
Bull. Nov. Comp.Center, Comp. Science, 34 (2012), 23�42
c⃝ 2012 NCC Publisher

Two-level mixed veri�cation method

of C-light programs in terms of safety logic∗

I. S. Anureev, I. V. Maryasov, V.A Nepomniaschy

Abstract. In this paper, a formalization of the two-level mixed veri�cation method
of C-light programs, based on program speci�c transition systems, is suggested.
Two kinds of such systems are used to formalize the method. The �rst kind, oper-
ational semantics speci�c transition systems, is used to specify the C-light mixed
operational semantics. The second kind, safety logic speci�c transition systems,
is used to specify the mixed axiomatic semantics of C-kernel into which C-light
programs are translated. The formalization makes this method more technological.

1. Introduction

The two-level approach is a trend in recent veri�cation projects. This ap-
proach suggests translation of a source program into an intermediate lan-
guage program and deductive veri�cation of the obtained program.

CompCert [12] is a veri�ed compiler for a large subset of C called Clight.
Source programs are translated into Cminor language.

Why [10] is a software veri�cation platform which contains an interme-
diate language of the same name, a general-purpose veri�cation conditions
generator, Krakatoa tool for veri�cation of Java programs, and Frama-C tool
for veri�cation of C programs. The generator can be used with many existing
provers (PVS, Z3, Coq, Isabelle/HOL, and others).

Dafny [11] is a programming language and a veri�er. It includes spec-
i�cation statements and can be considered as a modern version of Pascal
or a safe version of C. Dafny programs are translated into the intermediate
language Boogie [8] from which veri�cation conditions are generated. At the
proof stage, the SMT solver Z3 is used.

VCC [9] is an industrial-strength veri�cation environment for a low-level
concurrent system code written in C. VCC extends C with the design-by-
contract features, like pre- and postconditions, as well as type invariants.
Boogie is also used as an intermediate language for annotated C programs.

The Verisoft project [1] aims at the pervasive formal veri�cation from the
application level over the system level software down to the hardware. In
this project, a subset of C called C0 is used. The Hoare logic environment
is built on the top of Isabelle/HOL for a quite generic model of a sequential

∗Partially supported by RFBR under Grant No.11-01-00028-a and Interdisciplinary

Integration Project of SB RAS No.3.

24 I. S. Anureev, I. V. Maryasov, V.A Nepomniaschy

imperative programming language called Simpl. C0 is embedded into Simpl
and uses its veri�cation environment to conduct C0 program proofs.

Our two-level C program veri�cation method [15, 16, 17] is applied to the
C-light language which is a powerful subset of the ISO C language [18]. The
peculiarity of C-light is that it has formal operational semantics [16, 17].
To verify C-light programs, we �rst translate them to C-kernel programs.
The C-kernel language is a subset of C-light. Then we generate veri�cation
conditions based on the C-kernel axiomatic semantics [15]. Our method has
theoretical justi�cation. Theorems of correct translation of C-light into C-
kernel and of soundness of the C-kernel axiomatic semantics were proven [15].
Also, the algorithm of loop invariants translation from C-light programs to
C-kernel ones was suggested and its correctness was proven [6].

The two-level method speci�es the C memory model in su�cient detail,
which leads to cumbersome veri�cation conditions. Therefore, it requires the
development of veri�cation condition simpli�cation techniques. In [6, 13],
the separation of variables into shared and non-shared was suggested. Non-
shared variables are the variables, whose values are accessible (both for read-
ing and writing) only through their names in a program. Shared variables
are the variables which are not non-shared. In correspondence with this sep-
aration, the rules of operational and, respectively, axiomatic semantics were
divided into two groups: common rules for shared variables and special sim-
pli�ed rules for non-shared ones. The operational and axiomatic semantics,
that provide rule variants for the same C statement depending on the used
variable kind, got the name mixed.

This work represents further development of the mixed semantics ap-
proach.

Firstly, we suggest more precise classi�cation of variables depending on
their address access, in which three kinds of variables are sorted out: address-
independent, partially address-independent, and address-dependent. Add-
ress-independent variables correspond to non-shared variables. Address-de-
pendent variables correspond to shared variables. Partially address-indepen-
dent variables correspond to an intermediate case. These are variables, whose
values, obtained by special rules for non-shared variables in those program
points, where access through their names takes place, coincide with values
obtained by common rules for shared variables. At the same time, access to
their addresses is allowed not only through their names.

Secondly, we transfer this classi�cation on expression templates that de-
�ne the expression classes. For example, we can assume that all expressions
satis�ed the template *a[_], where a is a variable of the type pointer to
array, are address-independent.

Thirdly, the mixed axiomatic semantics rules are replaced by the safety
logic rules based on safety logic speci�c transition systems (SL-STS) [4],
which allow us to extend the class of proved properties. For example, in the

Two-level C-light programs mixed veri�cation method in terms of safety logic 25

safety logic, one can prove safety properties of non-terminating programs,
whereas axiomatic semantics assumes that the program, whose partial cor-
rectness is proven, terminates.

Fourthly, the mixed operational semantics rules and, respectively, C-
program states are represented by a new formalism � operational semantics
speci�c transition systems (OS-STS) [4].

Fifthly, an algorithm is suggested which allows us to check expression
templates membership of three classes mentioned above. The feature of this
algorithm is that the membership condition is formulated as a safety property
and to check it the deductive inference based on SL-STS is used.

2. The states of C-light programs

The de�nition of an operational semantics of a programming language L
with the help of OS-STS consists of two stages. At the �rst stage, a one-
to-one correspondence between L statements and expressions of OS-STS is
de�ned. This correspondence speci�es a kind of denotational semantics of L.
The language of expressions which corresponds to L statements is called a
projection of L on expressions and is denoted as L-exp. At the second stage,
the OS-STS which speci�es the operational semantics of L-exp is built. Then
L semantics, which is called a denotational-operational semantics, is de�ned
as a combination of L denotational semantics, which maps L programs to
their projections, and L-exp operational semantics. In our case, we de�ne
the C-light denotational-operational semantics. As the corresponding C-light
statements are restored immediately from C-light-exp statements, we limit
ourselves to a description of C-light-exp operational semantics only.

In this section, we describe the state of OS-STS, which speci�es the C-
light-exp operational semantics. According to the de�nition of such systems
[4], a state is an algebraic system of a special kind and is characterized by a
set of prede�ned and modi�able signature symbols.

Let us de�ne symbols which specify memory models used in this seman-
tics. There are two such memory models, common and simpli�ed. The
common memory model is used in the common rules and the simpli�ed one
is used in the special rules.

Let aa and bb stand for (value of a in s) and (value of b in s),
respectively.

Let us de�ne symbols which describe the common memory model. The
value v, returned by C-light-exp expressions, has the form (value a

address b), where a is the returned value itself, b is its address. In the
case when a C-light-exp expression is not an lvalue [18], b = undef. The
prede�ned symbols (value of _) and (address of _) are used to access
the components a and b of the expression v and have the semantics (value
(value of v) in s) = a and (value (address of v) in s) = b. The

26 I. S. Anureev, I. V. Maryasov, V.A Nepomniaschy

prede�ned symbol (value _ address _) has the semantics (value (value

a address b) in s) = (value aa address bb). The modi�able logical
symbol (_ is address) de�nes the property "to be an address". The ex-
pression (a is address) returns true if and only if aa is an address. The
modi�able symbol (value of _) de�nes the value of an address. The ex-
pression (value of a) returns the value stored by the address aa. The
modi�able symbol (type of _) de�nes the type of the address value. The
expression (type of a) returns the type of the value which is stored by
the address aa. The prede�ned symbols (address of __), (shift _ by

_), and (shift _ to __) de�ne an abstract memory map. The expres-
sion (address of a) returns the address of the variable a. The expression
(shift a by b) returns the address obtained by shift of the address aa by
bb cells. The expression (shift a to b) returns the address of the �eld b

of the structure with the address aa.

Let us de�ne the symbols which describe the simpli�ed memory model.
The modi�able symbol (value of __) de�nes the variable value directly
without the address access. The expression (value of a) returns the value
of the variable a. The modi�able symbol (_ [_]) de�nes the array element
value. The expression (a [b]) returns the value of the element with the
index bb of the array aa. The modi�able symbol (_ . __) de�nes the
structure element value. The expression (a . b) returns the value of the
�eld b of the structure aa.

The next group of symbols consists of the symbols parsing the expres-
sions in compliance with their form. The modi�able logical symbol (__ is

address-independent) de�nes address-independent expressions. Usually
this symbol is de�ned by a set of templates for address-independent expres-
sions: (val (a is address-independent) s) = true if and only if the ex-
pression a satis�es even one of templates for address-independent expressions
(is its instance). Thus the template x, where x is a simple variable, has the
single instance, the variable x itself, and the instances of the template (a [

_]), where a is a variable of array type, are the expressions of the element
access to the array a. The modi�able logical symbol (__ is partially

address-independent) de�nes partially address-independent expressions.
It is also de�ned by a set of templates. The modi�able logical symbol (__
is address-dependent) de�nes address-dependent expressions. It is de-
�ned by two previous symbols as follows: (value (a is address-depen-

dent) in s) = true if and only if (value of (a is address-indepen-

dent) in s) = false and (value (a is partially address-indepen-

dent) in s) = false.

The prede�ned symbol (type of __) de�nes the expression type. The
expression (type of a) returns the type of the expression a. The prede�ned
symbol (cast _ from __ to __) performs type casting. The expression
(cast a from b to c) casts the expression aa of the type b to the type c.

Two-level C-light programs mixed veri�cation method in terms of safety logic 27

The modi�able symbols (__ is variable), and (__ is constant) de�ne
program variables and constants, respectively.

3. Mixed operational semantics of C-light-exp

The complete set of C-light operational semantics rules, represented by la-
beled transition systems in Plotkin structural operational semantics style,
can be found in [17]. The corresponding rules for C-light-exp, represented
in the formalism of OS-STS, have the same structure, and can be obtained
by simple rewriting. Therefore we represent only rules for those expressions
of C-light-exp, which satisfy the classi�cation of expressions de�ned in com-
pliance with access to the values of these expressions (address-dependent,
address-independent and partially address-independent).

The rules for access to a variable have the form:

(if a var a then (assume (* a is address-dependent))

(assume (* a is variable))

((value) ::= (value (value of (address of a))

address (address of a))))

(if a var a then (assume (* a is partially address-independent))

(assume (* a is variable))

((value) ::= (value (value of a) address (address of a))))

(if a var a then (assume (* a is address-independent))

(assume (* a is variable))

((value) ::= (value (value of a) address undef)))

The rules for access to an array element have the form:

(if (a [b]) var a b hvar w1 w2

then (assume (* (a [b]) is address-dependent))

b (w1 ::= (cast (value of (value)) from (* type of b) to int))

a (w2 ::= (address of (value)))

((value) ::= (value (value of (shift w2 by w1))

address (shift w2 by w1))))

(if (a [b]) var a b hvar w1 w2

then (assume (* (a [b]) is partially address-independent))

b (w1 ::= (cast (value of (value)) from (* type of b) to int))

a (w2 ::= (value))

((value) ::= (value ((value of w2) [w1])

address (shift (address of w2) by w1))))

(if (a [b]) var a b hvar w1 w2

then (assume (* (a [b]) is address-independent))

28 I. S. Anureev, I. V. Maryasov, V.A Nepomniaschy

b (w1 ::= (cast (value of (value)) from (* type of b) to int))

a (w2 ::= (value of (value)))

((value) ::= (value (w2 [w1]) address undef)))

The rules for access to a structure element have the form:

(if (a . b) var a b hvar w

then (assume (* (a . b) is address-dependent))

a (w ::= (address of (value)))

((value) ::= (value (value of (shift w to b))

address (shift w to b))))

(if (a . b) var a b hvar w

then (assume (* (a . b) is partially address-independent))

a (w ::= (value))

((value) ::= (value ((value of w) . b)

address (shift (address of w) to b))))

(if (a . b) var a b hvar w

then (assume (* (a . b) is address-independent))

a (w ::= (value of (value)))

((value) ::= (value (w . b) address undef)))

The common rule for an address-dependent expression assignment has
the form:

(if (a = b) var a b hvar w1 w2 w3

then (assume (* a is address-dependent))

b (w1 ::= (value)) a (w2 ::= (value))

(w3 ::= (cast (value of w1) from (* type of b) to (* type of a)))

((value of (address of w2)) ::= w3)

((value) ::= (value w3 address undef)))

The special rules for a variable assignment have the form:

(if (a = b) var a b hvar w

then (assume (* a is partially address-independent))

(assume (* a is variable))

b (w ::= (cast (value of (value)) from (* type of b)

to (* type of a)))

((value of a) ::= w) ((value of (address of a)) ::= w)

((value) ::= (value w address undef)))

(if (a = b) var a b hvar w

then (assume (* a is address-independent))

(assume (* a is variable))

b (w ::= (cast (value of (value)) from (* type of b)

to (* type of a)))

((value of a) ::= w) ((value) ::= (value w address undef)))

Two-level C-light programs mixed veri�cation method in terms of safety logic 29

The special rules for an array element assignment have the form:

(if ((a [b]) = c) var a b c hvar w1 w2 w3 w4

then (assume (* (a [b]) is address-independent))

c (w1 ::= (value of (value))) b (w2 ::= (value of (value)))

a (w3 ::= (value of (value)))

(w4 ::= (cast w1 from (* type of c) to (* type of (a [b]))))

((w3 [w2]) ::= w4)

((value) ::= (value w4 address undef)))

(if ((a [b]) = c) var a b c hvar w1 w2 w3 w4

then (assume (* (a [b]) is partially address-independent))

c (w1 ::= (value of (value))) b (w2 ::= (value of (value)))

a (w3 ::= (value))

(w4 ::= (cast w1 from (* type of c) to (* type of (a [b]))))

(((value of w3) [w2]) ::= w4)

((value of (shift (address of w3) by w2)) ::= w4)

((value) ::= (value w4 address undef)))

The special rules for a structure element assignment have the form:

(if ((a . b) = c) var a b c hvar w1 w2 w3

then (assume (* (a . b) is address-independent))

c (w1 ::= (value of (value))) a (w2 ::= (value of (value)))

(w3 ::= (cast w1 from (* type of c) to (* type of (a . b))))

((w2 . b) ::= w3) ((value) ::= (value w3 address undef)))

(if ((a . b) = c) var a b c hvar w1 w2 w3

then (assume (* (a . b) is partially address independent))

c (w1 ::= (value of (value))) a (w2 ::= (value))

(w3 ::= (cast w1 from (* type of c) to (* type of (a . b))))

(((value of w2) . b) ::= w3)

((value of (shift (address of w2) to b)) ::= w3)

((value) ::= (value w3 address undef)))

In conclusion, we consider several common rules for expressions which do
not satisfy the classi�cation de�ned in compliance with access to the values
of these expressions.

The rule for * operator has the form:

(if (* a) var a

then a ((value) ::= (value (value of (value of (value)))

address (value of (value)))))

The rule for & operator has the form:

(if (& a) var a then a

((value) ::= (value (address of (value)) address undef)))

30 I. S. Anureev, I. V. Maryasov, V.A Nepomniaschy

The rule for constant computation has the form:

(if a var a then (assume (* a is constant)) ((value) ::= a))

4. Safety logic of C-kernel-exp

OS-STS and SL-STS are de�ned in [4] so that their rules are almost identical
for the same programming languages construct in many cases. C-kernel-exp
safety logic rules considered here are almost identical to the corresponding
C-light-exp mixed operational semantics rules except that assume* is used
instead of assume.

The rules for access to a variable have the form:

(if a var a then (assume* (* a is address-dependent))

(assume* (* a is variable))

((value) ::= (value (value of (address of a))

address (address of a))))

(if a var a then (assume* (* a is partially address-independent))

(assume* (* a is variable))

((value) ::= (value (value of a) address (address of a))))

(if a var a then (assume* (* a is address-independent))

(assume* (* a is variable))

((value) ::= (value (value of a) address undef)))

The rules for access to an array element have the form:

(if (a [b]) var a b hvar w1 w2

then (assume* (* (a [b]) is address-dependent))

b (w1 ::= (cast (value of (value)) from (* type of b) to int))

a (w2 ::= (address of (value)))

((value) ::= (value (value of (shift w2 by w1))

address (shift w2 by w1))))

(if (a [b]) var a b hvar w1 w2

then (assume* (* (a [b]) is partially address-independent))

b (w1 ::= (cast (value of (value)) from (* type of b) to int))

a (w2 ::= (value))

((value) ::= (value ((value of w2) [w1])

address (shift (address of w2) by w1))))

(if (a [b]) var a b hvar w1 w2

then (assume* (* (a [b]) is address-independent))

b (w1 ::= (cast (value of (value)) from (* type of b) to int))

a (w2 ::= (value of (value)))

((value) ::= (value (w2 [w1]) address undef)))

Two-level C-light programs mixed veri�cation method in terms of safety logic 31

The rules for access to a structure element have the form:

(if (a . b) var a b hvar w

then (assume* (* (a . b) is address-dependent))

a (w ::= (address of (value)))

((value) ::= (value (value of (shift w to b))

address (shift w to b))))

(if (a . b) var a b hvar w

then (assume* (* (a . b) is partially address-independent))

a (w ::= (value))

((value) ::= (value ((value of w) . b)

address (shift (address of w) to b))))

(if (a . b) var a b hvar w

then (assume* (* (a . b) is address-independent))

a (w ::= (value of (value)))

((value) ::= (value (w . b) address undef)))

The common rule for an address-dependent expression assignment has
the form:

(if (a = b) var a b hvar w1 w2 w3

then (assume* (* a is address-dependent))

b (w1 ::= (value)) a (w2 ::= (value))

(w3 ::= (cast (value of w1) from (* type of b) to (* type of a)))

((value of (address of w2)) ::= w3)

((value) ::= (value w3 address undef)))

The special rules for a variable assignment have the form:

(if (a = b) var a b hvar w

then (assume* (* a is partially address-independent))

(assume* (* a is variable))

b (w ::= (cast (value of (value)) from (* type of b)

to (* type of a)))

((value of a) ::= w) ((value of (address of a)) ::= w)

((value) ::= (value w address undef)))

(if (a = b) var a b hvar w

then (assume* (* a is address-independent))

(assume* (* a is variable))

b (w ::= (cast (value of (value)) from (* type of b)

to (* type of a)))

((value of a) ::= w) ((value) ::= (value w address undef)))

The special rules for an array element assignment have the form:

32 I. S. Anureev, I. V. Maryasov, V.A Nepomniaschy

(if ((a [b]) = c) var a b c hvar w1 w2 w3 w4

then (assume* (* (a [b]) is address-independent))

c (w1 ::= (value of (value))) b (w2 ::= (value of (value)))

a (w3 ::= (value of (value)))

(w4 ::= (cast w1 from (* type of c) to (* type of (a [b]))))

((w3 [w2]) ::= w4)

((value) ::= (value w4 address undef)))

(if ((a [b]) = c) var a b c hvar w1 w2 w3 w4

then (assume* (* (a [b]) is partially address-independent))

c (w1 ::= (value of (value))) b (w2 ::= (value of (value)))

a (w3 ::= (value))

(w4 ::= (cast w1 from (* type of c) to (* type of (a [b]))))

(((value of w3) [w2]) ::= w4)

((value of (shift (address of w3) by w2)) ::= w4)

((value) ::= (value w4 address undef)))

The special rules for a structure element assignment have the form:

(if ((a . b) = c) var a b c hvar w1 w2 w3

then (assume* (* (a . b) is address-independent))

c (w1 ::= (value of (value))) a (w2 ::= (value of (value)))

(w3 ::= (cast w1 from (* type of c) to (* type of (a . b))))

((w2 . b) ::= w3) ((value) ::= (value w3 address undef)))

(if ((a . b) = c) var a b c hvar w1 w2 w3

then (assume* (* (a . b) is partially address independent))

c (w1 ::= (value of (value))) a (w2 ::= (value))

(w3 ::= (cast w1 from (* type of c) to (* type of (a . b))))

(((value of w2) . b) ::= w3)

((value of (shift (address of w2) to b)) ::= w3)

((value) ::= (value w3 address undef)))

The rule for constant computation has the form:

(if a var a then (assume* (* a is constant)) ((value) ::= a))

Let us consider the rules for loops by the example of a while loop:

(if (while a invariant i do b) var a i (seq b)

then (assert i) (stop))

(if (while a invariant i do b) var a i (seq b)

then (precondition ::=* i) (assume a) b (assert i) (stop))

(if (while a invariant i do b) var a i (seq b)

then (precondition ::=* i) (assume (not a)))

Two-level C-light programs mixed veri�cation method in terms of safety logic 33

5. Formal de�nition of partially address-independent and

address-independent expressions

In introduction, we gave an informal de�nition of partially address-indepen-
dent and address-independent expressions, and in subsequent sections we
used prede�ned logical symbols (__ is partially address-independent)

and (__ is address-independent) for the description of all expression
kinds assuming that they de�ne the corresponding kinds of expressions cor-
rectly (for a concrete program). In this section, we de�ne them formally on
the basis of an OS-STS of a special form which simultaneously executes C-
light-exp expressions for two memory models, common and simpli�ed. This
OS-STS is de�ned in such a manner that if a program p is safe with respect
to a precondition q, then the symbols (__ is partially address-inde-

pendent) and (__ is address-independent) de�ne the corresponding ex-
pression kinds correctly for the program p, started in the state when q is
true.

This OS-STS is obtained from the OS-STS describing the C-light-exp
mixed operational semantics in the following way.

Firstly, for all rules of access to the value of a partially address-indepen-
dent expression, the continuation condition assert is inserted which checks
the coincidence of these expressions values in two memory models. The
collection of such conditions de�nes the safety property which should be
satis�ed with partially address-independent expressions.

Secondly, for each rule which uses the address access (for reading or writ-
ing), the continuation condition assert is inserted which checks whether
this address exists. The collection of such conditions de�nes the safety prop-
erty which should be satis�ed with address-independent expressions, as no
address exists for such variables.

The rules for access to a variable have the form:

(if a var a then (assume (* a is address-dependent))

(assume (* a is variable))

((value) ::= (value (value of (address of a))

address (address of a))))

(if a var a then (assume (* a is partially address-independent))

(assume (* a is variable))

(assert ((value of a) = (value of (address of a))))

((value) ::= (value (value of a) address (address of a))))

(if a var a then (assume (* a is address-independent))

(assume (* a is variable))

((value) ::= (value (value of a) address undef)))

The rules for access to an array element have the form:

34 I. S. Anureev, I. V. Maryasov, V.A Nepomniaschy

(if (a [b]) var a b hvar w1 w2

then (assume (* (a [b]) is address-dependent))

b (w1 ::= (cast (value of (value)) from (* type of b) to int))

a (w2 ::= (address of (value)))

((value) ::= (value (value of (shift w2 by w1))

address (shift w2 by w1))))

(if (a [b]) var a b hvar w1 w2

then (assume (* (a [b]) is partially address-independent))

b (w1 ::= (cast (value of (value)) from (* type of b) to int))

a (w2 ::= (value))

(assert (((value of w2) [w1]) =

(value of (shift (address of w2) by w1))))

((value) ::= (value ((value of w2) [w1])

address (shift (address of w2) by w1))))

(if (a [b]) var a b hvar w1 w2

then (assume (* (a [b]) is address-independent))

b (w1 ::= (cast (value of (value)) from (* type of b) to int))

a (w2 ::= (value of (value)))

((value) ::= (value (w2 [w1]) address undef)))

The rules for access to a structure element have the form:

(if (a . b) var a b hvar w

then (assume (* (a . b) is address-dependent))

a (w ::= (address of (value)))

((value) ::= (value (value of (shift w to b))

address (shift w to b))))

(if (a . b) var a b hvar w

then (assume (* (a . b) is partially address-independent))

a (w ::= (value))

(assert (((value of w) . b) =

(value of (shift (address of w) to b))))

((value) ::= (value ((value of w) . b)

address (shift (address of w) to b))))

(if (a . b) var a b hvar w

then (assume (* (a . b) is address-independent))

a (w ::= (value of (value)))

((value) ::= (value (w . b) address undef)))

The common rule for an address-dependent expression assignment has
the form:

(if (a = b) var a b hvar w1 w2 w3

Two-level C-light programs mixed veri�cation method in terms of safety logic 35

then (assume (* a is address-dependent))

b (w1 ::= (value)) a (w2 ::= (value))

(w3 ::= (cast (value of w1) from (* type of b) to (* type of a)))

(assert (w2 is address))

((value of (address of w2)) ::= w3)

((value) ::= (value w3 address undef)))

The special rules for a variable assignment have the form:

(if (a = b) var a b hvar w

then (assume (* a is partially address-independent))

(assume (* a is variable))

b (w ::= (cast (value of (value)) from (* type of b)

to (* type of a)))

((value of a) ::= w) ((value of (address of a)) ::= w)

((value) ::= (value w address undef)))

(if (a = b) var a b hvar w

then (assume (* a is address-independent))

(assume (* a is variable))

b (w ::= (cast (value of (value)) from (* type of b)

to (* type of a)))

((value of a) ::= w) ((value) ::= (value w address undef)))

The special rules for an array element assignment have the form:

(if ((a [b]) = c) var a b c hvar w1 w2 w3 w4

then (assume (* (a [b]) is address-independent))

c (w1 ::= (value of (value))) b (w2 ::= (value of (value)))

a (w3 ::= (value of (value)))

(w4 ::= (cast w1 from (* type of c) to (* type of (a [b]))))

((w3 [w2]) ::= w4)

((value) ::= (value w4 address undef)))

(if ((a [b]) = c) var a b c hvar w1 w2 w3 w4

then (assume (* (a [b]) is partially address-independent))

c (w1 ::= (value of (value))) b (w2 ::= (value of (value)))

a (w3 ::= (value))

(w4 ::= (cast w1 from (* type of c) to (* type of (a [b]))))

(((value of w3) [w2]) ::= w4)

(assert ((shift (address of w3) by w2) is address))

((value of (shift (address of w3) by w2)) ::= w4)

((value) ::= (value w4 address undef)))

The special rules for a structure element assignment have the form:

(if ((a . b) = c) var a b c hvar w1 w2 w3

36 I. S. Anureev, I. V. Maryasov, V.A Nepomniaschy

then (assume (* (a . b) is address-independent))

c (w1 ::= (value of (value))) a (w2 ::= (value of (value)))

(w3 ::= (cast w1 from (* type of c) to (* type of (a . b))))

((w2 . b) ::= w3) ((value) ::= (value w3 address undef)))

(if ((a . b) = c) var a b c hvar w1 w2 w3

then (assume (* (a . b) is partially address independent))

c (w1 ::= (value of (value))) a (w2 ::= (value))

(w3 ::= (cast w1 from (* type of c) to (* type of (a . b))))

(((value of w2) . b) ::= w3)

(assert ((shift (address of w2) to b) is address))

((value of (shift (address of w2) to b)) ::= w3)

((value) ::= (value w3 address undef)))

The rule for * operator has the form:

(if (* a) var a then a (assert ((address of (value)) is address))

((value) ::= (value (value of (value of (value)))

address (value of (value)))))

The rule for & operator has the form:

(if (& a) var a then a (assert ((address of (value)) is address))

((value) ::= (value (address of (value)) address undef)))

6. The algorithm of search for partially address-independent

and address-independent expressions

In [7] the algorithm of static analysis was suggested to �nd address-indepen-
dent variables (non-shared variables). In this section we describe the method
of proving that the logical symbols (__ is partially address-indepen-

dent) and (__ is address-independent) de�ne the corresponding expres-
sion kinds correctly (for a concrete program). Then the algorithm of search
for partially address-independent and address-independent expressions is re-
duced to enumeration of di�erent possibilities of these logical symbols inter-
pretations and to �nding the correct interpretation.

The proof method is based on safety properties check described in the
previous section. This check is built in the rules of SL-STS. This system
consists of OS-STS rules represented in the previous section, where assume is
replaced by assume*, and of the modi�ed rules for expressions which require
invariants (for loops and goto statements), and functions calls.

The rules for access to a variable have the form:

(if a var a then (assume* (* a is address-dependent))

(assume* (* a is variable))

((value) ::= (value (value of (address of a))

Two-level C-light programs mixed veri�cation method in terms of safety logic 37

address (address of a))))

(if a var a then (assume* (* a is partially address-independent))

(assume* (* a is variable))

(assert ((value of a) = (value of (address of a))))

((value) ::= (value (value of a) address (address of a))))

(if a var a then (assume* (* a is address-independent))

(assume* (* a is variable))

((value) ::= (value (value of a) address undef)))

The rules for access to an array element have the form:

(if (a [b]) var a b hvar w1 w2

then (assume* (* (a [b]) is address-dependent))

b (w1 ::= (cast (value of (value)) from (* type of b) to int))

a (w2 ::= (address of (value)))

((value) ::= (value (value of (shift w2 by w1))

address (shift w2 by w1))))

(if (a [b]) var a b hvar w1 w2

then (assume* (* (a [b]) is partially address-independent))

b (w1 ::= (cast (value of (value)) from (* type of b) to int))

a (w2 ::= (value))

(assert (((value of w2) [w1]) =

(value of (shift (address of w2) by w1))))

((value) ::= (value ((value of w2) [w1])

address (shift (address of w2) by w1))))

(if (a [b]) var a b hvar w1 w2

then (assume* (* (a [b]) is address-independent))

b (w1 ::= (cast (value of (value)) from (* type of b) to int))

a (w2 ::= (value of (value)))

((value) ::= (value (w2 [w1]) address undef)))

The rules for access to a structure element have the form:

(if (a . b) var a b hvar w

then (assume* (* (a . b) is address-dependent))

a (w ::= (address of (value)))

((value) ::= (value (value of (shift w to b))

address (shift w to b))))

(if (a . b) var a b hvar w

then (assume* (* (a . b) is partially address-independent))

a (w ::= (value))

(assert (((value of w) . b) =

38 I. S. Anureev, I. V. Maryasov, V.A Nepomniaschy

(value of (shift (address of w) to b))))

((value) ::= (value ((value of w) . b)

address (shift (address of w) to b))))

(if (a . b) var a b hvar w

then (assume (* (a . b) is address-independent))

a (w ::= (value of (value)))

((value) ::= (value (w . b) address undef)))

The common rule for an address-dependent expression assignment has
the form:

(if (a = b) var a b hvar w1 w2 w3

then (assume* (* a is address-dependent))

b (w1 ::= (value)) a (w2 ::= (value))

(w3 ::= (cast (value of w1) from (* type of b) to (* type of a)))

(assert (w2 is address))

((value of (address of w2)) ::= w3)

((value) ::= (value w3 address undef)))

The special rules for a variable assignment have the form:

(if (a = b) var a b hvar w

then (assume* (* a is partially address-independent))

(assume* (* a is variable))

b (w ::= (cast (value of (value)) from (* type of b)

to (* type of a)))

((value of a) ::= w) ((value of (address of a)) ::= w)

((value) ::= (value w address undef)))

(if (a = b) var a b hvar w

then (assume* (* a is address-independent))

(assume* (* a is variable))

b (w ::= (cast (value of (value)) from (* type of b)

to (* type of a)))

((value of a) ::= w) ((value) ::= (value w address undef)))

The special rules for an array element assignment have the form:

(if ((a [b]) = c) var a b c hvar w1 w2 w3 w4

then (assume* (* (a [b]) is address-independent))

c (w1 ::= (value of (value))) b (w2 ::= (value of (value)))

a (w3 ::= (value of (value)))

(w4 ::= (cast w1 from (* type of c) to (* type of (a [b]))))

((w3 [w2]) ::= w4)

((value) ::= (value w4 address undef)))

Two-level C-light programs mixed veri�cation method in terms of safety logic 39

(if ((a [b]) = c) var a b c hvar w1 w2 w3 w4

then (assume* (* (a [b]) is partially address-independent))

c (w1 ::= (value of (value))) b (w2 ::= (value of (value)))

a (w3 ::= (value))

(w4 ::= (cast w1 from (* type of c) to (* type of (a [b]))))

(((value of w3) [w2]) ::= w4)

(assert ((shift (address of w3) by w2) is address))

((value of (shift (address of w3) by w2)) ::= w4)

((value) ::= (value w4 address undef)))

The special rules for a structure element assignment have the form:

(if ((a . b) = c) var a b c hvar w1 w2 w3

then (assume* (* (a . b) is address-independent))

c (w1 ::= (value of (value))) a (w2 ::= (value of (value)))

(w3 ::= (cast w1 from (* type of c) to (* type of (a . b))))

((w2 . b) ::= w3) ((value) ::= (value w3 address undef)))

(if ((a . b) = c) var a b c hvar w1 w2 w3

then (assume* (* (a . b) is partially address independent))

c (w1 ::= (value of (value))) a (w2 ::= (value))

(w3 ::= (cast w1 from (* type of c) to (* type of (a . b))))

(((value of w2) . b) ::= w3)

(assert ((shift (address of w2) to b) is address))

((value of (shift (address of w2) to b)) ::= w3)

((value) ::= (value w3 address undef)))

The rule for * operator has the form:

(if (* a) var a then a (assert ((address of (value)) is address))

((value) ::= (value (value of (value of (value)))

address (value of (value)))))

The rule for & operator has the form:

(if (& a) var a then a (assert ((address of (value)) is address))

((value) ::= (value (address of (value)) address undef)))

The rules for a while-loop in comparison with the rules of the mixed
safety logic in Section 4 are modi�ed as follows:

(if (while a invariant i do b) var a i (seq b) then i (stop))

(if (while a invariant i do b) var a i (seq b)

then (precondition ::=* true) i (assume a) b (assert i) (stop))

(if (while a invariant i do b) var a i (seq b)

then (precondition ::=* true) i (assume (not a)))

40 I. S. Anureev, I. V. Maryasov, V.A Nepomniaschy

In this case the invariant i is not a formula but the algorithm of checking
partial address independence and address independence. This invariant has
the form (prove a), where a is a sequence of expressions of two kinds (b

is partially address-independent) or (b is address-independent), b
is a C-kernel-exp expression. The algorithm of checking is de�ned by the
following safety logic rules:

(if (prove ((a is partially address-independent) b)) var a (seq b)

then (assume* (* a is variable))

(assert ((value of a) = (value of (address of a)))) (prove b))

(if (prove (((a [b]) is partially address-independent) c))

var a b (seq c) hvar w1 w2

then b (w1 ::= (cast (value of (value)) from (* type of b) to int))

a (w2 ::= (value))

(assert (((value of w2) [w1]) =

(value of (shift (address of w2) by w1))))

(prove c))

(if (prove (((a . b) is partially address-independent) c))

var a b (seq c) hvar w

then a (w2 ::= (value))

(assert (((value of w) . b) =

(value of (shift (address of w) to b))))

(prove c))

(if (prove ((a is address-independent) b)) var a (seq b)

then a (assert ((address of (value)) = undef)) (prove b))

(if (prove) then emptyseq)

The invariant (prove a) is constructed for a concrete program point p
in the following way. In the sequence a we add all expressions b of the
program p, which are de�ned in this point and which are either address-
independent expressions (in this case the addition item has the form (b

is address-independent)) or partially address-independent expressions (in
this case the addition item a has the form (b is partially address-

independent)).
The invariants of other loops and goto statements are de�ned similarly.

The semantics of function calls is de�ned so that the function precondition
and postcondition coincide and they represent an invariant of the same form
as for loops, i. e. function computation has to keep this invariant.

The application domain of the algorithm of search for partially address-
independent and address-independent expressions is limited to programs
whose invariants do not contain side-e�ects expressions.

Two-level C-light programs mixed veri�cation method in terms of safety logic 41

7. Conclusion

In this work the following new results on the two-level mixed veri�cation
method of C-light programs were obtained:

1. Three classes of expressions depending on the kind of access to address
were extracted: address-independent, partially address-independent
and address-dependent.

2. The rules of the C-kernel mixed axiomatic semantics are replaced by
the safety logic rules based on safety logic speci�c transition systems
[4], that allowed us to extend the class of proved properties.

3. The rules of C-light mixed operational semantics and, respectively, C-
light program states are represented by a new formalism, operational
semantics speci�c transition systems [4].

4. A new kind of a programing language semantics, denotational-ope-
rational semantics, was de�ned.

5. The algorithm of search for partially address-independent and address-
independent expressions based on safety logic speci�c transition sys-
tems was suggested.

We plan to integrate the C-kernel safety logic rules into a multi-language
system of program analysis and veri�cation SPECTRUM [2, 14] based on
the domain-speci�c language Atoment [3, 5] intended to develop program
veri�cation methods and tools.

References

[1] Alkassar E., Hillebrand M.A., Leinenbach D., Schirmer N.W., Starostin A.
The Verisoft approach to systems veri�cation // Proc. VSTTE 2008. � Lect.
Notes Comput. Sci. � 2008. � Vol. 5295. � P. 209 � 224.

[2] Anureev I.S. Integrated approach to analysis and veri�cation of imperative
programs // Bull. Novosibirsk Comp. Center. Ser. Computer Science. � Novosi-
birsk, 2011. � IIS Special Iss. 32. � P. 1�18.

[3] Anureev I.S. Introduction to the Atoment language // Bull. Novosibirsk Comp.
Center. Ser. Computer Science. � Novosibirsk, 2010. � IIS Special Iss. 31. � P.
1�16.

[4] Anureev I.S. Program speci�c transition systems // Bull. Novosibirsk Comp.
Center. Ser. Computer Science. � Novosibirsk, 2012. � IIS Special Iss. 34. � P.
1�21.

[5] Anureev I.S. Typical examples of using the Atoment language // Automatic
Control and Computer Sciences. � 2012. � Vol. 46, No.7. � P. 299�307.

42 I. S. Anureev, I. V. Maryasov, V.A Nepomniaschy

[6] Anureev I.S., Maryasov I.V., Nepomniaschy V.A. C-programs veri�cation
based on mixed axiomatic semantics // Automatic control and computer sci-
ences. � 2011. � Vol. 45, No.7. � P. 485�500.

[7] Anureev I.S., Maryasov I.V., Nepomniaschy V.A. Revised mixed axiomatic se-
mantics method of C program veri�cation // Program semantics, speci�cation
and veri�cation: Theory and applications (PSSV 2012). Third workshop. �
Nizhni Novgorod, 2012. � P. 16�23.

[8] Barnett M., Chang B.-Y.E., Deline R. et al. Boogie: A modular reusable veri-
�er for object-oriented programs // Proc. FMCO 2005. � Lect. Notes Comput.
Sci. � 2006. � Vol. 4111. � P. 364�387.

[9] Cohen E., Dahlweid M., Hillebrand M. et al. VCC: A practical system for
verifying concurrent C // Proc. TPHOLs 2009. � Lect. Notes Comput. Sci. �
2009. � Vol. 5674. � P. 23�42.

[10] Filli�atre J.-C., March�e C. Multi-prover veri�cation of C programs // Proc.
ICFEM 2004. � Lect. Notes Comput. Sci. � 2004. � Vol. 3308. � P. 15�29.

[11] Leino K. R. M. Dafny: An automatic program veri�er for functional correct-
ness // Proc. LPAR-16. � Lect. Notes Comput. Sci. � 2010. � Vol. 6355. � P.
348�370.

[12] Leroy X. Formal veri�cation of a realistic compiler // Communications of the
ACM. � 2009. � Vol. 52, No.7. � P. 107�115.

[13] Maryasov I. V. The mixed axiomatic semantics method. � Novosi-
birsk, 2010. � (IIS SB RAS / Tech. rep. No.160). � Available at
http://www.iis.nsk.su/�les/preprints/160.pdf.

[14] Nepomniaschy V. A., Anureev I. S., Atuchin M. M., Maryasov I. V., Petrov
A. A., Promsky A. V. C program veri�cation in SPECTRUM multilanguage
system // Automatic control and computer sciences. � 2011. � Vol. 45, No.7.
� P. 413�420.

[15] Nepomniaschy V. A., Anureev I. S., Promsky A. V. Towards veri�cation of
C programs: Axiomatic semantics of the C-kernel language // Programming
and computer software. � 2003. � Vol. 29, No.6. � P. 338�350.

[16] Nepomniaschy V. A., Anureev I. S., Promsky A. V. Veri�cation-oriented lan-
guage C-light and its structural operational semantics // Proc. PSI 2003. �
Lect. Notes Comput. Sci. � 2003. � Vol. 2890. � P. 103�111.

[17] Nepomniaschy V. A., Anureev I. S., Mikhailov I. N., Promsky A. V. Towards
veri�cation of C programs. C-light language and its formal semantics // Pro-
gramming and computer software. � 2002. � Vol. 28, No.6. � P. 314�323.

[18] Programming languages � C. ISO/IEC 9899:1999.

