
Bull. Nov. Comp.Center, Comp. Science, 28 (2008), 31–42
c© 2008 NCC Publisher

On the problem of computer language
classification

I. S. Anureev, E.V. Bodin, L. V. Gorodnyaya,
A.G. Marchuk, F.A. Murzin, N.V. Shilov

To Svyatoslav Lavrov textbook
“Universal Programming Language (ALGOL-60)”

used to teach a generation of programmers
in the Soviet Union for a decade.

Abstract. During the semicentenial history of Computer Science and Information
Technologies, several thousands of computer languages have been created. Com-
puter language universe includes languages for different purposes: programming
languages, specification languages, modeling languages, languages for knowledge
representation, etc. In each of these branches of computer languages it is possible
to track several approaches (imperative, declarative, object-oriented, etc.), disci-
plines of processing (sequential, non-deterministic, parallel, distributed, etc.), for-
malized models (from Turing machines up to logic inference machines). Computer
languages have a different potential to be integrated to different models of software
process and information processing. The development of computer languages in-
fluences the development of new and evolution of existing programming systems
and information technologies. On the contrary, the demand for new software and
information technologies leads to design of new computer languages. Computer
paradigms are the basis for classification of the computer languages. They are
based on joint attributes which allow us to distinct and select a certain branch
in the computer language universe. Currently the number of essentially different
paradigms has reached several dozens. Study and precise specification of computer
paradigms (including new ones) are called to improve the choice of appropriate com-
puter languages for new software projects and information technologies. The paper
presents a so-called “semantics and pragmatics view” – an approach to computer
languages paradigms and classification, that is based on a unified formal semantics
(Abstract State Machines) and an open ontology for pragmatists.

1. Classification problem

A computer language is any language designed or used for automatic “in-
formation processing”, i.e. data and process handling and management.
During the semicentenial history of Computer Science and Information Tech-
nology, several thousands of computer languages have been created. Due to
the number of the existing computer languages, there is a necessity for their
systematization and classification.



32 I. S. Anureev et al.

At the initial stage of programming and information technology history
(years 1950-65), it was possible to classify computer languages chronologi-
cally with annotations a-là Herodotus “The Histories”, i.e. including lists
of authors, their purposes, personal related stories, etc. (Please refer to [37]
for a story of this kind.) The matter is that at the first stage all computer
languages were languages of imperative programming for von Neumann’s
computers.

But since the late 1960-s, the approach in the style of “Father of His-
tory” becomes unacceptable. Hereinafter the variety of computer languages
includes not only programming languages but also specification languages,
data representation languages, etc. Some of these branches include not only
imperative, but also declarative languages (functional in particular). Be-
tween the middle of 1970-s and the early 1980-s, some new approaches to
computer language design appeared (logical and object-oriented, for exam-
ple). In this period classification of computer languages could be done

• either in “Linnaeus style” as a taxonomy tree (i.e. Kingdom – Phylum
– Class – Order – Family - Subfamily – Genus – Species ),

• or in “Mendeleyev style” as a “periodic table”, where the rows repre-
sent classification of purpose (programming, specification, data repre-
sentation, etc.), and the columns represent classification of approaches
(imperative, functional, logical, etc.).

However, the 1990-s and the beginning of a new millennium became
the time of rapid growth of existing and new branches of computer lan-
guages. For example, knowledge representation languages, languages for
parallel/concurrent computations, languages for distributed and multi-agent
systems, etc. Each of new computer languages has its own syntax (some-
times very specific), a certain model of information processing (i.e. semantics
or a virtual machine), and its pragmatics (i.e. the sphere of application and
distribution). The process of rapid generation of new computer languages
will continue till new spheres of human activities will be computerized. So,
from classification viewpoint, the situation in computer languages radically
differs from natural sciences: in biology or chemistry the situation is static,
while in computer languages the situation is rather dynamic. Due to this
argument, classification approaches adopted in Natural Science cannot be
adequately applied to computer languages.

At the same time, classification of already developed and new computer
languages is a very important problem for computer science, since it could
benefit software engineering and information technology by a sound frame-
work for computer language choice for components of new program and
information systems. Therefore a modern and practical classification of com-
puter languages should be based not only on the analysis of code-generation
mechanisms, productivity, reliability and efficiency, but also on the sphere



On the problem of computer language classification 33

of application of languages, i.e. on their pragmatics. Also, a modern classi-
fication should be (whenever possible) steady and opened for changes, when
new branches, approaches, or models of computer languages appear.

2. Computer language paradigmization

We call the alternative approaches to information processing, accumulated
and fixed in the form of computer languages, the paradigms of computer
languages. Computer paradigms are a basis of classification of computer
languages, a set of the general attributes which allow us to specify a certain
branch in the variety of computer languages. Characteristics of paradigms
at the level of their basic means for information processing could provide
designers, developers and users of software and information systems with a
sound basis for comparison of systems, estimation of their potential, usabil-
ity, etc. [13, 28]. Paradigmization means characterization of paradigms.

Robert Floyd was the first who had explicitly used the concept of “para-
digm” in relation to computer languages. In particular, in his Turing Award
Lecture [12] in 1978, he applied this concept only to programming languages.
He referred to Thomas Kuhn’s well-known book [17], published only 8 years
before in 1970. According to T.Kuhn, the term “paradigm” means a method,
an approach to formulation of problems and the ways to solve them. In
modern philosophy the word paradigm is used as a pattern in any scientific
discipline or other epistemological context. The word “paradigm” itself has
Greek origin and means “example” or “pattern”. Initially it was used in
linguistics for classes of elements with similarities.

The importance of study of computer languages and their paradigmiza-
tion is widely recognized in Computer Science and Information Technology.
In particular, some information about the most known paradigms can be
found in The Encyclopedia of Programming Languages [44] and in a spe-
cial journal Computer Languages published by Elsevier. Many prominent
scientists contributed to paradigmatization of computer languages: Edsger
Dijkstra [6, 7], Robert Floyd[11, 12], Antony Hoare [7, 14, 15, 16], John
McCarthy [21], Bertrand Meyer [22, 23], Robin Milner [24, 25, 26], Niklaus
Wirth [14, 41], and others. We also would like to mention the contribution
to the field made by A. P. Ershov [8, 9, 10] and S. S. Lavrov [19, 20] in the
Soviet Union.

Currently, the number of essentially different paradigms only in pro-
gramming languages is already close to several dozens (see, for example,
the list of “programming paradigms” in [42]). And though there are rather
small groups of computer languages (e.g., Hardware Description Languages),
many groups are “crowded” (e.g., Specification Languages) and others go
through the period of explosion and migration (e.g., Markup Languages).

The development of computer languages influences the design of new



34 I. S. Anureev et al.

programming systems and information technologies and evolution of cur-
rent ones. On the contrary, appearance of new models of computation,
and evolution of programming systems and information technologies lead to
appearance of new computer languages. Many new parallel programming
languages, languages of specification and modeling of multiagent systems,
languages for object-oriented modeling and design, languages of knowledge
representation, etc., appearing over the past 10-15 years, do not fit in the
current classification and require its essential revision.

In spite of active research on systematization and classification of com-
puter languages, experts have difficulties in putting some languages into one
particular paradigm (e.g., Eiffel [23], Erlang [2], Python [36], etc.). There
is a demand for paradigms for Language Of Temporal Ordering Specifica-
tion LOTOS [39], Business Process Modeling Notation BPMN [34], Unified
Medical Language System UMLS, [38] and many others.

3. Semantic and pragmatic view

For natural and artificial languages (including computer languages), the
terms “syntax”, “semantics” and “pragmatics” are used to categorize de-
scriptions of language characteristics. Syntax is an orthography of a lan-
guage. The meaning of syntactically-correct constructs is provided through
language semantics. Pragmatics is a practice of use of meaning-bearing
syntactically-correct constructs. Therefore the approach based on “specific
features” of syntax, semantics and pragmatics could be natural for specifi-
cations of paradigmization and classification of computer languages. In the
next paragraphs we discuss how this approach shows its worth in program-
ming languages.

Pragmatics or programmer’s practice was chosen by R. Floyd as a basis
for development of the existing programming languages and design of new
ones. He said in his Turing lecture [12]:

“To the designer of programming languages, I say: unless you
can support the paradigms I use when I program, or at least sup-
port my extending your language into one that does support my
programming methods, I don’t need your shiny new languages
[...]”

It is possible to draw a conclusion that R. Floyd considered programmer’s
practice as a basis of paradigmization of programming languages. If we
recall that the deterministic structured programming paradigm [7] prevailed
up to the end of 1970-s, it becomes clear why nondeterministic structured
programming [6] and concurrent and parallel communicating processes [15,
24, 35] emerged right at the end of this decade as new paradigms. At this
time multitasking turned from a marginal problem (synchronization between



On the problem of computer language classification 35

single CPU and few peripheral devices) into an actual problem of system
and industrial programming.

Speaking about pragmatics of programming languages, it is natural to
discuss the so-called “esoteric programming languages” [45, 46]. These lan-
guages are designed to validate some theoretical concepts or models of com-
putation without any care about practice of programming. So, for example,
the “programming language for orangutans” Ook! [47] uses the alphabet of
three “symbols”, represented by the word “ook” (which can be pronounced
even by orangutans) with appropriate emotional tinge: “Ook?”, “Ook.”
or “Ook!”. In fact, Ook! is a structured Turing-complete programming
language for counter machines (Minsky register machines) [27]. Thereby,
reckoning a programming language among esoteric ones is first of all based
on its pragmatics (as a practically useless language) and is also supported
by its semantics – a special model of the “process of computation”.

The semantic approach is not restricted by esoteric programming lan-
guages. The definitions of functional programming languages LISP [21] and
ML [26] are based on semantics of these languages in terms of λ-calculus –
the applicative equational theory of functions originated by Alonzo Church.

On the contrary, classification based on syntax has practically lost any
value by virtue of the development of effective and powerful translators.
Certainly, it is very important for a compiler implementation whether a par-
ticular language has regular, context-free or context-sensitive syntax. But
the main thing for a programmer is flexibility and naturalness (from a hu-
man standpoint) of syntax of a language (including a reasonable portion
of so-called “syntactic sugar”) rather than the formal characteristics of its
grammar.

It follows from the above discussion that the semantic and pragmatic
view could be a reasonable approach to classification of programming lan-
guages. So it is rather natural to try to expand this approach to classification
of computer languages. Let us discuss below what should be done for this
expansion to be successful.

4. Unifying formal semantics

The role of formal semantics in the programming language paradigmization
and classification of programming languages is very important [40]. The
major problem with semantics of computer languages is a different formalism
and a different level of formalization adopted for particular languages. For
example,

• the functional language LISP has been founded on the base of a very
precise denotational semantics in terms of λ-calculus,

• a structured subset of a high-level imperative language Pascal has an



36 I. S. Anureev et al.

operational and axiomatic semantics that are consistent with respect
to each other [14],

• but formal semantics for a representative subset of an imperative
macroassembler C is still a research challenge [33, 32].

This difference makes extremely hard to compare semantics of different com-
puter languages.

Nevertheless, a sound formalism unification and more rigorous compari-
son of formal semantics are very essential for better classification of computer
languages and a proper paradigm definition. The problem can be solved in
2 stages as follows.

• Two-dimensional stratification of sample1 computer languages. Each
of these languages should be stratified in levels and layers.

– The level hierarchy could be a human-friendly semantic repre-
sentation. It should comprise 2-3 levels that may be called edu-
cational (or learner’s), basic (or user’s), and professional. They
are either dialects or subsets of the language. The educational
level should be a dialect of the language for a first-time study of
its basic concepts and features; it may be a subset of the lan-
guage for casual users of the language. The basic level should be
a subset for regular users of the language, it requires some skills
and experience. The professional level is the language itself, it is
intended for advanced and experienced users. Sometimes educa-
tional or basic level could be omitted. For example, the Ontology
Web Language (OWL) [48, 49, 50, 51, 52, 53] comprises OWL-DL
(basic level) and OWL-full (professional level).

– The layer hierarchy is a formal-oriented semantic representation.
It may comprise up to 3 layers for the basic level and (optionally)
for other levels. These layers may be called kernel, intermediate
and complete. The kernel layer should have a virtual machine
semantics and provide tools for implementation of the intermedi-
ate layer; the intermediate layer in turn should provide tools for
the complete layer. In both cases implementation should be of a
transformation-type. Please refer to [30, 31, 32] for an example
of a 3-layer hierarchy for programming languages of C-family.

• Extensive use of a powerful operational virtual machine semantics at
the kernel layer of sample computer languages.

– Specification of the kernel-layer computer languages by means of
a unified and powerful semantic formalism like Abstract State
Machines (AMS) [4] or Ontology Transition Systems (OTS) [1].

1We discuss what is a “sample computer language” in the next section 5.



On the problem of computer language classification 37

– Animation (i.e. a sound and consistent implementation) of
semantics of the kernel-layer of sample computer languages by
means of type-free functional programming languages (LISP, for
instance).

– Unfolding the animation to semantically sound and consistent
compilers for the kernel-layer computer languages by means of
bootstrapping technique typical for functional programming.

5. Evolving open pragmatics

Semantic and pragmatic view also assumes the development of a formalized
framework for reasoning about computer languages pragmatics. But in con-
trast to a highly mathematical formal semantics, pragmatics rely upon a
highly informal knowledge and experience of people and communities that
are involved in compute language design, implementation, promotion, us-
age and evolution. In other words, we need to formalize expert knowledge
about computer languages, about related concepts, and about relations be-
tween computer languages. This naturally leads to the idea to represent this
knowledge about computer language pragmatics as an ontology.

“Ontology is the theory of objects and their ties. Ontology provides
criteria for distinguishing various types of objects (concrete and abstract,
existent and non-existent, real and ideal, independent and dependent) and
their ties (relations, dependencies and predication)” [5]. Roughly speaking,
an ontology is a partial formalization of a “knowledge” about a particu-
lar problem domain (computer languages, for instance). This “knowledge”
could be an empirical fact, a mathematical theorem, a personal belief, ex-
pert resolution, shared or common viewpoint of a group. The most popular
computer language for ontology representation is the Ontology Web Lan-
guage OWL supported by WWW-consortium [48, 49, 50, 51, 52, 53]. The
use of OWL (OWL-Lite and OWL-DL, in particular) for ontology represen-
tation provides an opportunity to use also Description Logic (DL) reasoners
[3] for automatic consistency checking of an ontology. Consistency is very
important for evolving ontologies that change in time, and for open ontolo-
gies that are open for editing. (A good example of an evolving and open
ontology is Wikipedia, the free encyclopedia [43]).

In the proposed ontology for pragmatics of computer languages, objects
should be computer languages (including their levels and layers that are
described in the previous section 4), concepts (in terms of DL) or classes
(in terms of OWL) – collections of computer languages that share a joint
paradigm, ties (roles in terms of DL or properties in terms of OWL) –
relations between computer languages. For example, LISP, PROLOG, SDL,
LOTOS, BPMN, UMLT, as well as C, C-light and C-kernel, OWL-Lite,
OWL-DL and OWL-full should be objects of the ontology.



38 I. S. Anureev et al.

We have already discussed a number of examples of concepts/classes in
the proposed ontology: “functional languages”, “specification languages”,
“executable languages”, etc. All listed examples may be elementary con-
cepts/ classes. Non-elementary concepts/classes can be constructed by dif-
ferent means that are supported by OWL and DL, in particular, by means
of standard set-theoretic operations “complement”, “union” and “intersec-
tion”. For example, the concept “executable specification languages” is the
intersection of two concepts – “executable languages” and “specification lan-
guages”.

But the proposed ontology should have a special elementary concept/class
for “sample languages” that comprises few (but one at least) representa-
tives for every elementary concept/class. Of course, all elementary con-
cepts/classes (including “sample languages”) should be formatted on the
base of expert knowledge and open for editing. A special feature of the pro-
posed ontology should be the following constraint: every legal non-empty
concept/class should contain a sample language (one at least). A back-
ground intuition is straightforward: if an expert can not point out any
representative example of a paradigm, then the paradigm should be empty.

Roles/properties in the proposed ontology may be very natural also: “is
dialect of”, “is layer of”, “uses syntax of”, etc. For example: “REAL is
dialect of SDL”, “C-light is layer of C”, “OWL uses syntax of XML”. All
listed examples are elementary roles/properties. The standard relational
algebra operations “inverse”, “complement”, “union”, “intersection”, “com-
position” and “transitive closure” can be used and are meaningful for con-
struction of new roles/properties. For example, “uses syntax of dialect of” is
the composition of “uses syntax of” and “is a dialect of”: REAL executional
specifications [29] “uses syntax of dialect of” SDL [39].

Universal and existential quantifier restrictions that are used in OWL
and DL for construction of new classes/concepts also could get a natural
and useful meaning. An example of the existential restriction (in DL no-
tation): a concept ∃ (uses syntax of . ((markup language) u ¬{XML})
consists of all computer languages that are markup languages but do not
use syntax of Extensible Markup Language XML [54]; an example of a
language of this kind is LATEX[18]. An example of the universal restric-
tion and terminological sentence (in DL notation also) follows: a sentence
XML : ∀ (is dialect of) . ¬({ML}) expresses the fact that XML is a
dialect of any computer language but the functional programming “Meta
Language” ML [26].

We would like to emphasize that the proposed ontology for pragmatics
of computer languages should be an open evolving ontology, but with a
semi-automatic maintenance by a group of experts, provided with automatic
DL-based consistency checking tools.

We believe that the proposed semantics and pragmatics approach to clas-



On the problem of computer language classification 39

sification of computer languages will provide researchers and engineers with
a sound and easy to maintain and update framework for the new language
design and an appropriate language choice for new software and information
technology projects.

References

[1] Anureev I.S. Ontological Transition Systems // Bull. Novosibirsk Comp. Cen-
ter. Ser. Computer Science. – Novosibirsk, 2007. – Iss. 26. – P. 1–17.

[2] Armstrong J. Programming Erlang. Software for a Concurrent World. – Prag-
matic Programmers, 2007.

[3] Baader F., Calvanese D., Nardi D., McGuinness D., and Patel-Schneider
P., editors. The Description Logic Handbook: Theory, Implementation and
Applications. – Cambridge University Press, 2003.

[4] Börger E. and Stärk R. Abstract State Machines: A Method for High-Level
System Design and Analysis. – Springer-Verlag, 2003.

[5] Corazzon R. Ontology. A Resource Guide for Philosophers. – Available at
http://www.formalontology.it/.

[6] Dijkstra E.W. A Discipline of Programming. – Prentice-Hall, 1976.

[7] Dahl O-J., Dijkstra E.W., Hoare C.A.R. Structured Programming. – Aca-
demic Press, 1972.

[8] Ershov A.P. Algorithmic Programming Languages // Vestnik Akademii Nauk
SSSR. – 1968. – N 3. – P. 58-63. (In Russian)

[9] Ershov A.P., Pokrovsky S.B. Evolution of Programming Languages // 2-nd
Soviet Conf. on Operational Research, Petrozavodsk, May 10-14, 1976. –
P. 39-54. (In Russian)

[10] Ershov A.P. Mixed Computation: Potential Applications and Problems for
Study // Theor. Comput. Sci. – 1982. – Vol. 18., N 1. – P. 41-67.

[11] Floyd R.W. Assigning meanings to programs // Proc. Symp. Appl. Math.
American Math. Society. – 1967. – Vol. 19. – P. 19–32.

[12] Floyd R.W. The paradiggms of Programming // Communs ACM. – 1979. –
Vol. 22. – P. 455–460.

[13] Gorodnyay L.V. Programming Paradigms // Internet University of Informa-
tion Technology. – Available at http://www.intuit.ru, 2007. (In Russian)

[14] Hoare C.A.R., Wirth N. An Axiomatic Definition of the Programming Lan-
guage PASCAL // Acta Informatica. – 1973. – Vol. 2, N 4. – P. 335–355.

[15] Hoare, C. A. R. Communicating Sequential Processes. – Prentice Hall, 1978.



40 I. S. Anureev et al.

[16] Hoare C. A. R. The Verifying Compiler: A Grand Challenge for Computing
Research // Lect. Notes Comput. Sci. – 2003. – Vol. 2890. – P. 1–12.

[17] Kuhn T.S. The structure of Scientific Revolutions. – Univ. of Chicago Press,
1970.

[18] Lamport L. LaTeX: A document preparation system: User’s guide and refer-
ence. – Addison-Wesley Professional, 1994.

[19] Lavrov S.S. Universal Programming Language (ALGOL 60). – Nauka Pub-
lishers, 1972. (In Russian)

[20] Lavrov S.S. Basic Concepts and Constructs of Programming Languages. –
Finance and Statistics Publishers, 1982. (In Russian).

[21] McCarthy J. Recursive Functions of Symbolic Expressions and Their Com-
putation by Machine // Communs ACM. – 1960. – Vol. 3, N 4. – P. 184–195.

[22] Meyer B. Introduction to the Theory of Programming Languages. – Prentice
Hall, 1990.

[23] Meyer B. Eiffel: The Language. – Prentice Hall, 1991.

[24] Milner R. A Calculus for Communicating Systems. – Lect. Notes Comput.
Sci. – 1980. – Vol. 92. – 171 p.

[25] Milner R. Communication and Concurrency. – Prentice Hall, 1989.

[26] Milner R., Tofte M., Harper R., MacQueen D. The Definition of Standard
ML (Revised). – MIT Press, 1997.

[27] Minsky M. Recursive Unsolvability of Post’s Problem of ’Tag’ // Annals of
Mathematics. – 1961. – N 74(3). – P. 437–453.

[28] Nepejvoda N.N. Styles and methods of programming. – Internet University
of Information Technology. – 2005. (In Russian)

[29] Nepomniaschy V.A., Shilov N.V., Bodin E.V., Kozura V.E. Basic-REAL:
integrated approach for design, specification and verification of distributed
systems // Lect. Notes Comput. Sci. – 2002. – Vol. 2335. – P. 69–88.

[30] Nepomniaschy V.A., Anureev I.S., Dubranovskii I.V., Promsky A.V. Towards
verification of C# programs: A three-level approach // Programming and
Computer Software. – 2006. – N 32(4). – P. 190–202.

[31] Nepomniaschy V.A., Anureev I.S., Mihailov I.N., Promsky A.V. Towards
Verification of C Programs. C-Light Language and Its Formal Semantics //
Programming and Computer Software. – 2002. – N 28(6). – P. 314–323.

[32] Nepomniaschy V.A., Anureev I.S., Promsky A.V. Towards Verification of C
Programs: Axiomatic Semantics of the C-kernel Language // Programming
and Computer Software. – 2003. – N 29(6). – P. 338–350.



On the problem of computer language classification 41

[33] Norrish M. C formalised in HOL: PhD Thesis. – 1998. – (Tech. Rep. / Univ.
of Cambridge, Computer Laboratory; N 453).

[34] Roj J., Owen M. BPMN and Business Process Management Popkin Software,
2003. – Available at
http://www.bpmn.org/Documents/6AD5D16960.BPMN and BPM.pdf

[35] Roscoe A. W. The Theory and Practice of Concurrency. – Prentice Hall, 1997.

[36] The Python Language Reference Mannual (version 2.5) / Ed. by G. van
Rossum, F.L. Drake. – Network Theory Limited, 2006.

[37] Ritchie D.M. The development of the C language // ACM SIGPLAN Notices.
– 1993. – Vol. 28, N 3. – P. 201–208.

[38] Smith B., Kumar A., Schulze-Kremer S. Revising the UMLS Semantic Net-
work / Ed. by M. Fieschi, et al. – Medinfo, Amsterdam, IOS Press, 2004. –
1700 p.

[39] Using Formal Description Techniques – An Introduction to Estelle, LOTOS
and SDL /Ed. by K. J. Turner. – John Wiley and Sons, 1993.

[40] Turner R., Eden A.H. Towards a Programming Language Ontology // Com-
putation, Information, CognitionThe Nexus and the Liminal. – Cambridge
Scholars Press, 2007. – P. 147–159.

[41] Wirth N. Algorithms + Data Structures = Programs. – Prentice-Hall, 1976.

[42] Programming paradigm. From Wikipedia, the free encyclopedia. – Available
at http://en.wikipedia.org/wiki/Programming paradigm

[43] Wikipedia, the free encyclopedia. – Available at http://en.wikipedia.org

[44] The Encyclopedia of Programming Languages. – Available at
http://hopl.murdoch.edu.au/

[45] Esoteric programming language. From Wikipedia, the free encyclopedia. –
Available at
http://en.wikipedia.org/wiki/Esoteric programming language

[46] Esolang wiki. – Available at http://esolangs.org/wiki/Main Page

[47] Ook! – Available at http://www.dangermouse.net/esoteric/ook.html

[48] Web Ontology Language (OWL) Use Cases and Requirements,
W3C Recommendation, February 10, 2004. – Available at
http://www.w3.org/TR/webont-req

[49] OWL Web Ontology Language Reference, W3C Recommendation, February
10, 2004. – Available at http://www.w3.org/TR/owl-ref

[50] OWL Web Ontology Language Semantics and Abstract Syn-
tax, W3C Recommendation, February 10, 2004. – Available at
http://www.w3.org/TR/owl-absyn



42 I. S. Anureev et al.

[51] OWL Web Ontology Language Overview, W3C Recommendation, February
10, 2004. – Available at http://www.w3.org/TR/owl-features

[52] OWL Web Ontology Language Test Cases, W3C Recommendation, February
10, 2004. – Available at http://www.w3.org/TR/owl-test

[53] OWL Web Ontology Language Guide, W3C Recommendation, February 10,
2004. – Available at http://www.w3.org/TR/owl-guide

[54] Extensible Markup Language (XML) 1.0 – Available at
http://www.w3.org/TR/2006/REC-xml-20060816


