
Bull. Nov. Comp.Center, Comp. Science, 40 (2016), 15–35
© 2016 NCC Publisher

Method of the development of ontological
operational semantics for imperative programming

languages∗

I.S. Anureev, I.V. Maryasov, I.N. Mikhailov

Abstract. The paper presents a method of the development of operational seman-
tics for imperative programming languages. It is based on the ontological approach
to formal programming language specification implemented by information tran-
sition systems and conceptual transition systems. The method is illustrated by a
fragment of the C language.

Keywords: operational semantics, ontological operational semantics, information
transition system, conceptual transition system, C.

1. Introduction

Currently, there are tens of thousands of computer languages (programming
languages, specification languages, domain-specific languages, scripting lan-
guages, markup languages, modeling languages, knowledge representation
languages, and so on), and the creation of new computer languages contin-
ues. Formal methods are a means to ensure the correct and effective use of
computer languages [2]. Application of formal methods to texts in these lan-
guages requires a formalization of these texts. Therefore, the development
of formal semantics for computer languages is an important problem.

Operational semantics describing the abstract machine (AM[PL] for
short) executing the instructions of a programming language (PL) on a set
of states is generally used to formalize the language. The methodology for
the development of the ontological operational semantics of PLs [1] based
on conceptual transition systems (CTSs) was proposed in [3]. Like abstract
state machines [4] (ASMs), CTSs allow states to be described in detail, but
both these formalisms do not allow transitions to be described in detail. The
languages AsmL [5] and XasM [6] based on ASMs are general-purpose lan-
guages for the specification of computer systems. They are not DSLs oriented
to the description of transitions in AMs specifying operational semantics of
PLs.

In this paper, we propose a method to elaborate this methodology. The
development of operational semantics of a PL based on the method consists
of two main stages. In the first stage, AM[PL] is described in the form of

∗Partially supported by RFBR under Grant 15-01-05974.

16 I.S. Anureev, I.V. Maryasov, I.N. Mikhailov

an information transition system [7] (ITS[PL]). ITSs are information models
for a preliminary rough representation of the AMs structure. The purpose
of the informal description is to classify the objects of AM[PL] as states,
state objects, information queries, query objects, answers, and answer ob-
jects of ITS[PL]. The states, queries and answers of ITS[PL] describe the
states, instructions and returning values of AM[PL], respectively. The state
objects describe the objects observable in the states of AM[PL] (in particu-
lar, elements and substates of the states of AM[PL]). The query objects and
answer objects of ITS[PL] describe the elements constituting the instruc-
tions and returning values of AM[PL], respectively. In the second stage, the
formal conceptual information transition model [7] (CITM[PL]) of ITS[PL]
in the language CTSL (Conceptual Transition System Language) [7] is de-
fined. CITM[PL] includes representations of states, state objects, queries,
query objects, answers, and answer objects in CTSL in the form of the con-
ceptual structures (elements, conceptuals, concepts, attributes, individuals,
conceptual states, and conceptual configurations) of CTSL, and an extension
of CTSL [7] describing the operational semantics of query representations.
Thus, the operational semantics of PL is defined in CTSL in conceptual (on-
tological) terms. Therefore, it is called the ontological operational semantics
of PL [1].

The paper is organized as follows. Notions and denotations used in this
paper are given in Section 2. The operational semantics method for pro-
gramming languages based on CTSs is described in Section 3. Sections from
4 to 8 describe the stages of the development of operational semantics based
on the method for a fragment of the C language (CF).

2. Preliminaries

Let Ob be the set of objects considered in this paper. Let St be a set of
sets. Assume that Int, Nt, Nt0 and Bl are the sets of integers, natural
numbers, natural numbers with zero, and boolean values true and false,
respectively. Let the names of sets be represented by capital letters, possibly
with subscripts, and the elements of sets be represented by the corresponding
small letters, possibly with extended subscripts. For example, int and int.1
are elements of Int.

Let st.(∗), st.{∗}, and st.∗ denote the sets of sequences of the forms (ob.1,
. . . , ob.nt0), {ob.1, . . . , ob.nt0}, and ob.1, . . . , ob.nt0 from elements of st.

The terms used in the paper are context-dependent. Contexts have the
form Job.∗K, where the elements of ob.∗ called embedded contexts have the
form lb:ob, lb: or ob. The elements of the set Lb are called labels. Let obJob.∗K
denote the object ob in the context Job.∗K.

Let und denote the undefined value. Let Fn be a set of functions. Assume
that [fn arg.∗] is the application of fn to arg.∗. Let [support fn] denote the

Method of ontological operational semantics development for imperative . . . 17

support in JfnK, i.e., [support fn] = {arg : [fn arg] ̸= und}.
Let Arg and Vl be the sets of arguments and values. An object up of

the form arg : vl is called an update. The objects arg and vl are called the
argument and the value in JupK. Let Up be a set of updates.

Let [fn up] denote the function fn.1 such that [fn.1 arg] = [fn arg] if
arg ̸= argJupK and [fn.1 argJupK] = vlJupK. Let [fn up, up.∗nt] be a shortcut
for [[fn up] up.∗nt]; [fn arg.arg.1.arg.nt : vl], for [fn arg : [[fn arg] arg.1. . . .
.arg.nt : vl]]; and [up.∗] for [fn up.∗], where [support fn] = ∅.

Let Stt, Ob.s, Qr, Ob.q, Ans and Ob.a be the sets of states, state objects,
queries, query objects, answers and answer objects. Let El, Cnf and Str

be the sets of elements, conceptual configurations and conceptual structures
(elements, conceptuals, concepts, attributes, individuals, conceptual states,
conceptual configurations) of CTSL. Let Ln be a set of programming lan-
guages.

3. The method of the development of ontological operational
semantics for imperative programming languages

The development of operational semantics of ln in CTSL includes the fol-
lowing stages:

1. Describe AM[ln] in the form of an ITS[ln].

(a) Describe the sets of proper state objects. An object ob.s is a proper
state object if ob.s /∈ Stt.

(b) Describe the sets of states.
(c) Describe the sets of proper answer objects. An object ob.a is a

proper answer object if ob.a /∈ Ans.
(d) Describe the sets of answers.
(e) Describe the sets of proper query objects. An object ob.q is a

proper query object if ob.q /∈ Qr.
(f) Describe the sets of queries.

2. Define CITM[ln] of ITS[ln]. The CTS of CITM[ln] denoted by CTSL[ln]
is an extension of CTSL. The extension defines the operational seman-
tics of ln in CTSL, and the model describes the correspondence between
the objects of AM[ln] and conceptual structures of CTSL.

(a) Define the set of conceptual structures of CTSL representing
proper state objects of ITS[ln] in CTSL[ln].

(b) Define the set of conceptual configurations representing the states
of ITS[ln] in CTSL[ln]. The set of conceptual structures represent-
ing the state objects of ITS[ln] is called an ontology of ln in CTSL.

18 I.S. Anureev, I.V. Maryasov, I.N. Mikhailov

Therefore, the operational semantics of ln in CTSL is called an
ontological operational semantics of ln.

(c) Define the set of elements representing the proper answer objects
of ITS[ln] in CTSL[ln].

(d) Define the set of elements representing the answers of ITS[ln] in
CTSL[ln].

(e) Define the set of elements in ss.t.c representing the proper query
objects of ITS[ln] in CTSL[ln].

(f) Define the set of defined elements in CTSL[ln] representing the
queries of ITS[ln] in CTSL[ln].

(g) Define the element interpretation order [8], exogenous transition
order [7] and endogenous transition order [7] in CTSL[ln]. They
describe the order of execution of element interpretations and
transitions.

Let rp.s ∈ Ob.s → Str, rp.q ∈ Ob.q → El and rp.a ∈ Ob.a → El be the
representation functions of state objects, query objects and answer objects
of ITS[ln] in CTSL. Let r−p.s, r−p.q and r−p.a be inverse functions of rp.s, rp.q
and rp.a.

In the following sections, we apply the method to the development of
ontological operational semantics for a fragment of the C language defined
by an abstract machine AM[C].

4. Description of ITS[C]

The set of proper state objects of ITS[C] includes the objects of AM[C] such
as names, types, addresses and their values, variables and their attributes
(names, values, types, addresses), functions and their attributes (names, pa-
rameters, parameter types, return values, bodies), call levels, relative vari-
able scopes.

A call level specifies the number of nested function calls. A relative vari-
able scope specifies the number of block nesting. The scope 0 is associated
with global variables, and the other scopes are associated with local vari-
ables.

The state of ITS[C] specifies the current variable scope, the current call
level and relations between the following objects: addresses and their values,
variables and their attributes, functions and their attributes.

The set of answers of ITS[C] includes the values of C types, the jumps
initiated by jump statements and the program error message.

The set of queries of ITS[C] includes the instructions of AM[C] such as
statements, expressions (built of variables, literals, and operators), declara-
tions, conversions, and programs.

Method of ontological operational semantics development for imperative . . . 19

AM[C] contains extra instructions in addition to C instructions. The
extra instructions includes C expressions extended by new literals such as
pointer literals, array literals, structure literals, union literals and function
literals representing the values of pointer types, array types, structure types,
union types, and function types, respectively, and also the dynamic memory
management instructions new and delete from the C-light language [9].

5. Proper state objects in CTSL[C]

A name is represented by an instance of the concept name defined by the
rule

(rule (x is name) var (x) abn then (x is normal).

The syntax and semantics of rules are defined in [7]. The predefined CTSL
element (el is normal) specifies that el is a normal element [8]. Thus, names
are represented by normal elements. Let Nm = [content name]. The object
[content cncp] denotes the content (the set of instances) of the concept cncp.

A label is represented by an instance of the concept label defined by the
rule

(rule (x is label) var (x) abn then
(x matches y :: label var (y) where (y is name))).

The predefined CTSL element (el matches ptt var (vr.∗) where cnd) specifies
that the element el matches the pattern ptt with the variables vr.∗ and the
condition cnd is true for the corresponding values of these variables. Let
Lb = [content label].

A type is represented by an instance of the concept type−literal defined
by the rule

(rule (x is type−literal) var (x) abn then
(x is basic−type) or (x is derived−type−literal))).

The predefined CTSL element (cnd.1 or cnd.2) specifies the disjunction of the
conditions cnd.1 and cnd.2. The false and true values are defined in CTSL as
follows: the element und is the false value, and any element distinct from
und is the true value.

A basic type is represented by an instance of the concept basic−type
defined by the rule

(rule (x is basic−type) var (x) abn then
(x :: q in :: set (int, f loat, ...) :: q)),

where int, f loat, ... is a sequence of all basic types of C. The predefined
CTSL element (el in :: set (el.∗)) specifies that el is an element of the se-
quence el.∗. The element of the form el :: q is called a quoted element.

20 I.S. Anureev, I.V. Maryasov, I.N. Mikhailov

The value of the quoted element el :: q in CTSL is defined as el. Let
Tp.b = [content basic−type].

A derived type is represented by an instance of the concept derived−
type−literal defined by the rule

(rule (x is derived−type−literal) var (x) abn then
(x is pointer−type−literal) or (x is array−type−literal) or
(x is structure−type−literal) or (x is function−type−literal)).

An array type is represented by an instance of the concept array−type−
literal defined by the rule

(rule (x is array−type−literal) var (x) abn then
(x matches (array y) where (y is type−literal)).

A structure type is represented by an instance of the concept structure−
type−literal defined by the rule

(rule (x is structure−type−literal) var (x) abn
then (x matches y :: structure−type var (y))).

Let Tp.s = [content structure−type−literal].
A pointer type is represented by an instance of the concept pointer−

type−literal defined by the rule

(rule (x is pointer−type−literal) var (x) abn then
(x matches (pointer y) where (y is type−literal)).

A function type is represented by an instance of the concept function−
type−literal defined by the rule

(rule (x is function−type) var (x) abn then
(x matches (function y z) var (y, z)
where ((y is (sequence type−literal)) and (z is type−literal)))).

The predefined CTSL element (cnd.1 and cnd.2) specifies the conjunction of
the conditions cnd.1 and cnd.2.

A type in JsttJITS[C]KK is represented by an instance of the concept type
in J[rp.s stt]K defined by the rule

(rule (x is type) var (x) abn then
(x is basic−type) or (x is derived−type))).

A derived type in JsttJITS[C]KK is represented by an instance of the con-
cept derived−type in J[rp.s stt]K defined by the rule

(rule (x is derived−type) var (x) abn then
(x is pointer−type) or (x is array−type) or
(x is structure−type) or (x is function−type))).

Method of ontological operational semantics development for imperative . . . 21

An array type in JsttJITS[C]KK is represented by an instance of the concept
array−type in J[rp.s stt]K defined by the rule

(rule (x is array−type) var (x) abn then
(x matches (array y) where (y is type)).

The conceptual (0 : tp.s, 1 : structure−type) in Jcnf K represents the struc-
ture type tp.s in J[rp.s cnf]K. A structure type tp.s is a structure type in
cnf if [cnf (0 : tp.s, 1 : structure−type)] ̸= und. The conceptual (−1 :
body, 0 : tp.s, 1 : structure−type) in cnf represents a body, fields and their
types in Jtp.s, [rp.s cnf]K. An element bd is a body in Jtp.s, cnf K if [cnf (−1 :
body, 0 : tp.s, 1 : structure−type)] = bd. The element bd is an attribute el-
ement. The attribute element with the attributes att.1, ..., att.nt0 has the
form (att.1 : vl.1, ..., att.nt0 : vl.nt0), where vl.1, ..., vl.nt0 are the values of the
attributes att.1, ..., att.nt0 . The attribute element can be considered as a func-
tion mapping the attributes to their values. A field fl is a field in Jtp.s, cnf K
if [[cnf (−1 : body, 0 : tp.s, 1 : structure−type)] fl] ̸= und. A type tp is a
type in Jfl, tp.s, cnf K if [[cnf (−1 : body, 0 : tp.s, 1 : structure−type)] fl] = tp.

A structure type in JsttJITS[C]KK is represented by an instance of the
concept structure−type in J[rp.s stt]K defined by the rule

(rule (x is structure−type) var (x) abn
then ((x is structure−type−literal) and (0 : x, 1 : structure−type))).

A field in J[[r−p.s tp.s]K in JsttJITS[C]KK is represented by an instance of the
concept (field in tp.s) in J[rp.s stt]K defined by the rule

(rule (x is (field in y)) var (x, y) abn then
((x is field−literal) and
((−1 : body, 0 : y, 1 : structure−type) .. x))).

The predefined CTSL element (el.a .. att) specifies the value of the attribute
att of the attribute element el.a.

A pointer type in JsttJITS[C]KK is represented by an instance of the con-
cept pointer−type in J[rp.s stt]K defined by the rule

(rule (x is pointer−type) var (x) abn then
(x matches (pointer y) where (y is type)).

A function type in JsttJITS[C]KK is represented by an instance of the
concept function−type in J[rp.s stt]K defined by the rule

(rule (x is function−type) var (x) abn then
(x matches (function y z) var (y, z)
where ((y is (sequence type)) and (z is type)))).

22 I.S. Anureev, I.V. Maryasov, I.N. Mikhailov

The predefined CTSL element (el is (sequence cncp)) specifies that el is a
sequence of the instances of the concept cncp.

A variable is represented by an instance of the concept variable−literal
defined by the rule

(rule (x is variable−literal) abn var (x) then
(x matches y :: variable var (y) where (y is name))).

Let Vr = [content variable−literal].
A relative variable scope is represented by an instance of the concept

scope defined by the rule

(rule (x is scope) var (x) abn then (x is nat0)).

The predefined CTSL element (el is nat0) specifies that el ∈ Nt0. Let
Scp = [content scope].

An array is represented by an instance of the concept array−literal
defined by the rule

(rule (x is array−literal) var (x) abn
then (x matches y :: array var (y) where (y is nat))).

The predefined CTSL element (el is nat) specifies that el ∈ Nt. Let Arr =
[content array−literal].

A structure is represented by an instance of the concept structure−
literal defined by the rule

(rule (x is structure−literal) var (x) abn
then (x matches y :: structure var (y) where (y is nat))).

Let Strc = [content structure−literal].
A field is represented by an instance of the concept field−literal defined

by the rule

(rule (x is field−literal) var (x) abn then
(x matches y :: field var (y))).

Let Fl = [content field−literal].
A function is represented by an instance of the concept function−literal

defined by the rule

(rule (x is function−literal) var (x) abn then
(x matches y :: function var (y) where (y is name))).

Let Fn = [content function−literal].
A formal argument of a function is represented by an instance of the

concept argument defined by the rule

Method of ontological operational semantics development for imperative . . . 23

(rule (x is argument) var (x) abn then
(x is variable−literal)).

Thus, formal function arguments are represented by variables. Let Arg =
[content argument].

A call level is represented by an instance of the concept call−level defined
by the rule

(rule (x is call−level) var (x) abn then (x is nat0)).

Let Lv.c = [content call−level].
A pointer is represented by an instance of the concept pointer−literal

defined by the rule

(rule (x is pointer−literal) var (x) abn then
((x is typed−pointer−literal) or (x is variable−pointer−literal) or
(x is function−pointer−literal) or (x is array−pointer−literal) or
(x is structure−pointer−literal) or (x :: q = null))).

Let Pn = [content pointer−literal]. These pointers are smart, i.e., they
’know’ their types and their connections with variables, arrays, structures,
unions, and functions.

The concept typed−pointer−literal is defined by the rule

(rule (x is typed−pointer−literal) var (x) abn
then (x matches (id : y, type : z) :: pointer var (y)
where ((y is nat0) and (z is type)))).

Let Pn.t = [content typed−pointer−literal].
The concept variable−pointer−literal is defined by the rule

(rule (x is variable−pointer−literal) var (x) abn then
(x matches (variable : y, scope : z, call−level : u) :: pointer
var (y, z, u) where ((y is variable−literal) and (z is scope) and
(u is call−level)))).

Let Pn.v = [content variable−pointer−literal].
The concept array−pointer−literal is defined by the rule

(rule (x is array−pointer−literal) var (x) abn then
(x matches (array : y, index : z) :: pointer var (y, z)
where ((y is array−literal) and (z is nat0)))).

Let Pn.a = [content array−pointer−literal].
The concept structure−pointer−literal is defined by the rule

(rule (x is structure−pointer−literal) var (x) abn then
(x matches (structure : y, field : z) :: pointer var (y, z)
where ((y is structure−literal) and (z is field− literal)))).

24 I.S. Anureev, I.V. Maryasov, I.N. Mikhailov

Let Pn.s = [content structure−pointer−literal].
The concept function−pointer−literal is defined by the rule

(rule (x is function−pointer−literal) var (x) abn then
(x matches (function : y, types : z) :: pointer var (y, z)
where ((y is function−literal) and (z is (sequence type))))).

Let Pn.f = [content function−pointer−literal].
The conceptual (0 : pn.t, 1 : pointer) in Jcnf K represents the pointer

pn.t in J[r−p.s cnf]K. A pointer pn.t is a pointer in Jcnf K if [cnf (0 : pn.t, 1 :
pointer)] ̸= und. The conceptual (−1 : value, 0 : pn.t, 1 : pointer) in Jcnf K
represents a value in Jpn.t, [r−p.s cnf]K. An element vl is a value in Jpn.t, cnf K
if vl = [cnf (−1 : value, 0 : pn.t, 1 : pointer)].

A pointer in JsttJITS[C]KK is represented by an instance of the concept
pointer in J[rp.s stt]K defined by the rule

(rule (x is pointer) var (x) abn then
((x is pointer−literal) and
((x is typed−pointer) => (0 : x, 1 : pointer)))).

The predefined CTSL element (cnd.1 => cnd.2) specifies that cnd.1 implies
cnd.2.

The conceptual (0 : arr, 1 : array) in Jcnf K represents the array arr inJ[r−p.s cnf]K. An array arr is an array in Jcnf K if [cnf (0 : arr, 1 : array)] ̸=
und. The conceptual (−1 : element−type, 0 : arr, 1 : array) in Jcnf K rep-
resents an element type and a type in Jarr, [r−p.s cnf]K. A type tp is an el-
ement type in Jarr, cnf K if [cnf (−1 : element−type, 0 : arr, 1 : array)] =
tp. A type (array tp) is a type in Jarr, cnf K if tp is an element type inJarr, cnf K. The conceptual (−1 : body, 0 : arr, 1 : array) in Jcnf K represents
elements in Jarr, [r−p.s cnf]K. A sequence element bd is a body in Jarr, cnf K
if bd = [cnf (−1 : body, 0 : arr, 1 : array)]. The element el is an element
in Jarr, cnf , ntK if [[cnf (−1 : body, 0 : arr, 1 : array)] . [nt0 + 1]] = el, and
0 ≤ nt0 < [len [cnf (−1 : body, 0 : arr, 1 : array)]]. The element el is an
element in Jarr, cnf K if el is an element in Jarr, cnf , nt0K for some nt0.

An array in JsttJITS[C]KK is represented by an instance of the concept
array in J[rp.s stt]K defined by the rule

(rule (x is array) var (x) abn
then ((x is array−literal) and (0 : x, 1 : array))).

The conceptual (0 : strc, 1 : structure) in Jcnf K represents the structure
in J[r−p.s cnf]K. A structure strc is a structure in Jcnf K if [cnf (0 : strc, 1 :
structure)] ̸= und. The conceptual (−1 : type, 0 : strc, 1 : structure)
in Jcnf K represents a type in Jstrc, [r−p.s cnf]K. A type tp.s is a type inJstrc, cnf K if [cnf (−1 : type, 0 : strc, 1 : structure)] = tp.s. The concep-
tual (−1 : body, 0 : strc, 1 : structure) in Jcnf K represents a body, fields

Method of ontological operational semantics development for imperative . . . 25

and their values in Jstrc, [r−p.s cnf]K. An element bd is a body in Jstrc, cnf K if
[cnf (−1 : body, 0 : strc, 1 : structure)] = bd. A field fl is a field in Jstrc, cnf K
if [[cnf (−1 : body, 0 : strc, 1 : structure)] fl] ̸= und. An element vl is a value
in Jfl, tp.s, cnf K if [[cnf (−1 : body, 0 : strc, 1 : structure)] fl] = vl.

A structure in JsttJITS[C]KK is represented by an instance of the concept
structure in J[rp.s stt]K defined by the rule

(rule (x is structure) var (x) abn
then ((x is structure−literal) and (0 : x, 1 : structure))).

The information about functions is represented by the substate function
in configurations. The conceptual (−1 : tp.(∗), 0 : fn, 1 : function) :: state ::
function in Jcnf K represents the function [r−p.s fn] with the argument types
[r−p.s tp.(∗)] in J[r−p.s cnf]K. A function fn is a function in Jtp.(∗), cnf K if [cnf
(−1 : tp.(∗), 0 : fn, 1 : function) :: state :: function] ̸= und. An ele-
ment tp.(∗) is an argument type sequence in Jfn, cnf K if fn is a function
in Jtp.(∗), cnf K. The conceptual (−2 : arguments,−1 : tp.(∗), 0 : fn, 1 :
function) :: state :: function in Jcnf K represents arguments in J[r−p.s fn],
[r−p.s cnf]K. An element arg.(∗) is an argument sequence in Jfn, cnf K if [cnf
(−2 : arguments,−1 : tp.(∗), 0 : fn, 1 : function) :: state :: function] =
arg.(∗). The conceptual (−2 : return−type,−1 : tp.(∗), 0 : fn, 1 : function) ::
state :: function in Jcnf K represents the return type in J[r−p.s fn], [r

−
p.s cnf]K.

A type tp is the return type in Jfn, cnf K if [cnf (−2 : return−type,−1 :
tp.(∗), 0 : fn, 1 : function) :: state :: function] = tp. The conceptual
(−2 : body,−1 : ty.(∗), 0 : fn, 1 : function) :: state :: function in Jcnf K rep-
resents a body in J[r−p.s fn], [r

−
p.s cnf]K. An element bd is a body in Jfn, cnf K

if [cnf (−2 : body,−1 : ty.(∗), 0 : fn, 1 : function) :: state :: function] = bd.
The conceptuals (0 : level) :: state :: function and (0 : type) :: state ::

function specify the current call level and the return type in it, respectively.
The conceptual (−2 : lv.c,−1 : scp, 0 : vr, 1 : variable) in Jcnf K represents

the variable [r−p.s vr] in Jlv.c, scp, [r−p.s cnf]K. A variable vr is a variable inJlv.c, scp, cnf K if [cnf (−2 : lv.c,−1 : scp, 0 : vr, 1 : variable)] ̸= und. The
conceptual (−3 : pointer,−2 : lv.c,−1 : scp, 0 : vr, 1 : variable) in Jcnf K
represents an address in J[r−p.s vr], lv.c, scp, [r

−
p.s cnf]K. A pointer pn.v is a

pointer in Jvr, lv.c, scp, cnf K if [cnf (−3 : pointer,−2 : lv.c,−1 : scp, 0 : vr, 1 :
variable)] = pn.v. The conceptual (−3 : type,−2 : lv.c,−1 : scp, 0 : vr, 1 :
variable) in Jcnf K represents a type in J[r−p.s vr], lv.c, scp, [r

−
p.s cnf]K. A type

tp is a type in Jvr, lv.c, scp, cnf K if [cnf (−3 : type,−2 : lv.c,−1 : scp, 0 :
vr, 1 : variable)] = tp. The conceptual (−3 : value,−2 : lv.c,−1 : scp, 0 :
vr, 1 : variable) in Jcnf K represents a value in J[r−p.s vr], lv.c, scp, [r

−
p.s cnf]K.

An element vl is a value in Jvr, lv.c, scp, cnf K if [cnf (−3 : value,−2 : lv.c,−1 :
scp, 0 : vr, 1 : variable)] = vl.

The information about blocks is represented by the substate block in
configurations. The conceptual (0 : scope) :: block specifies the current

26 I.S. Anureev, I.V. Maryasov, I.N. Mikhailov

relative scope.
A name nm can have a set of possible values in Jcnf K. For example,

possible values of the name vr of the form nm.1 :: variable in Jcnf K are
the variables with the name nm.1 of scopes from 0 to the current scope inJcnf K. To choose the right value in Jname : nm, cnf K and, thus, to resolve
the name conflict, these possible values are indexed. For example, indices
in Jname : vr, cnf K are scopes from 0 to the current scope in Jcnf K. Then
the name resolution problem is reduced to the choice of a right index inJname : nm, cnf K.

A variable in JsttJITS[C]KK is represented by an instance of the concept
variable in J[rp.s stt]K defined by the rule

(rule (x is variable) var (x) abn then (index in x)).

The element (index in vr) returning the right index in Jvr, cnf K is defined
by the rules

(rule (index in x) var (x) abn where (x is variable−literal)
then (let :: seq (w1, w2) be (current−scope, current−call−level) in
(index in x in w1, w2)));

(rule (x is index in y, z) var (x, y, z) abn then
(if (−2 : y, −1 : z, 0 : x, 1 : variable) then z :: q else
(if (z = 0) then und else
(let w be (z − 1) in (index in x in y, w))))).

The predefined CTSL element (let :: seq (vr.∗) be (el.∗) in bd), where bd ∈
El.∗, replaces the variables vr.∗ in the body bd by the values of the corre-
sponding elements of el.∗ and executes the resulting body.

The elements current−scope and current−call−level are defined by the
rules

(rule current−scope then (0 : scope) :: state :: block);
(rule current−scope then (0 : call−level) :: state :: function).

A variable vr is global in Jcnf K if the right index in Jvr, cnf K equals 0. A
variable vr is local in Jcnf K if the right index in Jvr, cnf K is greater than 0. The
type and value of a global variable vr in Jcnf K is specified by the conceptuals
(−3 : type,−2 : 0,−1 : 0, 0 : vr, 1 : variable) and (−3 : value,−2 : 0,−1 :
0, 0 : vr, 1 : variable), respectively.

A value is represented by an instance of the concept value−literal defined
by the rule

(rule (x is value−literal) var (x) abn then
((x is int) or (x is float) or ... or
(x is pointer−literal) or (x is array−literal) or
(x is structure−literal) or (x is function−literal))),

Method of ontological operational semantics development for imperative . . . 27

where ... are disjuncts of the form (x is tp.b) for all tp.b. Let Vl = [content
value−literal].

A value in JsttJITS[C]KK is represented by an instance of the concept
value in J[rp.s stt]K defined by the rule

(rule (x is value) var (x) abn then
((x is int) or (x is float) or ... or
(x is pointer) or (x is array) or
(x is structure) or (x is function))),

where ... are disjuncts of the form (x is tp.b) for all tp.b.

6. States in CTSL[C]

States are represented by configurations including the substates block and
function and conceptuals defined in Section 5. These substates model in-
formation associated with blocks and functions, respectively.

7. Answers in CTSL[C]

The element of the form el :: ex is called an exception. The value of
the exception el :: ex in CTSL is defined as el :: ex. The exceptions
(type : break) :: ex, (type : continue) :: ex and (type : goto, label : lb) :: ex
represent the execution of the break statement, the continue statement,
and the goto statement with the label lb, respectively. The exceptions
(type : return, value : vl) :: ex and (type : return) :: ex represent the
execution of the return statement. These exceptions are called jumps.

The values of C types are represented by instances of the concept value−
literal, the extra literals of AM[C] are represented by instances of the corre-
sponding concepts, jumps initiated by jump statements are represented by
jump exceptions, and the program error message is represented by und.

8. Defined elements in CTSL[C]

8.1. Statements and blocks

The elements break, continue and (goto lb) representing the queries break;,
continue; and goto [rp.q lb]; are defined by the rules

(rule break abn then (type : break) :: ex);
(rule continue abn then (type : continue) :: ex);
(rule (goto x) var (x) abn where (x is label) then
(type : goto, label : x) :: ex).

The element nm :: label representing queries of the form [rp.q nm : sttm;]
as (seq nm :: label [rp.q sttm]) is defined by the rule

28 I.S. Anureev, I.V. Maryasov, I.N. Mikhailov

(rule x :: label var (x) und then (catch w
(if w matches (type : goto, label : y :: label) var (y)
where (y :: q = x :: q) then else (throw w :: q)))).

The predefined CTSL element (throw el)) assigns the value of the element
el to a special conceptual (0 : ()) :: state :: value specifying the current
value of the CTS CTSL[C]. The predefined CTSL element (catch vr el.∗)
replaces the variable vr in the sequence el by the value of the conceptual
(0 : ()) :: state :: value and executes the resulting sequence. The predefined
CTSL element (if el matches ptt var (vr.∗) where cnd then el.∗.1 else el.∗.2)
specifies that if the element el matches the pattern ptt with the variables vr.∗
and the condition cnd is true for the corresponding values of these variables,
then the sequence el.∗.1 is executed for these values of the variables. If el does
not match ptt, then the sequence el.∗.2 is executed. The predefined CTSL
element (el.1 = el.2) specifies that el.1 and el.2 are equal.

The elements (return el) and (return) representing the queries return
[r−p.q el]; and return; are defined by the rules

(rule (return x) var (x) abn val (x) then
(let w1 be (0 : type) :: state :: function in
(if (w1 :: q = void :: q) then und else
(let w2 be (cast x :: ∗ :: q w1) in
(type : return, value : w2 :: q) :: ex))));

(rule (return) abn then
(if ((0 : type) :: state :: function = void :: q)
then (type : return) :: ex else und)).

The predefined CTSL element (if cnd then el.∗.1 else el.∗.2) specifies that if
the value of cnd is true, then the sequence el.∗.1 is executed. Otherwise, the
sequence el.∗.2 is executed. The predefined CTSL element (let vr be el in el.∗)
is a shortcut for (let :: seq (vr) be (el) in el.∗).

The element (block el.∗) representing the query {[r−p.q el.∗]} is defined by
the rule

(rule (block x) var (x) abn then
enter−block, (let :: seq (w1, w2)
be ((block−variables in (x)), (block−labels in (x))) in
x, (continue−block in w2, (x))
(catch :: u w (exit−block in w1), (throw w)))).

The element enter−block specifying the actions executed when the cur-
rent configuration enters the block is defined by the rule

(rule enter−block abn then current−scope++).

The element current−scope++ is defined by the rule

Method of ontological operational semantics development for imperative . . . 29

(rule current−scope++ abn then
((0 : scope) :: state :: block ::= ((0 : scope) :: state :: block + 1))).

The predefined CTSL element (cnptl ::= el) assigns the value of el to the
conceptual cnptl. The predefined CTSL element (el.1 + el.2) specifies the
sum of el.1 and el.2.

The element (block−variables in (el.∗)) returning the sequence of the
local variables defined in declaration statements that are the elements of el.∗
is defined by the rules

(rule (block−variables in ((var x y) z)) var (x, y) seq (z) abn
where ((x is variable−literal) and (y is type)) then
(x :: q .+ (block−variables in (z))));

(rule (block−variables in (x y)) var (x) seq (y) abn then
(block−variables in (y)));

(rule (block−variables in ()) abn then ()).

The predefined CTSL element (el .+ (el.∗)) adds the element el to the head
of the sequence (el.∗).

The element (block−labels in (el.∗)) returning the sequence of the labels
that are the elements of el.∗ is defined by the rules

(rule (block−labels in (x :: label y)) var (x) seq (y) abn then
(x :: label :: q .+ (block−labels in (y))));

(rule (block−labels in (x y)) var (x) seq (y) abn then
(block−labels in (y)));

(rule (block−labels in ()) abn then ()).

The element (continue−block in lb.(∗), el.(∗)) handling goto exceptions
when the current configuration reaches the end of the block is defined by the
rule

(rule (continue−block in x, (y)) var (x) seq (y) und then
(catch w
(if w matches (type : goto, label : z) :: ex var (z)
where (z :: q in :: set x)
then (throw w), y, (continue−block in x, (y)) else (throw w)))).

The element (exit−block in vr.(∗)) specifying the actions executed when
the current configuration exits the block is defined by the rule

(rule (exit−block in x) var (x) und then (catch w
(delete−variables in x), current−scope−−, (throw w :: q))).

The element current−scope−− is defined by the rule

(rule current−scope−− abn then
((0 : scope) :: state :: block ::= ((0 : scope) :: state :: block − 1))).

30 I.S. Anureev, I.V. Maryasov, I.N. Mikhailov

The predefined CTSL element (el.1 − el.2) specifies the difference between
el.1 and el.2.

The element (delete−variables in (vr.∗)) deleting the local variables vr.∗
in Jcurrent−scope, current−call−levelK is defined by the rule

(rule (delete−variables in x) var (x) abn then
(let :: seq (w1, w2) be (current−scope, current−call−level) in
(foreach y in x :: q do
((−3 : w2, −2 : w1, −1 : ponter, 0 : y, 1 : variable) ::=),
((−3 : w2, −2 : w1, 0 : y, 1 : variable) ::=)))).

The predefined CTSL element (cncptl ::=) is a shortcut for (cncptl ::= und).
The predefined CTSL element (foreach vr in (el.∗) do bd), where bd ∈ El.∗,
executes sequentially the body bd for each value of the variable vr taken from
the sequence el.∗ from left to right.

The elements (el ”; ”) and ”; ” representing the queries [r−p.q el]; and ; are
defined by the rules

(rule (x ”; ”) var (x) abn then x);
(rule ”; ” var (x) abn then)

The element (if :: C cnd then el.1 else el.2) representing the query
if [r−p.q (cnd]) then [r−p.q el.1] else [r−p.q el.2] is defined by the rule

(rule (if :: C x then y else z) var (x, y, z) abn
then (if ((cast x int) ! = 0) then (block y) else (block z))).

Other switch statements are defined in a similar way.
The element (while :: C cnd do el) representing the query (while ([r−p.q

cnd]) [r
−
p.q el]) is defined by the rule

(rule (while :: C x do y) var (x, y) abn then
(while ((cast x int) ! = 0)
do (block y, (delete−exception continue))),

(delete−exception break)).

The predefined CTSL element (while cnd do bd), where bd ∈ El.∗, executes
the body bd until the condition cnd becomes the false value. Other iteration
statements are defined in a similar way.

8.2. Declarations

The element (function fn (arg.1 : tp.1, ..., arg.nt.0 : tp.nt.0) : tp bd) repre-
senting the query [r−p.q tp] [r

−
p.q fn]([r

−
p.q tp.1] [r

−
p.q arg.1], ..., [r−p.q tp.nt.0] [r

−
p.q

arg.nt.0]) {[r−p.q bd]} is defined by the rule

Method of ontological operational semantics development for imperative . . . 31

(rule (function x y : z u) var (x, y, z) seq (u) abn
where ((x is function−literal) and (y is attribute−element) and
(z is type))

then (let w be (values in y) in
(if ((w is (sequence type)) and

(not (−1 : w, 0 : x, 1 : function) :: function)) then
((−2 : arguments, −1 : w, 0 : x, 1 : function) :: function ::=
(attributes in y)),

((−2 : return−type, −1 : w, 0 : x, 1 : function) :: function ::=
z :: q),

((−2 : body, −1 : w, 0 : x, 1 : function) :: function ::= (u) :: q),
((−1 : w, 0 : x, 1 : function) :: function ::= true)))

else und)).

The predefined CTSL element (el is attribute−element) specifies that el is
an attribute element. The predefined CTSL elements (attributes in el.a) and
(values in el.a) specify the sequence of attributes in the attribute element
el.a and the sequence of their values, respectively. The predefined CTSL
element (not cnd) specifies the negation of cnd.

The element (var vr tp) representing the query [r−p.q tp] [r
−
p.q vr]; is defined

by the rule

(rule (var x y) var (x, y) abn
where ((x is variable−literal) and (y is type))
then (let :: seq (w1, w2) be (current−scope, current−call−level) in
(if (−2 : w1, −1 : w2, 0 : x, 1 : variable) then und else
((−3 : type, −2 : w1, −1 : w2, 0 : x, 1 : variable) ::= y :: q),
((−2 : w1, −1 : w2, 0 : x, 1 : variable) ::= true))).

The element (struct tp.s (fl.1 : tp.1, ..., fl.nt : tp.nt)) representing the
query struct [r−p.q tp.s] {[r−p.q tp.1] [r−p.q fl.1]; ...; [r−p.q tp.nt] [r

−
p.q fl.nt]} is defined

by the rule

(rule (struct x y) var (x, y) abn where
((x is structure−type−literal) and (y is attribute) and
(let w be (attributes in y) in (w is (sequence field−literal)))
and (let w be (attribute−values in y) in (w is (sequence type))))

then (if (x is structure−type) then und
else ((−1 : body, 0 : x, 1 : structure−type) ::= y :: q),

((0 : x, 1 : structure−type) ::= true))).

8.3. Expressions

The element vl representing the query vl is defined by the rule

(rule x var (x) abn where (x is value−literal) then (throw x :: q)).

32 I.S. Anureev, I.V. Maryasov, I.N. Mikhailov

The element vr representing the query [r−p.q vr] is defined by the rule

(rule x var (x) abn then (let :: seq (w1, w2) be
((index in x), (current−call−level in w1)) in

(−3 : value, −2 : w2, −1 : w1, 0 : x, 1 : variable))).

The element (current−call−level in scp) is defined by the rule

(rule (current−call−level in x) var (x) abn where (x is scope) then
(if (x :: q = 0) then 0 else current−call−level)).

The element (el [el.1]) representing the query [r−p.q el][[r
−
p.q el.1]] is defined

by the rule

(rule (x [y]) var (x, y) abn val (y, x) where (x :: ∗ is array)
then (let w be (cast y :: ∗ int) in (if (w and (w :: q >= 0))

then ((−1 : body, 0 : x :: ∗, 1 : array) . (w + 1)) else und))).

The predefined CTSL element (el.1 >= el.2) specifies that el.1 is greater
than or equal to el.2. The predefined CTSL element ((el.∗) . nt) specifies the
nt-th element of the sequence el.∗.

The element (el . :: C fl) representing the query [r−p.q el].[r
−
p.q fl] is defined

by the rule

(rule (x . :: C y) var (x, y) abn val (x) where
(x :: ∗ is structure) and (y is field−literal)) then
((−1 : body, 0 : x :: ∗, 1 : structure) .. y)).

The element (el := el.1) representing the query [r−p.q el] := [r−p.q el.1] is
defined by the rule

(rule (x := y) var (x, y) abn val (y) then
(let :: seq (w1, w2, w3, w4) be ((left−hand in x),

(w1 .. left), (w1 .. type), (cast y :: ∗ :: q w3)) in
(if (w1 and w4) then (w2 ::= w4 :: q) else und))).

The element (left−hand in el) is defined by the rule

(rule (left−hand in x) var (x) abn then (let w1 be (index in x) in
(if w1 then (let :: seq (w2, w3) be ((current−call−level in w1),

(−3 : type, −2 : w2, −1 : w1, 0 : x, 1 : variable)) in
(left : (−3 : value, −2 : w2, −1 : w1, 0 : x, 1 : variable),
type : w3) :: q)

elseif x matches (∗ y) var (y) val (y) then
(if (y :: ∗ is typed−pointer) then (let w2 be (y :: ∗ :: q .. type) in

(left : (−1 : value, 0 : y :: ∗, 1 : pointer), type : w2) :: q))
elseif (y :: ∗ is variable−pointer) then
(let :: seq (w2, w3, w4, w5)

Method of ontological operational semantics development for imperative . . . 33

be ((y :: ∗ .. variable), (y :: ∗ .. scope), (y :: ∗ .. call−level),
(−3 : type, −2 : w4, −1 : w3, 0 : w2, 1 : variable)) in

(left : (−3 : value, −2 : w4, −1 : w3, 0 : w2, 1 : variable),
type : w5) :: q)

elseif (y :: ∗ is array−pointer) then (let :: seq (w2, w3, w4)
be ((y :: ∗ .. array), (y :: ∗ .. index),

(−1 : element−type, 0 : w2, 1 : array)) in
(left : ((−1 : body, 0 : w2, 1 : array) . w3 :: q), type : w4) :: q)

elseif (y :: ∗ is structure−pointer) then
(let :: seq (w2, w3, w4, w5)
be ((y :: ∗ .. structure), (y :: ∗ .. field),

(−1 : type, 0 : w2, 1 : structure),
((−1 : body, 0 : w4, 1 : structure−type) .. w3)) in

(left : ((−1 : body, 0 : w2, 1 : structure) .. w3), type : w5) :: q)
else und)

elseif x matches (y . :: C z) var (y, z) val (y)
where (y :: ∗ is structure) then (let :: seq (w2, w3) be

((−1 : type, 0 : y :: ∗, 1 : structure),
((−1 : body, 0 : w2, 1 : structure− type) .. z)) in

(if w3 then
(left : ((−1 : body, 0 : y :: ∗, 1 : structure) .. z), type : w3) :: q

else und))
elseif x matches (y [z]) var (y, z) val (z, y)
where (y :: ∗ is array) then (let :: seq (w2, w3, w4) be

((−1 : element−type, 0 : y :: ∗, 1 : array), (cast z :: ∗ int),
(−1 : length, 0 : y :: ∗, 1 : array)) in

(if ((w2 is type) and w3 and (w3 :: q >= 0) and
(w3 :: q < w4 :: q)) then

(left : ((−1 : body, 0 : y :: ∗, 1 : array) . z :: ∗ :: q),
type : w4) :: q else und))

else und))).

The predefined CTSL element (el.1 < el.2) specifies that el.1 is less than
el.2. The predefined CTSL element (if cnd then el.∗ elseif cnd.1 el.∗.1) is a
shortcut for (if cnd then el.∗ else (if cnd.1 el.∗.1)).

Let el.∗ # cnf be a shortcut for [cnf (0 : ()) :: state :: program : (el.∗)].
Let el.∗ # vl # cnf be a shortcut for [cnf (0 : ()) :: state :: program :
(el.∗), (0 : ()) :: state :: value : vl]. The atoms program and value are the
names of the substates of configurations in CTSL specifying the information
about programs and the returned values in CTSL [7]. The conceptuals (0 :
()) :: state :: program and (0 : ()) :: state :: value store the current program
and the returned value, respectively.

34 I.S. Anureev, I.V. Maryasov, I.N. Mikhailov

The element (cast el tp) representing the query ([r−p.q tp]) [r
−
p.q el] is defined

as follows:

(rule (cast x y) var (x, y) abn val (x) where (y is type)
then (cast x :: ∗ y) :: atm);

(transition (cast x y) :: atm var (x, y) then fn),

where

• if [r−p.a vl] is a result of conversion of [r−p.q x0] to [r−p.q y0], then (cast x0
y0) :: atm, el.∗ # cnf →fn,(x:x0,y:y0) el.∗ # vl # cnf .

The syntax and semantics of atomic transitions is defined in [7].
The element (el + :: C el.1) representing the query [r−p.q el] + [r−p.q el.1]

which specifies the sum of numbers [r−p.q el] and [r−p.q el.1] of the type int is
defined as follows:

(rule (x + :: C y) var (x, y) abn val (x)
where (x is int) and (y is int) then (x + :: C y) :: (int + int) ::

atm);
(transition (x + :: C y) :: (int + int) :: atm var (x, y) then fn),

where

• if [r−p.a vl] is the result of addition of [r−p.q x0] and [r−p.q y0] returned
by AM[C], then (x0 + :: C y0) :: (int + int) :: atm, el.∗ # cnf
→fn,(x:x0,y:y0) el.∗ # vl # cnf .

The elements (new tp) and (delete pn.t) representing the dynamic mem-
ory management queries are defined by the rules

(rule (new x) var (x) abn where (x is type) then
(let w be (new pointer−id) in
((0 : (id : w, type : x) :: pointer, 1 : pointer) ::= true),
(id : w, type : x) :: q));

(rule (delete x) var (x) abn val (x)
where (x :: ∗ is typed−pointer−literal) then
((−1 : value, 0 : x :: ∗, 1 : pointer) ::=),
((0 : x :: ∗, 1 : pointer) ::=)).

The element (new−cc cncp.c) generates a new instance of the countable con-
cept cncp.c [7]. The element pointer−id is a countable concept specifying
unique identifiers of addresses.

We have considered the ways of constructing the definitions for C expres-
sions by the examples of some C operators. The construction of a definition
for a function call can be found in [3]. The definitions for other C operators
are constructed in a similar way.

Method of ontological operational semantics development for imperative . . . 35

8.4. Programs

The element sequence el.1 ... el.nt represents the program [r−p.q el.1] ... [r
−
p.q

el.nt] in C.

9. Conclusion

The method presented in this paper describes the stepwise well-defined pro-
cess of operational semantics development for imperative programming lan-
guages. Therefore, it can became a basis of the technology of operational
semantics development for this class of languages.

The fragment of the C language used as the case study for this method
covers a representative set of constructs of procedural programming lan-
guages. Thus, the paper can be also considered as a cookbook on the devel-
opment of operational semantics for procedural programming languages.

References

[1] Anureev I.S. Operational ontological approach to formal programming lan-
guage specification // Programming and Computer Software. – 2009. – Vol. 35,
No. 1. – P. 35–42.

[2] Parnas D.L. Really rethinking formal methods // Computer. IEEE Computer
Society. – 2010. – Vol. 43, No. 1. – P. 28–34.

[3] Anureev I.S. Operational semantics development for procedural programming
languages based on conceptual transition systems // Bulletin NCC. Series:
Computer Science. – 2015. – Vol. 38. – P. 1–28.

[4] Gurevich Y. Abstract state machines: an overview of the project. foundations
of information and knowledge systems (FoIKS) // Lect. Notes Comput. Sci. –
2004. – Vol. 2942. – P. 6–13.

[5] AsmL: The Abstract State Machine Language. Reference Manual, 2002. –
URL: http://research.microsoft.com/en-us/projects/asml/.

[6] Matthias Anlauff. XasM – An Extensible, Component-Based Abstract state
Machines Language. –
URL: http://xasm.sourceforge.net/XasmAnl00/XasmAnl00.html.

[7] Anureev I.S. Formalisms for conceptual design of information systems // Sys-
tem Informatics. – 2016. – No. 8. – P. 53–88.

[8] Anureev I.S. Formalisms for conceptual design of closed information systems
// System Informatics. – 2016. – No. 7. – P. 69–148.

[9] Nepomniaschy V.A., Anureev I.S., Mikhailov I.N., Promskii A.V. Towards
verification of C programs. C-light language and its formal semantics // Pro-
gramming and Computer Software. – 2002. – Vol. 28, No. 6. – P. 314–323.

36

