(f) € {1,...,Ar(f)}, where Ar(f) is an arity of f.

A method for simplification procedure design 13

The definitions of embedded expression, call, constructor measure and
variable measure are modified to take into account an argument status.

Definition. Let u; = f(t1,...,t:) and i € A(f). An expression u is em-
bedded w.r.t. A if 3¢gFi(f € D and t; is not constructive). An expression u
is simple w.r.t. A if u is not embedded w.r.t. A.

Let Cp(u) denote the multiset of all simple (w.r.t. A) calls of u and for
t = f(t1,...,tn) € £, I(t) denote the multiset {t;|s € A(f)}.

Definition. Let t € Cp,(u) and ¢’ € I(t). A map p is a constructor measure
if Yu(ue(u) = {Z¢|t'| | t}). A map Dec, is a variable decomposition if
Vu(Decy(u) = Uy U g MVar(t')).

Let us define the selector elimination systems with argument status.

Definition. A branch = is percolating w.r.t. A if 7 is uniform, p and r
are simple w.r.t. A, Decy(l) 2 Decy(p) U Decy(r), pe(l) >m me(p) and
pc(l) >m pe(r). Let s’ € I(s). A branch = is eliminating w.r.t. Aifp
and r are constructive and V0(@ is linear on Var(s) and constructive and
Var(s) N Dom(8) C UgVar(s')). Let t be a simple call. An FRS R is a
selector elimination systems with argument status A if Vi(t is a redex of R)
and VpVr(w is either percolating w.r.t. A or eliminating w.r.t. A).

Theorem 5. Let R be a SES with an argument status A. Then R is ter-
minating w.r.t. the any-innermost strategy.

Proof. Let C.(u) denote the multiset of all embedded (w.r.t. A) calls of
u. Let n = O(x,Decy(u)) and n # 0. A map p, is a selector measure if
pia(4) = |Ce(u)|. A map py is a variable measure if p, (u) = {n|z}. Let > be
a strict partial ordering on € such that for any expressions u and o', u > o iff
(a (), piv (w), pre(w)) is lexicographically bigger than (pa(u'), o (w'), pe(w'))
with orderings >, >m and >, on the first, second and third elements of the
triple, correspondingly. m

Let A[so]y(—ri)s(po A Alrolg)d. First we state some lemmas (their

proof does not depend on modification of the definition of formula rewriting
systems and can be found in [4]):

Lemma 1. pg(A[s0]g) > pa((po A Alroly)d);

Lemma 2. Let pa(A[so]y) = pa((po A Alralg)d). Then py(Alsoly) 2m
po((po A Alrole)d);

14 I. S. Anureev

Lemma 3. Let pq(A[sc]y) = pa((pe A Alroly)d) and py(Alsoly) =
to((po A Alralg)). Then pe(A[sclg) >m pe((po A Alrolq)d).

By the definition of lexicographical ordering, > and >,, are well-founded.
By the definition of lexicographical ordering and lemmas 1-3, Alsolg >
(poAA[ro]y)¢ and, hence, R is terminating w.r.t. the any-innermost strategy.

8. Examples

Let us illustrate introduced concepts using simplification procedures for the
tuple theory as an example. We use the letters z, y, z and w to denote
tuples, the letters a, b and c to denote elements of tuples and the letters
i, j and k to denote integers. The tuple theory includes the operations of
concatenation *, tuple constructor [.], empty tuple [], size |.|, indexing .(.)
and slice .(. .. .) such that z % y yields the concatenation of z and y, [a]
yields the tuple consisting of only one element a, [| yields the empty tuple,
|z| yields the length of , z(i) yields the i-th component of the tuple z and
z(i..7) yields the section or slice of z extending from its i-th through its j-th
component, inclusive. In addition, we use the usual arithmetical operations
<, <, +, — and integer constant 1. We design the terminating elimination
procedures for the indexing and slice operations.

8.1. Elimination procedure for indexing operation

We first design the simplification procedure which eliminates the terms of the
form (_x_)(-). To percolate the indexing operation through the concatenation
we must implement the case analysis: (i) If ¢ < |z|, then (z * y)(i) = z(7)
and (ii) If |z| < ¢, then (z *xy)(7) = y(¢). Let us note that the left-hand sides
of the equalities appearing in (i) and (ii) coincide. Then the case analysis is
implemented by the uniform formula rewriting rule with the base consisting
of two conditional rules corresponding to the cases (i) and (ii). For example,
the rule i < |z||(z * y)(¢) — (?) corresponds to the case (i).

Let us check the sufficient conditions of preserving satisfiability for the
rule. The first condition is reduced to checking the validity of the formulas
i <|z| = (z*y)(¢) = z(3) and |z| < i = (z*y)(i) = y(7) in the tuple theory.
Let B denote the formula z = z' Ay = ¢y Ai = ¢ where z', 3 and i’ are new
variables. The most general unifiers of the left-hand sides of both branches
of the rule and its sample have the same form (z — ',y — ¢',i — i'). Thus
the second condition is reduced to checking the validity of the following
formula 3z'3y'3i' (i’ < |2'| A B) V Fa'3i'(|z'| < ' A B) in the tuple theory.
After obvious simplifications the formula is reduced to the completeness
condition i < |z| V |z| < i of the case analysis. It is obvious that all these
formulas are valid in the tuple theory.

A method for simplification procedure design 15

We now prove that the branches of the rule are percolating. Let p denote
i < |z|, | denotes (z * y)(i) and r denotes z(i). The first branch p|l — r of
the rule is percolating if p and r are simple, pc(p) <m pe(l), pe(r) <m pe(l)
and Dec,(p) U Decy(r) C Decy(l). After obvious simplifications we obtain
the easily verified properties @ <m, {1}, {0} <m {1} and 0U{z,i} C {z,y,1}.
The second branch of the rule is verified in the similar way.

The simplification procedures which eliminate the terms of the form [.]()
and [](_) are similarly designed. The first procedure applies the case anal-
ysis: (i) If i = 1, then [a](i) = a and (ii) If i # 1, then [a](i) = w (indeter-
minate value). The second procedure is based on the usual term rewriting
rule [](i) = w simulated by the uniform formula rewriting rule with only
one branch ({[](¢) = w},[1(3))-

Let us design the elimination procedure for the indexing operation. We
can percolate the indexing operation through the concatenation, tuple con-
structor and empty tuple by the above uniform rules. Therefore we need
only the rule which eliminates the terms of the form z(_), where is a vari-
able. This rule is also based on the case analysis: (i) If z = y * [a] * z and
ly|+1 = i, then (i) = a and (ii) If i < 1V|z| < 4, then £(i) = w. The base of
the rule consists of two conditional rules corresponding to the cases (i) and
(ii). However, this correspondence takes into account the possible structure
of z. For example, the rule |y| + 1 = i|(y * [a] * 2)(i) — a corresponds to the
case (i). The sample of the rule is the term x(3).

We first check the sufficient conditions of preserving satisfiability for the
rule. The first condition is reduced to checking the validity of the formulas
ly|+1=1= (y*[a]*2)(i) = a and (i < 1V|z| <4) = 2(i) = w in the tuple
theory. The most general unifiers of the lefti-hand sides of first and second
branches of the rule and its sample have the form

gy x[d]*x2yoy,zo2adid
Y

and (z = z',i — i'), respectively. Thus the second condition is reduced to
checking the validity of the formula

'3 (Y| +1=F Aa=y' x[a]*Z Ay=y' Az=2 Ai=1)
\
' (@ <1V|e'| <) Az =2 Ai=1)

in the tuple theory. After obvious simplifications the formula is reduced to
the completeness condition Ja3yIz(|y|+1 = iAz = y*[a]*2) Vi < 1V|z| <i
of the case analysis. It is obvious that all these formulas are valid in the
tuple theory.

We now prove that the branches of the rule are eliminating. The first
branch |y| + 1 = i|(y * [a] * 2)(i) — a of the rule is eliminating if |y| +1 =1
and a are constructive and the most general unifier

16 .. LS. Anureev

f=(z—-y *d]+2,y—y,z>7,a—=d,i i)

of (y * [a] * 2)(i) and (i) is linear on {z,i} and constructive. The check of
these properties is straightforward. The second branch of the rule is verified
in the similar way.

Let us demonstrate that the formula rewriting system R consisting of
all the above rules is terminating w.r.t. the any-unnermost strategy. By
Theorem 4, it is sufficient to prove that R is a selector elimination system.
It is obvious that R is a constructive system, where the indexing operation
is a selector and the rest operations are constructors. For some branches of
the rule of R we have proved that they are either percolating or eliminating.
For other branches the proof is performed similarly. A simple call w.r.t. the
constructive system R has one of the following four forms (u *u')(v), [u](v),
[](v) or z(v), where u and v are constructive terms. Since for each of these
forms there is a corresponding rule in R, any simple call is a redex of R.
Thus R is a selector elimination system.

8.2. Elimination procedure for slice operation

The elimination procedure for the slice operation is designed similarly. The
formula rewriting system R' underlying the procedure consists of three
rules percolating the operation through concatenation, tuple constructor
and empty tuple and the fourth rule eliminating it. The sufficient condi-
tions of preserving satisfiability are verified for R' in the same manner as for
R. Let us prove the system R is terminating w.r.t. the any-innermost strat-
egy. It is obvious that R is a constructive system, where the slice operation
is a selector and the rest of operations are constructors.

The rule percolating the slice operation through the concatenation imple-
ments the following case analysis: (i) If j < |z|, then (zxy)(i..7) = (3..5); (ii)
If |z| < i, then (¢*y)(i..5) = y(i..j) and (iii) If i < |z| < j, then (z*y)(i.J) =
z(i..|z|) * y(1..j — |z|). Let p denote i < |z| < j, I denote (z * y)(i..j) and
r denote z(i..|z|) * y(1..j — |z|). Consider the third branch p|l — r of the
rule. The branch is not eliminating, since r is not constructive. The branch
is percolating if p and r are simple, pc(p) <m pe(l), pe(T) <m pe(l) and
Decy(p) U Decy(r) € Decy(l). After obvious simplifications we obtain the
properties 0 <, {1}, {1,3} <m {1} and 0 U {z,,2,9,%,5} C {z,y,4,5}. It
is obvious that the first and third of these properties are false. Thus R’ is
not a selector elimination system. This is due to the fact that we take into
account variables and constructors appearing in the second and third argu-
ments of the slice operation in spite of the fact that we percolate the slice
operation only with respect to the first argument. To avoid this, we will use
the argument status A = {1}. Then, after simplifications, the properties
pe(r) <m pe(l) and Decy(p) U Decy(r) C Decy(l) take the easily proved
form {0,0} <, {1} and O U {z,y} C {z,y}. Thus the branch is eliminating

A method for simplification procedure design 17

w.r.t. A. The fact that the other uniform branches of the rules of R' are
also percolating w.r.t. A’ is verified similarly.

It is not difficult to check that any simple call is a redex of R'. It
remains to prove that the branches of the fourth rule are eliminating. This
rule is also based on the case analysis: (i) If z = y*w=*z, |[y|+1 =1,
|yl + |w| = j and 1 < |w|, then z(i..j) = w and (ii) fi <1V|z| <jV]<i,
then z(i..j) = w. The base of the rule consists of two conditional rules
corresponding to the cases (i) and (ii). This correspondence also takes into
account the possible structure of variable . For example, the conditional
rule [y| +1 =iA|y|+|w| = j A1 < |w||(y *w * z)(i) — w corresponds to the
case (i). The sample of the rule is the term z(i..j). The first branch of the
formula rewriting rule is eliminating if [y| + 1 =i Aly| + |w| = A1 < |w|
and w are constructive w.r.t. A and the most general unifier

b=(z -y *w'+2\y—=y,zo7,a—d,i17)

of (y *w * 2)(4..5) and z(i..j), where ¢/, 2', w', ¢’ and j' are new variables, is
linear on {z,%,j} and constructive. The check of these properties is straight-
forward. The second branch of the rule is verified in the similar way. Thus
R' is a selector elimination system with the argument status .A and, hence,
by Theorem 5, R' is terminating w.r.t. the any-innermost strategy.

Conclusion

The paper presents the method of designing simpﬁﬁcation procedures based
on formula rewriting systems which includes the following new features:

(i) the concept of formula transformation correctness which preserves for-
mula satisfiability rather than formula equivalence;

(ii) the generalized concept of formula rewriting rules exploiting general-
ized conditional term rewriting (in particular, with extra variables);

(iii) the tools for proving termination of formula rewriting systems.

Proving verification conditions which appear in program verification is an
important area of application of the method. Proving correctness conditions
is performed in interactive mode in most of the verification systems. Our
method allows the proof of correctness conditions to be done automatically.
At present in the framework of program verification system SPECTRUM
([9, 10]) we are implementing a new prover based in part on the method.
Some details of the theory of formula rewriting systems and their appli-
cation to problem-oriented verification have been considered in [3, 4]. In
particular, proving correctness conditions of simple array sorting programs
and elimination of such data structures as array, sequential files and lists

18 LS. Anureev

are described. An experiment on automatic verification of the program of
file sorting by natural merge has been performed in the framework of the
project SPECTRUM by means of this method.

Acknowledgements. 1 would like to thank my scientific supervisor Valery
Nepomniaschy for very helpful discussions. I am also indebted to Nikolai
Shilov for detailed comments and many useful suggestions which consider-
ably improved style and contents of this paper.

References

[1] H. Kirchner, On the use of constraints in automated deduction, Lecture Notes
in Computer Science, 910, 1995, 128-146.

[2] H. Comon, Constraints in term algebras. An overview. of constraint solving
techniques, Lecture Notes in Computer Science, 355, 1995, 109-120.

[3) I.S. Anureev, Integrated term rewriting rules and their application to auto-
matic program verification, Problems of specification and verification of con-
current systems, Institute of Informatics Systems, Novosibirsk, Russia, 1995,
185-213 (in Russian).

[4] 1.S. Anureev, Formula rewriting systems, Report 40, Institute of Informatics
Systems, Novosibirsk, Russia, 1997 (in Russian).

[5] N. Dershowitz and J.-P. Jouannaud, Rewrite systems, Handbook of Theoreti-
cal Computer Science, B(6), 1990, 243-320.

[6] J.W. Klop, Term rewriting systems, Handbook of Logic in Computer Science,
2, 1993. 1-116.

[7] M. Dauchet, Simulation of Turing machines by a left-linear rewrite rule, Lec-
ture Notes in Computer Science, 910, 62-67.

[8] J. Steinbach, Simplification ordering: history of results, Fundamenta Infor-
maticae, 24(1), 1995, 47-87.

[9] V.A. Nepomniaschy and A. A. Sulimov, Problem-oriented means of program
specification and verification in project SPECTRUM, Lecture Notes in Com-
puter Science, 722, 1993, 374-378. -

[10] V.A. Nepomniaschy and A. A. Sulimov, Problem-oriented verification system
and its application to linear algebra programs, Theoretical Computer Science,
119, 1993, 173-185.

