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Operational semantics development for procedural
programming languages based on conceptual

transition systems∗

I. S. Anureev

Abstract. The methodology of the operational semantics development for pro-
gramming languages based on the operational ontological approach, conceptual
transition systems and CTSL, the language for the specification of such systems, is
proposed. The development of operational semantics is illustrated by an example
of procedural programming languages from the family MPL of model programming
languages. Each target language covers a certain type of the procedural language
constructs. Thus, the paper can be also considered as a cookbook on the develop-
ment of operational semantics of procedural programming languages.
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1. Introduction

Currently, there are tens of thousands of computer languages (programming
languages, specificaton languages, domain-specific languages, scripting lan-
guages, markup languages, modeling languages, knowledge representation
languages, and so on), and the creation of new computer languages contin-
ues. Formal methods are one of the means to ensure the correct and effective
use of computer languages. Application of formal methods to the texts in
these languages requires the formalization of these texts. Therefore, the
problem of the development of formal specifications for computer languages
arises.

As a rule, specifications based on operational semantics are used for ex-
ecutable computer languages. The operational semantics of computer lan-
guages is usually based on the state transition systems. The methodology
of the application of transition systems to the development of formal se-
mantics of a class of computer languages such as programming languages
– the method of structural operational semantics – was proposed in [1].
However, because of the conceptual poverty of the formalism of transition
systems based only on two concepts, a state and a transition, this method-
ology can not take into account the conceptual structure of programming
languages, while modern programming languages have quite a complex con-
ceptual structure, including hundreds of concepts. This results in cumber-
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some specifications in which it is easy to make mistakes and difficult to find
them.

The logical algebraic approach to this problem was proposed in [2, 3]. It
is based on abstract state machines – the transition systems in which states
are algebras. The choice of an appropriate algebra for the specification of a
computer language solves the problem of modeling the conceptual structure
of the language partially.

The operational ontological approach [4] to this problem is based on the
specification of the conceptual structure using an ontology [5]. The for-
malisms earlier used for the implementation of this approach, such as onto-
logical transition systems [6, 7] and domain-specific transition systems [8],
can specify only a restricted number of the kinds of ontological elements.
The new formalism of conceptual transition systems [9, 10] (CTSs for short)
seems promising for the implementation of this approach, since it is quite
universal to specify typical ontological elements (concepts, attributes, con-
cept instances, relations, relation instances, individuals, types, and so on).
In addition, it gives quite a complete classification of ontological elements
which allows us to define new kinds and subkinds of ontological elements.

In this paper, we propose the methodology for the development of op-
erational semantics of programming languages based on the specification
language CTSL (Conceptual Transition System Language) [10]. Using the
specialized language allows us to raise the development of formal semantics of
programming languages to a much higher level compared to the conventional
description of the semantics in a natural language by inference rules. We get
rid of the ambiguity of the natural language. Not all units (terms, functions,
predicates, etc.) occurring in the inference rules are usually defined in de-
tail. Furthermore, in our experience, the size of the detailed definition of the
semantics in the natural language is at least not less than the size of its spec-
ification in CTSL. We virtually ’program’ the semantics of a programming
language in CTSL in a natural imperative style, using a usual terminology
of the programming language, encoded in its ontology, and we can also ’test’
the semantics (if there is a CTSL implementation). Using the language for
describing semantics, we can develop a common methodology for the devel-
opment of the semantics of the classes of related programming languages.
In our experience, the associated ontological elements and the structure of
CTSL rules for many constructs of the related languages are identical. The
accumulated techniques, idioms, and components describing the semantics
for certain constructs of programming languages can be reused to develop
the semantics of new languages. On the basis of a unified formalism, we
can carry out a comparative analysis of the semantics of programming lan-
guages, study and prove the properties of their semantics. And finally, a
CTSL specification of the semantics of a programming language is a strict
and complete documentation for the compiler of the language.
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The methodology is illustrated by an example of the model procedural
programming language MPL. It is defined as a family of programming lan-
guages in which each subsequent language is obtained from the previous
language by the introduction of new constructs and/or complication of the
semantics of constructs.

The paper is organized as follows. Notions and denotations used in this
paper are given in Section 2. The methodology of the development of op-
erational semantics of programming languages based on CTSs is described
in Section 3. The elements common for all languages of the family MPL
are defined in Section 4. The languages of the family MPL are defined in
sections from 5 to 11. The MPL1 language (Section 5) includes a minimal
set of basic types such as integer and boolean types with operations on them
and the statements of imperative programming languages such as conditional
statements, block statements, assignment statements and while statements.
The MPL2 language (Section 6) adds variable scopes. The MPL3 language
(Section 7) adds functions, procedures, and the return statement. The MPL4

language (Section 8) adds pointers. The MPL5 language (Section 9) adds
transfer-of-control statements such as break, continue and goto. The MPL6

language (Section 10) adds compound types such as arrays and structures.
The MPL7 language (Section 11) adds functional and procedural types and
variables.

2. Preliminaries

The names of sets begin with a capital letter. The elements of a set are
represented by the name of the set with a small first letter provided possi-
bly with indexes and primes. For example, the elements of the set Xα are
represented by xα, xα1, xα2, xα′, xα′′, and so on.

Let Boo = {true, false}. Let In..r, Nat and Nat.0 denote the sets of inte-
gers, natural numbers and natural numbers with zero; Ob, Fu, Set, Lab, Arg,
and Val denote the sets of objects, functions, sets, labels, function arguments,
and function values. Let sup(fu) and val.u denote the support of fu and the
undefined value of fu. Let set.(∗), set.[∗], set.{∗}, and set.∗ denote the sets of
sequences of the forms (ob.1, . . . , ob.nat.0), [ob.1, . . . , ob.nat.0 ], {ob.1, . . . , ob.nat.0},
and ob.1, . . . , ob.nat.0 from elements of set. For example, In..r.(∗) is a set of se-
quences of the form (in..r.1, . . . , in..r.nat.0), and in..r.∗ is a sequence of the form
in..r.1, . . . , in..r.nat.0 . Let Seq be a set of sequences. Let len(seq) denote the
length of seq. Let seq(nat) denote the nat-th element of seq. If len(seq) < nat,
then seq(nat) = val.u.

Let Bod, Co..n, and Var be the sets of elements called bodies, conditions,
and variables.

The terms used in the paper are context-dependent. Contexts have the
form Job.∗K, where the elements of ob.∗ called embedded contexts have the
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form: lab:ob, lab: or ob. The context in which some embedded contexts are
omitted is called a partial context. All omitted embedded contexts are con-
sidered bound by the existential quantifier, unless otherwise specified.

Let obJob.∗K denote the object ob in the context Job.∗K.
Let Sy.t.c denote a set of conceptual transition systems [9]. Let Ato,

El, El.s, Co..l, Co..pt, Att, Sta and Tr denote the sets of atoms, elements,
structural elements, conceptuals, concepts, attributes, conceptual states and
transitions in Jsy.t.cK. Let tr = (sta, st.c.1).

Let Boo.u = {true, val.u.e}. The element val.u.e is called the element un-
defined value.

3. The methodology of operational semantics development
for programming languages based on CTSs

Let Lan.p be a set of programming languages, and Co..ct.l.p be the set of
constructs of lan.p. The construction of sy.t.c which specifies the operational
semantics of lan.p consists of five stages:

1. Define Ato in Jsy.t.cK. The atoms of Ato specify the elementary units of
lan.p.

2. Define the conceptuals and elements (concepts, attributes, individu-
als) of the conceptual states in Jsy.t.cK, which specify the conceptual
structure and states of lan.p. An object ob is called a state of lan.p if ob
is a specific content of the conceptual structure of lan.p.

3. Define a one-to-one mapping of constructs of lan.p into special kinds
of elements in Jsy.t.cK. An element el is called a model of co..ct.l.p if el
represents co..ct.l.p. While execution of co..ct.l.p changes the state of lan.p,
execution of el changes the corresponding conceptual state in Jsy.t.cK.

4. The constructs of lan.p are divided into two groups: expressions the
main semantics of which is to return values, and statements the main
semantics of which is to change states. Expressions can also change
states, but this feature is not their main semantics.

5. Define the operational semantics of the models of expressions and state-
ments of lan.p by transition rules in Jsy.t.cK.

4. Description of languages of the family MPL

Since MPL is a new language and its syntax is undefined, we define MPL as
a sublanguage of CTSL [10] at the syntactic level for simplicity. In this case,
the models of MPL constructs coincide with these constructs. This feature
provides the extensibility of MPL.

Let lan.p be a language of the family MPL, and sy.t.c be a CTS specifying
the operational semantics of lan.p. In this section, we define the constructs
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of lan.p, and conceptuals and executable elements in Jsy.t.cK. The language
lan.p includes:

• a set Li of literals that are syntactic representations of the values of
types in lan.p;

• a set Id of identifiers such that Id = Ato \ Li, where Ato is a set of
atoms in CTSL;

• a set Co..pt.rJstaK of rule-defined concepts [10] that specify the types
and kinds of objects in lan.p and their values (instances) in JstaK. The
set Co..pt.r, in addition to the concepts of CTSL includes the concepts
literal and identifier specifying literals and identifiers in lan.p, respec-
tively;

• a set TyJstaK ⊆ Co..pt.rJstaK of types in JstaK in lan.p;

• a set VarJstaK of variables in JstaK such that their names are identifiers
and their types are from TyJstaK;

• expressions consisting of literals, variables and operations; and

• statements.

Let Co..pt.r, Ty, and Var denote Co..pt.rJstaK, TyJstaK, and VarJstaK for the
current state sta, respectively.

5. MPL1: basic operations and statements

The MPL1 language includes the types int and bool of CTSL [9], the set Li

of literals such that Li = In..r ∪ Boo, the operations = and != on elements,
the integer operations +, −, *., div and mod, the integer relations <, >, <=
and >=, the boolean operations and, or, not, => and <=>, variable decla-
rations, assignments, if statements, while statements and block statements.

5.1. Conceptual states

In this section, we list the conceptuals of the conceptual states of MPL1.
The conceptual {−1:type, 0:var, 1:variable} specifies the variable var and

its type. An identifier var is a variable of a type ty in JstaK if sta({−1:type, 0:
var, 1:variable}) = ty. Let Var be a set of variables. The following property
holds for MPL1: if sta({−1:type, 0:var, 1:variable}) ̸= val.u.e, then sta({−1:
type, 0:var, 1:variable}) ∈ Ty. The conceptual {−1:value, 0:var, 1:variable}
specifies the value of var. A variable var has the value val in JstaK if sta({−1:
value, 0:var, 1:variable}) = val.
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5.2. Expressions

In this section, we define the MPL1 expressions and their semantics.
The element (*.el is *.el.1) specifying rule-defined concepts and their

instances is defined by the rule

(rule (*.x is *.y) var (x, y) where (∗ x, y) then (*.x is *.y)).

The element (el is type) specifying that el ∈ Ty is defined by the rules

(rule (int is type) then true);
(rule (bool is type) then true).

The element (el is literal) specifying that el ∈ Li is defined by the rules

(rule (x is literal) var (x) then (x is int));
(rule (x is literal) var (x) then (x is bool)).

The element (el is identifier) specifying that el ∈ Id is defined by the
rule

(rule (x is identifier) var (x)
then ((x is atom) and (not (x is literal)))).

The elements (type of boo) and (type of in..r) returning the types of boo
and in..r, respectively, are defined by the rules

(rule (type of x) var (x) where (x is bool) then ’.bool);
(rule (type of x) var (x) where (x is int) then ’.int).

The element (el is variable) specifying that el ∈ Var is defined by the
rule

(rule (x is variable) var (x) then ((x is identifier) and
({−1:type, 0:x, 1:variable} != val.u.e))).

The element var specifying the value of var is defined by the rule

(rule x var (x) where (x is variable)
then {−1:value, 0:x, 1:variable}.

The element (type of var) specifying the type of var is defined by the
rule

(rule (type of x) var (x) where (x is identifier)
then {−1:type, 0:x, 1:variable}).

MPL1 inherits the following operations of CTSL: +, −, *, div, mod, =,
!=, <, <=, >, >=, and, or, not, =>, and <=>.

The element (el is embedded-statement) specifying that el is an em-
bedded statement, i.e. a statement which can be included in compound
statements at the top level, is defined by the rule

(rule (x is embedded-statement) var (x) then true).

Thus, all MPL1 statements are embedded.
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5.3. Statements

In this section, we define the MPL1 statements and their semantics.
The element (var var ty) specifying the declaration of the variable var of

the type ty is defined by the rule

(rule (var x y) var (x, y) where ((x is identifier) and (y is type))
then (if (x is variable) then val.u.e
else ({−1:type, 0:x, 1:variable} ::= ’.y))).

The element (var := el) specifying the assignment of the value of el to
var is defined by the rule

(rule (x := y) var (x, y) where ((∗ y) and (x is variable)) then
(if (*.y is *.(type of x))
then ({−1:value, 0:x, 1:variable} ::= ’.*.y) else val.u.e)).

The elements (if -m co..n then el.1 else el.2) and (if -m co..n then el.2)
specifying the if statement with the condition co..n, then-branch el.1 and
else-branch el.2 are defined by the rules:

(rule (if-m x then y else z) var (x, y, z)
where ((y is embedded-statement) and (z is embedded-statement))
then (if x then y else z));

(rule (if-m x then y) var (x, y) where (y is embedded-statement)
then (if x then y)).

The element (while-m co..n do bod) specifying the while statement with
the condition co..n and the body bod is defined by the rule

(rule (while-m x do y) var (x, y)
where (y is embedded-statement) then (while x do y)).

The element (block el.∗) specifying the block statement with the body
el.∗ is defined by the rule

(rule (block .:: x) var (x) then (seq .:: x)).

6. MPL2: variable scopes

The MPL2 language adds variable scopes. The scope of var occuring in
co..ct.l.p is the number of blocks surrounding this occurence of var in co..ct.l.p.
The value and type of var depend on its scope. The variable var can be global
(with the scope 0) and local. The following example illustrates variable
scopes:
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seq \\ x = val.u.e, y = val.u.e, scope = 0
(var x int) \\ x = val.u.e, y = val.u.e, scope = 0
(x := 0) \\ x = 0, y = val.u.e, scope = 0
(var y bool) \\ x = 0, y = val.u.e, scope = 0
(y := true) \\ x = 0, y = true, scope = 0
(block \\ x = 0, y = true, scope = 1
(var x bool) \\ x = val.u.e, y = true, scope = 1
(x := false) \\ x = false, y = true, scope = 1
(block \\ x = false, y = true, scope = 2
(var x int) \\ x = val.u.e, y = true, scope = 2
(x := 2) \\ x = 2, y = true, scope = 2
) \\ x = false, y = true, scope = 1

(var y int) \\ x = false, y = val.u.e, scope = 1
(y := 1) \\ x = false, y = 1, scope = 1

) \\ x = 0, y = true, scope = 0
).

6.1. Conceptual states

In this section, we list the specific conceptuals of the conceptual states of
MPL2.

Let Sc be a set of variable scopes represented by the elements of Nat.0.
The conceptual {0:scope} called a scope specifier and denoted by sc.s..r spec-
ifies the scope in which sy.t.c is being executed.

The conceptual {−2:sc,−1:type, 0:var, 1:variable} specifies a variable var
and its type in JscK. An identifier var is a variable of a type ty in Jsc, staK
if sta({−2:sc,−1:type, 0:var, 1:variable}) = ty. The variable var is global if
sc = 0. The variable var is local if sc > 0. The following property holds for
MPL2: if sta({−2:sc, 0:var, 1:variable}) ̸= val.u.e, then sta({−2:sc,−1:type, 0:
var, 1:variable}) ∈ Ty. The conceptual {−2:sc,−1:value, 0:var, 1:variable}
specifies the value of var in JscK. The variable var has the value val in Jsc, staK
if sta({−2:sc,−1:value, 0:var, 1:variable}) = val.

6.2. Expressions

In this section, we define the MPL2 expressions and their semantics.
The element (index of id) is defined by the rules

(rule (index of x) var (x) where (x is identifier)
then (index of x in *.sc.s..r));

(rule (index of x in y) var (x, y) then
(if ({−2:y, −1:type, 0:x, 1:variable} != val.u.e) then ’.y
else (if (y = 0) then val.u.e else (index of x in *.(y − 1)))).
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To resolve the name conflict, a unique index is associated with each value of
the name. In the case of the above rule, the index of var is the scope of a
variable with the name var.

The element (el is variable) is defined by the rule

(rule (x is variable) var (x) then ((index of x) != val.u.e))

The element var is defined by the rule

(rule x var (x) hvar (w) then (seq (w ::= (index of x))
(if (w = val.u.e) then val.u.e
else {−2:*.w, −1:value, 0:x, 1:variable}))).

The element (type of var) is defined by the rule

(rule (type of x) var (x) where hvar (w) then (seq
(w ::= (index of x))
(if (w = val.u.e) then val.u.e
else {−2:*.w, −1:type, 0:x, 1:variable}))).

The element (el is embedded-statement) is defined by the rule

(rule (x is embedded-statement) var (x) then
(not (x matches (var u v) var (u, v)

where ((u is identifier) and (v is type))))).

Thus, only variable declarations are not embedded in MPL2.

6.3. Statements

In this section, we define the MPL2 statements and their semantics.
The variable declaration is defined by the rule

(rule (var x y) var (x, y) where ((x is identifier) and (y is type))
then (if ({−2:sc.s..r, −1:type, 0:x, 1:variable} != val.u.e)
then val.u.e
else ({−2:*.sc.s..r, −1:type, 0:x, 1:variable} ::= ’.y))).

The assignment statement is defined by the rule

(rule (x := y) var (x, y) where (∗ y) hvar (w) then (seq
(w := (index of x))
(if ((w != val.u.e) and

(y is *.{−2:*.w, −1:type, 0:x, 1:variable}))
then ({−2:z, −1:value, 0:x, 1:variable} ::= ’.*.y)
else val.u.e))).

The block statement is defined by the rule
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(rule (block .:: x) var (x) then
(seq (enter-block) (seq .:: x) (exit-block))).

The element (enter-block) specifying the actions executed when sy.t.c
enters a block is defined by the rule

(rule (enter-block) then (sc.s..r ::= (sc.s..r + 1))).

The element (exit-block) specifying the actions executed when sy.t.c exits
a block is defined by the rule

(rule (exit-block) where # catch w then
(seq (delete-local-variables) (sc.s..r ::= (sc.s..r − 1)) (throw w))).

The element (delete-local-variables) specifying deletion of local variables
of the current scope is defined by the rule

(rule (delete-local-variables) then
(foreach-match {−2:*.sc.s..r, −1:type, 0:x, 1:variable} var (x)
do (seq ({−2:*.sc.s..r, −1:type, 0:*.x, 1:variable} ::=)

({−2:*.sc.s..r, −1:value, 0:*.x, 1:variable} ::=)))).

7. MPL3: functions and procedures

The MPL3 language adds declarations and calls of overloaded functions and
procedures, and the return statement.

7.1. Conceptual states

In this section, we list the specific conceptuals of the conceptual states of
MPL3.

The conceptual {−1:argument-types, 0:fu, 1:function} specifies the
function fu and its argument types. An identifier fu is a function with ar-
gument types ty.[∗] in JstaK if sta({−1:argument-types, 0:fu, 1:function}) =
ty.[∗]. Let Fu be a set of functions in JstaK. The conceptual {−2:ty.[∗],−1:
return-type, 0:fu, 1:function} specifies the return type of fu. A function
fu has the return type ty in JstaK if sta({−2:ty.[∗],−1:return-type, 0:fu, 1:
function}) = ty. A function fu with the return type ty in JstaK is a proce-
dure in JstaK if ty = void. The conceptual {−2:ty.[∗],−1:parameters, 0:fu, 1:
function} specifies the parameters of fu. The function fu has the parame-
ters id.[∗] in JstaK if sta({−2:ty.[∗],−1:parameters, 0:fu, 1:function}) = id.[∗].
The conceptual {−2:ty.[∗],−1:body, 0:fu, 1:function} specifies the body of fu.
The function fu has the body bod in JstaK if sta({−2:ty.[∗],−1:body, 0:fu, 1:
function}) = bod. The following property holds for MPL3: if sta({−1:
argument-types, 0:fu, 1:function}) ̸= val.u.e, then there exist ty.[∗], ty and
id.[∗] such that sta({−1:argument-types, 0:fu, 1:function}) = ty.[∗], sta({−2:
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ty.[∗],−1:return-type, 0:fu, 1:function}) = ty, {−2:ty.[∗],−1:parameters, 0:
fu, 1:function} = id.[∗], {−2:ty.[∗],−1:body, 0:fu, 1:function} ̸= val.u.e, and
len(ty.[∗]) = len(id.[∗]).

Let Le.c be a set of call levels represented by the elements of Nat. The
conceptual {0:call-depth} called a call level specifier and denoted by le.c.s..r
specifies the level of function calls, i.e. the number of embedded function
calls in which sy.t.c is being executed.

The conceptual {−3:le.c,−2:sc,−1:type, 0:var, 1:variable} specifies a vari-
able var and its type in Jle.c, scK. An identifier var is a variable of a type ty
in Jle.c, sc, staK if sta({−3:le.c,−2:sc,−1:type, 0:var, 1:variable}) = ty. The
following property holds for MPL3: if sta({−3:le.c,−2:sc,−1:type, 0:var, 1:
variable}) ̸= val.u.e, then sta({−3:le.c,−2:sc,−1:type, 0:var, 1:variable}) ∈
Ty. The conceptual {−3:le.c,−2:sc,−1:value, 0:var, 1:variable} specifies the
value of var in Jle.c, scK. The variable var has the value val in Jle.c, sc, staK
if sta({−3:le.c,−2:sc,−1:value, 0:var, 1:variable}) = val. The type and value
of the global variable var in Jle.c, sc, staK are specified by the conceptuals
{−3:0,−2:0,−1:type, 0:var, 1:variable} and {−3:0,−2:0,−1:value, 0:var, 1:
variable}, respectively.

The conceptual {−1:return-type, 0:le.c.s..r} denoted by ty.r.s..r specifies
the return type of the function executed in Jle.c.s..r, staK.

The exceptions {−1:return, 0:val, 1:exception} and {−1:return, 1:
exception} specify the execution of the return statement with the return
value val and without the return value, respectively.

7.2. Expressions

In this section, we define the MPL3 expressions and their semantics.
The element (void is type) specifying that void ∈ Ty is defined by the

rules

(rule (void is type) then true).

The element (index of id) is defined by the rules

(rule (index of x) var (x) where (x is identifier)
then (index of x in *.le.c.s..r, *.sc.s..r));

(rule (x is index in y, z) var (x, y, z) then
(if ({−3:y, −2:z, −1:type, 0:x, 1:variable} != val.u.e) then ’.z
else (if (z = 0) then val.u.e

else (index of x in y, *.(z − 1))))).

The element (el is variable) is defined by the rule

(rule (x is variable) var (x) ((index of x) != val.u.e)).

The element var is defined by the rule
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(rule x var (x) hvar (w) then (seq (w ::= (index of x))
(if (w = val.u.e) then val.u.e
else {−3:y, −2:*.w, −1:value, 0:x, 1:variable}))).

The element (type of var) is defined by the rule

(rule (type of x) var (x) hvar (w) then (seq (w ::= (index of x))
(if (w = val.u.e) then val.u.e
else {−3:y, −2:*.w, −1:type, 0:x, 1:variable}))).

The element (fun-call fu (el.∗)) calling fu with the arguments el.∗ is
defined by the rule

(rule (fun-call x y) var (x, y)
where (y is evaluable-ordered-element) hvar (u, t, s) then (seq
(u ::= (execute-arguments y)) (t ::= (argument-types of *.u))
(if ({−1:argument-types, 0:x, 1:function} = t) then (seq
(le.c.s..r ::= (le.c.s..r + 1)) (s ::= sc.s..r) (sc.s..r ::= 1)
(create-local-variables
*.{−2:*.t, −1:parameters, 0:x, 1:function} *.t *.u)

(ty.r.s..r ::= {−2:*.t, −1:return-type, 0:x, 1:function})
*.{−2:*.t, −1:body, 0:x, 1:function}
(catch w (seq
(if (*.w is not-admissible-function-exception) then val.u.e)
(if ((not (*.w is exception)) and (ty.r.s..r != void)) then val.u.e)
(exit-block) (ty.r.s..r ::=) (le.c.s..r ::= (le.c.s..r − 1))
(sc.s..r ::= s)
(if ((w .. − 1) = ’.return) then (w ::= (w .. 0)))
(throw w))))

else val.u.e))).

The element (argument-types of el.(∗)) returning the types of argument
values el.(∗) is defined by the rules

(rule (argument-types of ()) then ());
(rule (argument-types of (x .:: y)) var (x, y)
then (*.(type of x) .+ *.(argument-types of y))).

The element (ex is not-admissible-function-exception) specifies that ex
is an exception which is not admissible when a function call exits. The
absence of definition of this element means that all elements in MPL3 are
admissible when a function call exits.
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7.3. Statements

In this section, we define MPL3 statements and their semantics.
The element (execute-arguments el.(∗)) executing the function argu-

ments el.(∗) is defined by the rule

(rule (execute-arguments (x .:: y)) var (x, y) where (∗ x)
then ((execute-arguments y) +. *.x));

(rule (execute-arguments ()) then (skip)).

The element (create-local-variables el.(∗) el.(∗).1) creating the local vari-
ables corresponding to the function parameters el.(∗) with the values el.(∗).1
is defined by the rules

(rule (create-local-variables (x .:: y) (t .:: z) (u .:: v))
var (x, y, t, z, u, v)
then (seq (var x t) (x := ’.u) (create-local-variables y z v)));

(rule (create-local-variables () () ()) then (skip)).

The element (delete-local-variables) is defined by the rule

(rule (delete-local-variables) then
(foreach-match
{−3:*.le.c.s..r, −2:*.sc.s..r, −1:type, 0:x, 1:variable} var (x) do
(seq ({−3:*.le.c.s..r, −2:*.sc.s..r, −1:type, 0:*.x, 1:variable} ::=)
({−3:*.le.c.s..r, −2:*.sc.s..r, −1:value, 0:*.x, 1:variable} ::=)))).

The variable declaration is defined by the rule

(rule (var x y) var (x, y) where ((x is identifier) and (y is type))
then
(if (*.{−3:le.c.s..r, −2:sc.s..r, −1:type, 0:x, 1:variable} != val.u.e)
then val.u.e
else ({−3:*.le.c.s..r, −2:*.sc.s..r, −1:type, 0:x, 1:variable} ::=

’.y))).

The assignment is defined by the rules

(rule (x := y) var (x, y) where (∗ y) hvar (w) then (seq
(w ::= (index of x))
(if (w = val.u.e) then val.u.e
else {−3:z, −2:*.w, −1:value, 0:x, 1:variable} ::= ’.*.y))).

The element (function fu ((id.∗(1) ty.∗(1)), . . . , (id.∗(nat.0) ty.∗(nat.0)))
ty bod), where len(id.∗) = len(ty.∗) = nat.0, specifying the declaration of the
function fu with the parameters id.∗ of the types ty.∗, the return type ty, and
the body bod is defined by the rule
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(rule (function x y z u) var (x, y, z, u) hvar (t)
where ((x is identifier) and (y is evaluable-ordered-element) and

(z is type))
then (seq
(t ::= (extract-types y))
(if ((t = val.u.e) or

({−1:argument-types, 0:x, 1:function} != val.u.e)) then val.u.e
else (seq ({−2:*.t, −1:return-type, 0:x, 1:function} :: = ’.z)
({−2:*.t, −1:parameters, 0:x, 1:function} ::=
(extract-names y))

({−2:*.t, −1:body, 0:x, 1:function} ::= ’.u)
({−1:argument-types, 0:x, 1:function} ::= t))))).

The element (extract-types ((id.∗(1) ty.∗(1)), . . . , (id.∗(nat.0) ty.∗(nat.0

)))) returning types (ty.∗) is defined by the rules

(rule (extract-types ()) then ());
(rule (extract-types ((x t) .:: y)) var (x, t, y)
where ((x is identifier) and (t is type))
then (’.t .+ *.(extract-types y))).

The element (extract-names ((id.∗(1) ty.∗(1)), . . . , (id.∗(nat.0) ty.∗(nat.0

)))) returning names (id.∗) is defined by the rules

(rule (extract-names ()) then ());
(rule (extract-names ((x t) .:: y)) var (x, t, y) then
(’.x .+ *.(extract-names y))).

The elements (return el) and (return) specifying the return statement
are defined by the rules

(rule (return x) var (x) where (∗ x) then
(if ((ty.r.s..r != ’.void) and (*.x is *.ty.r.s..r))
then [−1:return, 0:*.x, 1:exception] else val.u.e));

(rule (return) var (x) where (∗ x) then
(if (ty.r.s..r = ’.void) then [−1:return, 1:exception] else val.u.e)).

8. MPL4: pointers

The MPL4 language adds the pointer types, a pointer access, a variable ad-
dress access, a pointer creation, a pointer assignment, and a pointer deletion.

8.1. Conceptual states

The specific conceptuals of the conceptual states of MPL4 are listed below.
A conceptual [0:nat, 1:pointer] is called a pointer literal. Let Poi be a set

of pointer literals. A literal poi is a pointer of the type [pointer of ty] in
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JstaK if sta({−1:element-type, 0:poi, 1:pointer}) = ty. The following property
holds for MPL4: if sta({−1:element-type, 0:poi, 1:pointer}) ̸= val.u.e, then
sta({−1:element-type, 0:poi, 1:pointer}) ∈ Ty.

The conceptual {−1:value, 0:poi, 1:pointer} specifies the value of poi. A
value val of the type ty is the value of poi of the type [pointer of ty] in JstaK
if val = sta({−1:value, 0:poi, 1:pointer}) and sta({−1:element-type, 0:poi, 1:
pointer}) = ty.

The conceptual {−3:le.c,−2:sc,−1:pointer, 0:var, 1:variable} specifies the
variable var, its type, and the pointer which var represents in Jle.c, scK. An
identifier var is a variable of the type ty which represents the pointer poi and
has the value val in Jle.c, sc, staK if poi = sta({−3:le.c,−2:sc,−1:pointer, 0:var,
1:variable}), ty = sta({−1:element-type, 0:poi, 1:pointer}), and val =
sta({−1:value, 0:poi, 1:pointer}). The following property holds for MPL4: if
sta({−3:le.c,−2:sc,−1:pointer, 0:var, 1:variable}) ̸= val.u.e, then sta({−3:le.c,
−2:sc,−1:pointer, 0:var, 1:variable}) is a pointer in JstaK. The pointer repre-
sented by the global variable var in Jle.c, sc, staK is specified by the conceptual
{−3:0,−2:0,−1:pointer, 0:var, 1:variable}.

For simplicity, we do not distinguish the cases of stack and heap.

8.2. Expressions

In this section, we define MPL4 expressions and their semantics.
The element ([pointer of ty] is type) specifying that [pointer of ty] ∈ Ty

is defined by the rule

(rule ([pointer of x] is type) var (x) then (x is type)).

The element (el is pointer-literal) specifying that el is a pointer literal
is defined by the rule

(rule ([0:x, 1:pointer] is pointer-literal) var (x) then (x is nat)).

The element (el is literal) specifying that el ∈ Li is defined by the rule

(rule (x is literal) var (x) then (x is pointer-literal)).

The element (poi is pointer) specifying that poi is a pointer is defined by
the rule

(rule (x is pointer) var (x) then ((x is pointer-literal) and
({−1:element-type, 0:x, 1:pointer} != val.u.e))).

The element (* el) specifying the value of poi, where poi is the value of
el, is defined by the rule

(rule (* x) var (x) where ((∗ x) and (*.x is pointer)) then
{−1:value, 0:*.x, 1:pointer}).
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The element (element-type of poi) specifying the element type of poi is
defined by the rule

(rule (element-type of x) var (x) where (x is pointer-literal) then
{−1:element-type, 0:x, 1:pointer}).

The element (type of poi) specifying the type of poi is defined by the rule

(rule (type of x) var (x) where (x is pointer) then
[pointer of *.{−1:element-type, 0:x, 1:pointer}]).

The element (el is [pointer of ty]) specifying that el is a pointer of the
type [pointer of ty] is defined by the rule

(rule (x is [pointer of y]) var (x, y) then ((x is pointer) and
(’.y = {−1:element-type, 0:x, 1:pointer}))).

The element (index of id) is defined by the rules

(rule (index of x) var (x) where (x is identifier)
then (index of x in *.le.c.s..r, *.sc.s..r));

(rule (x is index in y, z) var (x, y, z) then
(if ({−3:y, −2:z, −1:pointer, 0:x, 1:variable} != val.u.e)
then ’.z
else (if (z = 0) then val.u.e

else (index of x in y, *.(z − 1))))).

The element (& var) specifying the pointer represented by var is defined
by the rule

(rule (& x) var (x) hvar (w) then (seq (w ::= (index of x))
(if (w = val.u.e) then val.u.e
else {−3:y, −2:*.w, −1:pointer, 0:x, 1:variable}))).

The element var is defined by the rule

(rule x var (x) hvar (w) then (seq (w ::= (index of x))
(if (w = val.u.e) then val.u.e else

{−1:value, 0:*.{−3:y, −2:*.w, −1:pointer, 0:x, 1:variable},
1:pointer}))).

The element (type of var) is defined by the rule

(rule x var (x) hvar (w) then (seq (w ::= (index of x))
(if (w = val.u.e) then val.u.e else

{−1:element-type,
0:*.{−3:y, −2:*.w, −1:pointer, 0:x, 1:variable},
1:pointer}))).
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The element (new-pointer ty) specifying a new pointer of the type
[pointer of ty] is defined by the rule

(rule (new-pointer x) var (x) where (x is type) hvar (w) then (seq
(w ::= (new-count pointer))
({−1:element-type, 0:*.w, 1:pointer} ::= ’.x)
w)).

8.3. Statements

In this section, we define MPL4 statements and their semantics.
The variable declaration is defined by the rule

(rule (var x y) var (x, y) where ((x is identifier) and (y is type))
hvar(w) then
(if ({−3:*.le.c.s..r, −2:*.sc.s..r, −1:pointer, 0:x, 1:variable} !=

val.u.e) then val.u.e
else (seq (w ::= (new-pointer y))
({−3:*.le.c.s..r, −2:*.sc.s..r, −1:pointer, 0:x, 1:variable} ::= w)
({−1:element-type, 0:*.w, 1:pointer} ::= ’.y)))).

The assignment is defined by the rule

(rule (x := y) var (x, y) where (∗ y) hvar (w, p) then (seq
(w ::= (index of x))
(if (w = val.u.e) then val.u.e else (seq
(p ::= {−3:*.le.c.s..r, −2:*.w, −1:pointer, 0:x, 1:variable})
(if (*.y is *.{−1:element-type, 0:*.p, 1:pointer})
then ({−1:value, 0:*.p, 1:pointer} ::= ’.*.y) else val.u.e))))).

The element (* el.1 := el.2) specifying the assignment of val to poi, where
poi and val are the values of el.1 and el.2, respectively, is defined by the rule

(rule (* x := y) var (x, y) where ((∗ x, y) and (*.x is pointer))
then (if (*.y is *.{−1:element-type, 0:*.x, 1:pointer})

then ({−1:value, 0:*.x, 1:pointer} ::= ’.*.y) else val.u.e)).

The element (delete-local-variables) is defined by the rule

(rule (delete-local-variables) hvar (w) then (seq
(foreach-match {−3:*.le.c.s..r, −2:*.sc.s..r, −1:pointer, 0:x,
1:variable} var (x) do (seq
(w ::=
{−3:*.le.c.s..r, −2:*.sc.s..r, −1:pointer, 0:*.x, 1:variable})

({−1:element-type, 0:*.w, 1:pointer} ::=)
({−1:value, 0:*.w, 1:pointer} ::=)
({−3:*.le.c.s..r, −2:*.sc.s..r, −1:pointer, 0:*.x, 1:variable} ::=)

)))).
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The element (delete-pointer el) deleting the pointer poi, where poi is the
value of el, is defined by the rule

(rule (delete-pointer x) var (x) where ((∗ x) and (*.x is pointer))
then (seq ({−1:element-type, 0:*.x, 1:pointer} ::=)

({−1:value, 0:*.x, 1:pointer} ::=))).

9. MPL5: break, continue, goto

The MPL5 language adds the break statement, continue statement, goto
statement, and label statement. Let Lab be a set of the labels of label
statements.

9.1. Conceptual states

In this section, we list the specific conceptuals of the conceptual states of
MPL5.

The exception [−1:break, 1:exception] specifies the execution of the break
statement in Jle.cK.

The exception [−1:continue, 1:exception] specifies the execution of the
continue statement in Jle.cK.

The exception [−1:goto, 0:lab, 1:exception] specifies the execution of the
goto statement with the label lab in Jle.cK.

The conceptual {−2:le.c,−1:sc, 0:lab, 1:label} specifies the label lab as the
label of the label statement executed in Jle.c, scK.
9.2. Expressions

In this section, we define the MPL5 expressions and their semantics.
The element (ex is not-admissible-function-exception) is defined by the

rule

(rule (x is not-admissible-function-exception) var (x) where (# x)
then ((x is exception) and
(((’.x .. − 1) = ’.break) or ((’.x .. − 1) = ’.continue) or
((’.x .. − 1) = ’.goto)))).

The element (el is embedded-statement) is defined by the rule

(rule (x is embedded-statement) var (x) then
(not ((x matches (var u v) var (u, v)

where ((u is identifier) and (v is type))) or
(x matches (label u) var (u) where (u is identifier))))).

Thus, only variable declarations and label statements are not embedded in
MPL5.
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9.3. Statements

In this section, we define MPL5 statements and their semantics.
The element (label lab) specifying the label statement with the label lab

is defined by the rule

(rule (label x) var (x) where (# and (x is identifier)) catch w
then (seq
({−2:*.le.c.s..r, −1:*.sc.s..r, 0:x, 1:label} ::= true)
(if (((w .. 1) = ’.exception) and ((w .. − 1) = ’.goto) and

((w .. 0) = ’.x)) then (w ::= true))
(throw w)).

The element (break) specifying the break statement is defined by the rule

(rule (break) then [−1:break, 1:exception]).

The element (continue) specifying the continue statement is defined by
the rule

(rule (continue) then [−1:continue, 1:exception]).

The element (goto lab) specifying the goto statement with the label lab is
defined by the rule

(rule (goto x) var (x) where (x is identifier)
then [−1:goto, 0:x, 1:exception]).

The while statement is defined by the rules

(rule (while-m x do y) var (x, y) then
(seq (while1 x do y) (delete-exception break)));

(rule (while1 x do y) var (x, y) then
(if x then (seq y (delete-exception continue) (while1 x do y)))).

The block statement is defined by the rules

(rule (block .:: x) var (x) then
(seq (enter-block) (block1 .:: x) (exit-block)));

(rule (block1 .:: x) var (x) then (seq
(seq .:: x)
(catch w
(if ((*.w is exception) and ((w .. − 1) = ’.goto) and

({−2:*.le.c.s..r, −1:*.sc.s..r, 0:*.(w .. 0), 1:label} = true))
then (seq (throw w) (block1 .:: x)) else (throw w)))).

The element (exit-block) is defined by the rule
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(rule (exit-block) where # catch w then (seq
(delete-local-variables) (delete-labels) (sc.s..r ::= (sc.s..r − 1))
(throw w))).

The element (delete-labels) deleting the labels of the label statements inJle.c.s..r, sc.s..rK is defined by the rule

(rule (delete-labels) then
(foreach-match {−2:*.le.c.s..r, −1:*.sc.s..r, 0:x, 1:label}
var (x) do ({−2:*.le.c.s..r, −1:*.sc.s..r, 0:*.x, 1:label} ::=))).

10. MPL6: arrays and structures

The MPL6 language adds the array and structure types, access to array ele-
ments and structure fields, structure declarations, array element and struc-
ture field assignments.

10.1. Conceptual states

In this section, we list the specific conceptuals of the conceptual states of
MPL6.

An element of the form [0:nat, 1:array] is called an array literal. Let Arr

be a set of array literals. A literal arr is an array of the type [array of ty] inJstaK if sta({−1:element-type, 0:arr, 1:array}) = ty. The following property
holds for MPL6: if sta({−1:element-type, 0:arr, 1:array}) ̸= val.u.e, then
sta({−1:element-type, 0:arr, 1:array}) ∈ Ty. The conceptual {−1:nat, 0:arr,
1:array} specifies the value of the nat-th element of arr. The value val of the
type ty is the value of the nat-th element of arr of the type [array of ty] inJstaK if val = sta({−1:nat, 0:arr, 1:array} and sta({−1:element-type, 0:arr, 1:
array}) = ty.

Let Ty.s and Fi be the sets of identifiers called structure types and fields.
The conceptual {0:ty.s, 1:structure-type} specifies the structure type ty.s.
The identifier ty.s is a structure type in JstaK if sta({0:ty.s, 1:structure-type})
̸= val.u.e. Let Ty.sJstaK be a set of structure types in JstaK. The concep-
tual {−1:fi, 0:ty.s, 1:structure-type} specifies the type of the field fi of the
structure type ty.s. A structure type ty.s has the field fi of the type ty
in JstaK if sta({−1:fi, 0:ty.s, 1:structure-type}) = ty. The following prop-
erty holds for MPL6: if sta({−1:fi, 0:ty.s, 1:structure-type}) ̸= val.u.e, then
sta({−1:fi, 0:ty.s, 1:structure-type}) ∈ Ty.

An element of the form [0:nat, 1:structure] is called a structure literal.
Let Str be a set of structure literals. A literal str is a structure of the
type ty.s in JstaK if sta({−1:type, 0:str, 1:structure}) = ty.s. The following
property holds for MPL6: if sta({−1:type, 0:str, 1:structure}) ̸= val.u.e, then
sta({−1:type, 0:str, 1:structure}) ∈ Ty.s. The conceptual {−1:fi, 0:str, 1:
structure} specifies the value of fi of str. The value val of the type ty
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is the value of fi of str of the type ty.s in JstaK if val = sta({−1:fi, 0:str, 1:
structure}), sta({−1:type, 0:str, 1:structure}) = ty.s, and ty.s is a structure
type which has the field fi of the type ty in JstaK.
10.2. Expressions

In this section, we define the MPL6 expressions and their semantics.
The element ([array of ty] is type) specifying that [array of ty] ∈ Ty is

defined by the rule

(rule ([array of x] is type) var (x) then (x is type)).

The element (el is array-literal) specifying that el is an array literal is
defined by the rule

(rule ([0:x, 1:array] is array-literal) var (x) then (x is nat)).

The element (arr is array) specifying that arr is an array is defined by
the rule

(rule (x is array) var (x) then ((x is array-literal) and
({−1:element-type, 0:x, 1:array} != val.u.e))).

The element (element-type of arr) specifying the element type of arr is
defined by the rule

(rule (element-type of x) var (x) where (x is array) then
{−1:element-type, 0:x, 1:array}).

The element (type of arr) specifying the type of arr is defined by the
rule

(rule (type of x) var (x) where (x is array) then
[array of *.{−1:element-type, 0:x, 1:array}]).

The element (el is [array of ty]) specifying that el is an array of the type
[array of ty] is defined by the rule

(rule (x is [array of y]) var (x, y) then ((x is array) and
(’.y = {−1:element-type, 0:x, 1:array}))).

The element (el ”[” el.1 ”]”) specifying the value of the nat-th element of
arr, where arr and nat are the values of el and el.1, respectively, is defined
by the rule

(rule (x ”[” y ”]”) var (x, y)
where ((∗ x, y) and (*.x is array) and (*.y is nat))
then {−1:*.y, 0:*.x, 1:array}).
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The element (ty.s is structure-type) specifying that ty.s is a structure
type is defined by the rule

(rule (x is structure-type) var (x) then ((x is identifier) and
({0:x, 1:structure-type} != val.u.e))).

The element (ty.s is type) specifying that ty.s ∈ Ty is defined by the rule

(rule (x is type) var (x, y) then (x is structure-type)).

The element (el is structure-literal) specifying that el is a structure
literal is defined by the rule

(rule ([0:x, 1:structure] is structure-literal) var (x)
then (x is nat)).

The element (el is literal) specifying that el ∈ Li is defined by the rules

(rule (x is literal) var (x) then (x is array-literal));
(rule (x is literal) var (x) then (x is structure-literal)).

The element (str is structure) specifying that str is a structure is defined
by the rule

(rule (x is structure) var (x) then ((x is structure-literal) and
({−1:type, 0:x, 1:structure} != val.u.e))).

The element (type of str) specifying the type of str is defined by the rule

(rule (type of x) var (x) where (x is structure) then
{−1:type, 0:x, 1:structure}).

The element (el is ty.s) specifying that el is a structure of the type ty.s
is defined by the rule

(rule (x is y) var (x, y) then ((y is structure-type) and
(’.y = {−1:type, 0:x, 1:structure}))).

The element (el ”.” fi) specifying the value of the field fi of str, where
str is the value of el, is defined by the rule

(rule (x ”.” y) var (x, y) where ((∗ x) and (*.x is structure)) then
(if ({−1:y, 0:*.{−1:type, 0:x, 1:structure}, 1:structure-type} !=

val.u.e)
then {−1:y, 0:*.x, 1:structure} else val.u.e)).
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10.3. Statements

In this section, we define the MPL6 statements and their semantics.
The element (struct ty.s ((fi.∗(1) ty.∗(1)) . . . , (fi.∗(nat) ty.∗(nat)))),

where len(fi.∗) = len(ty.∗) = nat, specifying the declaration of the struc-
ture type ty.s with the fields fi.∗ of the types ty.∗ is defined by the rules

(rule (struct x y) var (x, y)
where ((x is identifier) and (y is evaluable-ordered-element)) then
(if (x is structure-type) then val.u.e
else (seq ({0:x, 1:structure-type} ::= true) (struct1 x y))));

(rule (struct1 x ((y z) .:: u)) var (x, y, z, u)
where ((y is identifier) and (z is type)) then
(seq ({−1:y, 0:x, 1:structure-type} ::= ’.z) (struct1 x u)));

(rule (struct1 x ()) var (x) then (skip)).

The element (el.1 ”[” el.2 ”]” := el.3) specifying the assignment of val to
the nat-th element of arr, where arr, nat, and val are the values of el.1, el.2,
and el.3, respectively, is defined by the rule

(rule (x ”[” y ”]” := z) var (x, y, z) where (∗ x, y, z) then
(if ((*.x is array) and (*.y is nat) and

(*.z is *.(element-type of *.x)))
then ({−1:*.y, 0:*.x, 1:array} ::= ’.*.z) else val.u.e)).

The element (el.1 ”.” fi := el.2) specifies the assignment of val to the
field fi of str, where str and val are the values of el.1 and el.2, respectively,
is defined by the rule

(rule (x ”.” y := z) var (x, y, z)
where ((∗ x) and (*.x is structure))
hvar (t, w) then (seq
(t ::=
{−1:y, 0:*.{−1:type, 0:*.x, 1:structure}, 1:structure-type})

(if (t = val.u.e) then val.u.e else (seq (w ::= z)
(if (*.w is *.t)
then ({−1:y, 0:*.x, 1:structure} ::= w) else val.u.e))))).

11. MPL7: functional and procedural types and variables

The MPL7 language adds the functional and procedural types and variables.

11.1. Conceptual states

In this section, we list the specific conceptuals of the conceptual states of
MPL7.
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An element [0:nat, 1:function] is called a function literal. Let Fu be a set
of function literals. A literal fu is a function in JstaK with argument types
ty.[∗] if sta({−1:argument-types, 0:fu, 1:function}) = ty.[∗]. The conceptual
{−1:return-type, 0:fu, 1:function} specifies the return type of fu. A type ty
is the return type of fu in JstaK if sta({−1:return-type, 0:fu, 1:function}) =
ty. A function fu with the return type ty in JstaK is a procedure in JstaK
if ty = void. The conceptual {−1:parameters, 0:fu, 1:function} specifies
the parameters of fu. The function fu has the parameters id.[∗] in JstaK if
sta({−1:parameters, 0:fu, 1:function}) = id.[∗]. The conceptual {−1:body,
0:fu, 1:function} specifies the body of fu. The function fu has the body bod
in JstaK if sta({−1:body, 0:fu, 1:function}) = bod. The following property
holds for MPL7: if sta({−1:argument-types, 0:fu, 1:function}) ̸= val.u.e,
then there exist ty.[∗], ty and id.[∗] such that sta({−1:argument-types, 0:fu, 1:
function}) = ty.[∗], sta({−1:return-type, 0:fu, 1:function}) = ty, {−1:
parameters, 0:fu, 1:function} = id.[∗], {−1:body, 0:fu, 1:function} ̸= val.u.e,
and len(ty.[∗]) = len(id.[∗]). The function fu has the type [function of ty.[∗]
ty] in JstaK if sta({−1:argument-types, 0:fu, 1:function}) = ty.[∗], and
sta({−1:return-type, 0:fu, 1:function}) = ty.

The conceptual {−1:ty.[∗], 0:id, 1:function-name} specifies the function
with the parameter types ty.[∗] represented by the name id. The identi-
fier id represents the function fu with the argument types ty.[∗] in JstaK if
sta({−1:ty.[∗], 0:id, 1:function-name}) = fu, and fu is a function with the
argument types ty.[∗] in JstaK. Let Nam.f be a set of function names. The fol-
lowing property holds for MPL7: if sta({−1:ty.[∗], 0:id, 1:function-name}) ̸=
val.u.e, then sta({−1:ty.[∗], 0:id, 1:function-name}) is a function with the ar-
gument types ty.[∗] in JstaK.
11.2. Expressions

In this section, we define the MPL7 expressions and their semantics.
The element ([function of ty.[∗] ty] is type) specifying that [function of

ty.[∗] ty] ∈ Ty is defined by the rule

(rule ([function of x y] is type) var (x, y)
then ((x is type-sequence) and (y is type))).

The element (el is type-sequence) specifying that el ∈ Ty.[∗] is defined by
the rules

(rule ([x .:: y] is type-sequence) var (x, y)
then ((x is type) and (y is type-sequence)));

(rule ([ ] is type-sequence) then true).

The element (el is function-literal) specifying that el is a function literal
is defined by the rule
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(rule ([0:x, 1:function] is function-literal) var (x)
then (x is nat)).

The element (el is literal) specifying that el ∈ Li is defined by the rules

(rule (x is literal) var (x) then (x is function-literal)).

The element (fu is function) specifying that fu is a function is defined
by the rule

(rule (x is function) var (x) then ((x is function-literal) and
({−1:argument-types, 0:x, 1:function} != val.u.e))).

The element (type of fu) specifying the type of fu is defined by the rule

(rule (type of x) var (x) where (x is function) then
[function of
*.{−1:argument-types, 0:x, 1:function}
*.{−1:return-type, 0:x, 1:function}]).

The element (el is [function of ty.[∗] ty]) specifying that el is a function
of the type [function of ty.[∗] ty] is defined by the rule

(rule (x is [function of y z]) var (x, y, z)
then ((x is function) and
(’.y = {−1:argument-types, 0:x, 1:function}) and
(’.z = {−1:return-type, 0:x, 1:function})))

The element (fun-call el (el.∗)) specifying the call of fu with the argu-
ments el.∗, where fu is the value of el, is defined by the rule

(rule (fun-call x y) var (x, y)
where (y is evaluable-ordered-element) hvar (u, t, s, f) then (seq
(u ::= (execute-arguments y)) (t ::= *.(argument-types *.u))
(if ((x is identifier) and

({−1:*.t, 0:x, 1:function-name} != val.u.e)) then
(f ::= {−1:*.t, 0:x, 1:function-name}) else (f ::= x))).

(if ({−1:argument-types, 0:f, 1:function} = t) then (seq
(le.c.s..r ::= (le.c.s..r + 1)) (s ::= sc.s..r) (sc.s..r ::= 1)
(create-local-variables
*.{−1:parameters, 0:*.f, 1:function} *.t *.u)

(ty.r.s..r ::= {−1:return-type, 0:f, 1:function})
*.{−1:body, 0:*.f, 1:function}
(catch w (seq
(if (*.w is not-admissible-function-exception) then val.u.e)
(if ((not (*.w is exception)) and (ty.r.s..r != void)) then val.u.e)
(exit-block) (ty.r.s..r ::=) (le.c.s..r ::= (le.c.s..r − 1))
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(sc.s..r ::= s)
(if ((w .. − 1) = ’.return) then (w ::= (w .. 0)))
(throw w)))

else val.u.e)))).

For simplicity, we impose a constraint on function calls that function names
can not be arguments. This constraint is not essential, for we can assign
a function name to a function variable and use the function variable as an
argument.

11.3. Statements

In this section, we define the MPL7 statements and their semantics.
The function declaration is defined by the rule

(rule (function x y z u) var (x, y, z, u) hvar (w, f, t)
where ((x is identifier) and (y is evaluable-ordered-element) and

(z is type)) then (seq
(t ::= (extract-types y))
(if ((t = val.u.e) or

({−1:*.t, 0:x, 1:function-name} != val.u.e)) then val.u.e else
(f ::= (new-count function))
({−1:return-type, 0:*.f, 1:function} ::= ’.z)
({−1:parameters, 0:*.f, 1:function} ::= (extract-names y))
({−1:body, 0:*.f, 1:function} ::= ’.u)
({−1:argument-type, 0:*.f, 1:function} ::= t)
({−1:*.t, 0:x, 1:function-name} ::= f)))).

The assignment (el.1 := el.2) is defined by the rule

(rule (x := y) var (x, y) hvar (w, p, t, v) then (seq
(w ::= (index of x))
(if (w = val.u.e) then val.u.e else (seq
(p ::= {−3:*.le.c.s..r, −2:*.w, −1:pointer, 0:x, 1:variable})
(t ::= {−1:element-type, 0:*.p, 1:pointer})
(v ::= (value of y in t)) (if (v = val.u.e) then (v ::= y))
(if (*.v is *.t)
then ({−1:value, 0:*.p, 1:pointer} ::= v) else val.u.e))))).

The assignment (value of id in ty) is defined by the rule

(rule (value of x in [function of y z]) var (x, y, z)
where ((x is identifier) and (y is type-sequence) and (z is type))
then {−1:y, 0:x, 1:function-name}).

The assignment (* el.1 := el.2) is defined by the rule



Operational semantics development for procedural programming languages ... 27

(rule (* x := y) var (x, y)
where ((∗ x) and (*.x is pointer)) hvar (t, v)
then (seq (t ::= {−1:element-type, 0:*.x, 1:pointer})
(v ::= (value of y in t)) (if (v = val.u.e) then (v ::= y))
(if (*.v is *.t)
then ({−1:value, 0:*.x, 1:pointer} ::= v) else val.u.e))).

The assignment (el.1 ”[” el.2 ”]” := el.3) is defined by the rule

(rule (x ”[” y ”]” := z) var (x, y, z)
where ((∗ x, y) and (*.x is array) and (*.y is nat)) hvar (t, v)
then (seq
(t ::= {−1:element-type, 0:*.x, 1:pointer})
(v ::= (value of y in t)) (if (v = val.u.e) then (v ::= y))
(if (*.v is *.t)
then ({−1:*.y, 0:*.x, 1:array} ::= v) else val.u.e))).

The assignment (el.1 ”.” fi := el.2) is defined by the rule

(rule (x ”.” y := z) var (x, y, z)
where ((∗ x) and (*.x is structure)) hvar (w, t, v) then (seq
(t ::=
{−1:y, 0:*.{−1:type, 0:*.x, 1:structure}, 1:structure-type})

(if (t = val.u.e) then val.u.e else (seq
(v ::= (value of z in t)) (if (v = val.u.e) then (v ::= z))
(if (*.v is *.t)
then ({−1:y, 0:*.x, 1:structure} ::= v) else val.u.e))))).

12. Conclusion

Although the methodology proposed in this paper has been applied only
to procedural programming languages, it can be extended to other kinds
of computer languages (object-oriented programming languages, executable
specification languages, and parallel programming languages).

In the near future, we plan to extend the methodology to object-oriented
programming languages, to add typical object-oriented constructs to MPL,
and to apply the methodology to real programming languages.
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