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Certain aspects of application of
numerical methods for solving
SDE systems

S.S. Artemiev

The problems of determining the structure of numerical method, the choice of its param-
eters, analysis of meansquare or weak convergence of the numerical solution to the true
one are much more complicated for systems of SDE, than for those of ODE. N evertheless,
many theoretical and practical ideas of the numerical methods of ODE solution can be
transferred or extended onto the numerical methods of SDE solution. In particular, the
notion of absolute stability has induced searching for the methods conserving the one-
dimensional distribution of the model SDE solution. Elementary transfer of the absolute
stability notion onto the numerical methods of SDE solution is not constructive, since it
is possible that the numerical method be absolutely stable for the given integration step-
size, while the critical situations occur in the process of trajectory simulation. A cause
of this phenomena is an unstable growth of the variance of the numerical solution. Thus
it is necessary to define for a numerical method of SDE solution not only the stability
region in the sense of ODE, but also the conservation conditions of the variance of the
stationary solution of the model equations.

For statistical simulation of the solution trajectories.of homogeneous in
time SDE systems

t t
s =wo+ [ fw@is+ [oue)duts), 0<t<tm ()
0
we will apply methods from the family

Int1 = Un + Prk1 + VR§0(y)Cn,

Yn+l = UYn +Drk1 + poky + \/f_l(qla(yn) + 20 (§n+1))Cn,
ki o= [~ hagL(yn)] M [hf(vn) + Brovho(ya)Cal,
ky = (1= hall(yn)] " [of (Fns1) + BurVRO(Gnt1)Col,

where y,,n = 0,1,..., K are the values of the approximate solution of SDE
system (1) at the mesh nodes with respect to time {t,}, h is the integration

(2)
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stepsize at the node t,; p1,P1,P2, §1,%1,92, P10, B21,a are real parameters
of the method, {(;}, n = 0,1,...,K — 1 is a sequence of mutually inde-
pendent normal random vectors with independent in totality components
(nj» 3 = 1,..., N having zero mean and variance one. Moreover, mutual
independence of the vectors {, and y» is assumed for each n = 0,..., K —1.
These properties will take place if we set

VA = w(tny1) — w(tn),
what is true in the sequel.

Definition 1. The method is said to be asymptotically unbiased with the
stepsize h, if while applying it with this stepsise to the scalar linear SDE

y(t) =0 - /0 ' y(s)ds + ow(t), 3)

where & > 0,0 # 0 are real coefficients, the distribution of the numerical
solution y, converges as n — oo to the normal distribution with zero mean
and variance 0% /(2a).

Definition 2. The interval (z9,0) is said to be the interval of asymptotic
unbiasedness of the method, if the latter is asymptotically unbiased with any
stepsize h > 0, for which —ah € (z0,0).

The property of asymptotic unbiasedness is concordant with the asymp-
totic behaviour of the distribution of the true solution of SDE (3), in par-
ticular, with the behaviour of mean and variance of the true solution as
t— o0

<y(t) >=e* <yo>— 0,
2 2
Dy(t) = e™**' Do + g;(l — g%ty ;—a,
where Dg is the variance of the random variable yg.

A numerical solution y, of the model SDE (3), obtained by a method
from family (2), is a normal random variable for any n = 0,..., K, if only %o
is a normal random variable. Due to the fact that the normal distribution
is completely determined by its mean and variance, for the construction of
the asymptotic unbiasedness interval of the method from family (2) it is
sufficient to show for which ah conditions '

nli'ngo <y >=0, (4)

lim Dy, = ;—;, (5)

n-—=+00
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where Dy, is the variance of the random variable yy,, are satisfied.
Applying a method from family (2) to SDE (3), obtain

Yn+1 = R(2)yn + Q(x)a'\/g(m (6)

where z = —ah and

1+(1-2a)z +(1/2 - 2a + a?)2?

R(z) = 0= az)? ; (7

Qz)= 1le0t et a) - Pz(ﬁll(ﬁlo _J’a’gg)]m + ola(er +92) ~ paile? g

With regard to independence of the random variables y, and {, from (6),
we find:

< Ynt1 >= R(z) < yn >, (9)
Dyny1 = R*(2)Dyn + Q*(2)o’h. (10)
For |R(z)| < 1 from (9), (10) derive

lim <y, >=0,
n—oo

o? (-22)Q%(z)

Jm Dyn = o0 1 R¥(z)
It means that conditions (4), (5) will be satisfied for
2 _ 1= R (z)
Q¥(z) =~ (1)
in the interval (zo,0), for which |R(z)| < 1. For instance, for the method
hd -
it = s+ = S S ) + V)] (12

with the functions R(z) = :t—:% and Q(z) = y;73, equality (11) and

inequality [R(z)| < 1 hold for all z < 0. It means that method (12) is

asymptotically unbiased with the asymptotic unbiasedness interval (—oo, 0).
For a linear SDE system of the form

v =w+4 [ "Y(s)ds + ou(), (13)

where A and o are constant matrices of size N x N, the mean of the solution
y(+) is defined by the expression

< y(t) >=e < yo >,
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and the covariance matrix of the vector y(t) as a function of ¢ satisfies
equation

dDy(t) .
% = AD,(t) + Dy(t)AT + 007,
Dy(0) = Do,

where Dy is the covariance matrix of the random vector yp. If the matrix
A is negative definite, then there exists a stationary normal distribution of
the solution y(t) as ¢ — oo, and thereto

< y(t) >_-’ 0,

Dﬂ'(t) _— -D’

where the matrix D is a solution of the continuous Lyapunov equation
AD + DAT = 007,

Moreover, if g9 is a normal random vector with < g >= 0 and Dy =
D, then the solution is a Gaussian stationary stochastic process with the
correlation function

R,(r) = DeA™!"!,

Applying method (12) to a linear SDE system (13), we obtain recursive
formula

Ynt1 = R(AR)yn + VRQ(AR)oCn,

where h h
R(AR) = (I - EA)“(I +54);

Q(Ah) = (I - gA)"

Then, with regard to independence of the vectors y, and (., we have

<Un41 > = R(Ah) < Yn >,

14
Dyny1 = R(AR)Dy,RT(Ah) + hQ(AR)ocTQT(AR). (14

For the stationary numerical solution of SDE (13) relation (14) takes the
form ‘

D = R(AR)DRT(Ah) + hQ(Ah)ocT QT (AR). (15)

Multiplying (15) from the left by (I— %A) and from the right by (I —24)7,
we come to the continuous Lyapunov equation. It means that method (12)
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conserves the stationary distribution of the true solution of SDE system
(13) during the calculation with any integration stepsize.

Substituting (7) and (8) into (11), we easily make sure that there is no
other asymptotically unbiased method in family (2). With this regard, let
us slightly weaken the requirements to the method.

Definition 3. The method is said to be £ - asymptotically biased in the
interval (z9,0), if in application to the model SDE (3) with the fized inte-
gration stepsize h, such that —ah € (z9,0), the distribution of the numerical
solution y, converges as n — oo to the normal distribution with zero mean
and variance Ed(z) z = —ah, thereto

ld(z) - 1] < e
for all z € (0,0).
For the methods from family (2) we have

. —22)Q%(z
d(a:):—-—(lizg(i)).

So, for instance, applying the method

Unt1 = Un+ky,

Ynt1 = + 21 + ks + L2 (0 (Gnt1) = 0(¥n))ns (16)
ko= (1= 437 [hf(wn) + VEO(Yn)nl,
k2 = (1= 33" (o f (Fnsr) + VEO (Gt )Cnl,

to SDE (3), we obtain

_[L+2/4)?
o = [F25] et =
whence d(z) = 1/(1 + 22/16). It is easy to calculate, that method (16) is

0.05 -asymptotically biased in the interval (—0.91,0).
For the well-known method

\/_ac,,,

§n+1 = Un + hf(yn) + \/Eo(yu)Cnv
Unil = Yn+ 2 (W) + f(ns1)] + Y20 (Wn) + 0(Fns1))Cn

we know that in application to SDE (3)

(17)

Ynt1 = (1 + 2+ 2°/2)yn + (1 + 2/2)Vho(,
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and
1+z+2%/4
142z +2%/2+ 238
Method (17) is 0.05 -asymptotically biased in the interval (—0.4,0). The
generalized Euler method

d(z) =

Yns1 = Yn + hf(yn) + ‘/}_w'(yﬂ)crn (18)

for which d(z) = 1/(1 + z/2), is 0.05 -asymptotically biased in the interval
(—0.095,0).

Definition 4 [1]. A SDE system is said to be asymptotically p-stable, p > 0,
if for any € > 0 there ezists § > 0, such that for |yo| < & the inequality
< |y(t)IP >< e takes place for all t 2 0, thereto lim < ly(t)|? >=0.

For p = 1 SDE system is said to be asymptotically stable in the mean,
for p =2 it is said to be asymptotically stable in the meansquare.

Note that the asymptotical p-stability for larger p implies the asymp-
totical p-stability for smaller p.

Definition 5. The method is said to be asymptotically p -stable with step-
size h, if while applying it with that stepsize to the asymptotically p -stable
SDE, the equality n]ﬁxgo < |yn|P >= 0 is satisfied.

If p = 1, the method is said to be asymptotically stable in the mean, if
p = 2, it is asymptotically stable in the meansquare.

Let us consider now the model scalar SDE in the sense of It of the
form

yt)=w-a /Ot y(s)ds+ o /: y(s)dw(s), (19)

where a > 0, ¢ # 0 are real coefficients. For the determined initial value
%o # 0 the density of the one-dimensional distribution of the solution of
- (19) for any fixed ¢ is lognormal:

_ 1 (e + 0%/2)t 4 In(y/y0))?
P(t,y)—mexp{— 9971 0 }, y > 0.

The mean of the solution of (19) is specified by expression

(20)

0, ifa>0,

o, fa<0, Tt

< y(t) >= yoexp(—at) — {
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Similarly, the variance of the solution is specified by expression

0, ifa>da?/2,

. for ¢t .
00, if a< a?/2, rEme

Dy(t) = e - et = {

Let now SDE (19) be asymptotically stable in the meansquare. Since the
mean and the second moment of the solution y(:) satisfy equations

dm
& =T
d
d—: =(-2a+ 02)7,

then the requirement of asymptotic stabizlity in the mean is satisfied for
a > 0, and in the meansquare - for a > 5.
Applying the Euler method (18) to (19), obtain

YUn41 = (1 - ha + \/EUCn)yﬂv

whence
<Y1 >=(1-ha) <y, >— 0

as n — 00, if 0 < ha < 2 and _
<P >=((1-ha) +ho?) <yl >0
as n — 0o, if
— 2
0<ha<-(za—ao-l.

Applying the method (12) to SDE (19), one comes to

1—%oz+\/EarCﬂ
1+%a

Yn41 = ny

whence

_1l-3e
< ¥Yn+1 >_1.Lh

|2a
as n — oo for any h > 0, if only a > 0, and

<yn>—’0

(1-%a)? + ho?
(14 3a)?

< Ypq1 >= <y >-0

as n — oo for any h > 0, if only a > o2%/2.



8 S.5. Artemiev

As we see, method (12) is asymptotically stable in the meansquare with
any stepsize h > 0 in application to meansquare asymptotically stable SDE
(19).

Let us consider now a linear SDE system in the sense of It6 of the form

t L gt
y(t)=w+A ] y(s)ds + Y o) j y(s)dw;(s), (21)
0 : (i
=1
where A and o9, j = 1,...,] are constant matrices of size N x N,
wj(-), § = 1,...,1 are mutually independent one-dimensional standard .

Wiener processes, 3o is a random vector, independent of all w;(t) for ¢ > 0.
SDE system (21) is meansquare asymptotically stable, if the linear ODE
system for the matrix 7,(t) of the second moments of the solution vector

y(t)

!

‘%ﬁ = Ay, + 7, AT + ZU(J).TUO-(J)T
Jj=1

is exponentially stable. Unfortunately, none has succeeded yet in expressing

conditions for asymptotic meansquare stability for SDE system (21) in

terms of the eigenvalues of arbitrary matrices A and o\, j=1,...,1.

In practical application of numerical methods for simulation of the SDE
system solution, there arises a problem of choosing the integration stepsize
and accuracy of simulation of the values of solution at the mesh nodes,
corresponding to this stepsize. It is natural to try to construct a procedure
of automatic choice of the integration stepsize based on the requirement to
provide for a certain given condition on the calculation accuracy.

Let us construct a variable step algorithm with the calculation accuracy
control on each step of the process of simulating the values of each separate
trajectory of the solution sought for, based on the methods from family (2).

Let us set

Insr =Yn+ k1 + \/’;(1 = $10)o(yn)in (22)

in method (2). Then the Taylor expansion of the numerical solution §41(k)
in the vicinity of the point A =0 is

N
gn+1 = Yn + '\/};U(yn)Cn + hf(yn) + ﬁl!‘.lﬂ'h'sl2 z Aj.f(yn)an +... . (23)
=1

In case of general nonlinear SDE system, the local error value of method
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(2), (22) at the mesh node ¢,4; under consistency conditions is

N h
bn = Ao (v Awir(s)dwin(s
no= B Aol Av(e)dul(o) -

- %Aw};(h)Awﬁ;‘(h)} + O(h3/?).

On the other hand,

N
. h
Undl — Un41 = D) Z Ajza'jl(yﬂ)cflizCﬂil + O(halz)' (25)

J1.d2=1

Comparing (24) and (25), we see that the vector

~

5u+1 = Ung1 — §n+1

has the same structure and the same order of magnitude O(h), as 6,41,
thus it can be used as an estimate of the local error value §,,4;. This means
of estimation the simulation error can be used, for instance, for methods
(16) with (10 =1 and (17) with B0 = 0.

Let us construct a procedure of integration stepsize variation, keeping
in mind that the absolute value of the calculation error estimate vector on
each step should not exceed the given value ¢ > 0.

A recurrent step from the node ¢, to t,4; is considered to be a success,
if X ,

|6n+1| <eE. (26)

In this case the stepsize for calculation started at the node t,4; may be

increased (1.1)* times, where k is the maximum positive integer, for which
inequality

(1.21)%]bp11|D < €, (27)

where D = max{1,|(n+1|} holds. Including the value D into inequality (27)
will not enable the stepsize to grow overwhelmingly, if large sample values
of components of the random vector (,4; are simulated.

If the calculation accuracy requirement (26) is not fulfilled, the inte-
gration stepsize is reduced (1.1)* times, where k is a minimum positive
integer, for which the inequality

|8ns1
L <°¢

holds. Afterwards the value of the simulated trajectory at the node t,4;
is recalculated with the reduced stepsize, though the functions f(y), o(y),
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%(y) at the point y,., and also the random vector (, are not subjects for
recalculation.

When constructing variable step algorithms for SDE system solution,
one may generalize well-known variable step algorithms for ODE system
solution, based on the Runge-Kutta or Rosenbrock type methods.

Let us consider a family of numerical methods for SDE solution, which
is slightly more general, than (2):

© _

Yn+1 Yns
y,(;)q = Ut E lBt+l,J‘k +Vh E al+1,Ja(yn+1 )C'm
1=1,.
(28)
ki = - ha3l(w) (305" + x/f‘w(y,.’;f’)cnl,
j=1...,m,
Yn+1 = y,(;n.:)l

If now we take a numerical method of ODE solution as a basis, i.e., if we
specify the parameters a,m,f;; in advance, then the parameters a;; can
be chosen so that finally method (28) attains the meansquare convergence
order 1. For SDE in the sense of Itd to this end it suffices to require

conditions
m
Eam-l-l,j =0,

Z(O‘mﬂ.: + Bm+1,5) Z(as.l +Bi1) =

i=2
to be fulfilled. For instance, the we]l-known 6-stage Runge-Kutta method

of order 5 from the algorithm RKF45 [2], can be generalized in the following
way:

16 6656 28561 9 2

e = Utk ks kg — kg + ok
Yn+1 ot 13551t 128252 564304 500 T 55°
119 - 6656 (2) 28561 (3)

+‘/_( 1357 (4") ~ Tag5”(+1) ~ Beago” W) (29)

4 5
+ 3'60 ) - gf’ (ﬂill))(m

where

0
yi{h = UYn,
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1
yf;]il = yﬂ'F"‘kls
2
ys;-al = Ynt 32kl + — 32 k?;
@ 1932, 7200, 7296,
Undr = Un T o797 T 37972 T 2197
(4) _ 439 3680 845
Ung1r = Unt orekn = 8ka+ ks — gy,
) _ _ _EL 3544 1859, 11
Uni1 = Yn = gpk1 2k — Smka gy k - ogks:
ki = hﬂﬂaﬁ)+vfawﬁdhg“ i=1,...,6.
Difference

bnt1 = Uhpr — Fnsts
where
16 6656 28561 9 2.,

K — —k* + =k,
135 it 12825k + 56430~ 50 s+ 557

1408 . 2197.. 1
~% * ‘ *_ -k‘
Ynt1 = 216k + 2565%2 t 110474 ~ 555

@=mﬁﬂ,p1 .6

can be used as an estimate of the error 8,41 of method (29). Indeed, the
estimate 6n+1 is close to the difference between the numerical solutions of
the ODE system 3“ f(y), obtained by the Runge-Kutta methods of order
5 and 4 by one step.

The numerical solution accuracy control is carried out via testing in-
equalities

‘y;+1 Yn + —%

|Ynil + 1Yn+1,il

5 Erel + €abs = Ei, t=1,...,N,

|6n41,i] <
where £rel, £abs are respectively relative and absolute admissible calculation
errors. Integration from the node t, to t,41 is considered to be a failure,
if only
|6n+1,i| 2> 10¢;

for some ¢ € {1,..., N}. The integration stepsize varies in accordance with
the formula

hpew = Ih'old : kh’
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where kp = min{5,e7/D} with increasing stepsize and kx = max{0.1,e7}
with reducing stepsize. Here
0.9

= z 1 /-1/5
(llél‘.g’}v|5n+1.z|/5u) ‘

T D = max{1,|¢rs1}

The modified procedure of the integration stepsize variation from the al-
gorithm RKF45 is designed to make the integration stepsize more stable
and to minimize the number of “recursions” in the process of SDE so-
lution. The presented method of estimating the numerical solution error
and the above procedure of integration stepsize variation enables one to
modify easily the software realization of the algorithm RKF45, introduced
in [2] for the solution of ODE systems to the systems of SDE. Therefore,
the algorithm constructed can be used most efficiently for the simultane-
ous numerical solution of ODE and SDE systems. Such situations occur
frequently in the problems of analysis and synthesis of the optimal control
by stochastic systems. _

The demand for statistical simulation of the SDE system solutions arises
in many problems of the modern theory of automated control. It is con-
nected with the complexification of the problems, solved by controlled dy-
namic systems, with the advanced requirements to them, related to the
stochastic character of useful signals and perturbations. Stochasticity of
processes occurring in real automated systems brings about additional es-
sential difficulties concerning the theoretical solution of the problem of
automated control synthesis, which increases in its turn the significance of
statistical simulation. In the process of study one frequently encounters the
necessity to solve the Riccati differential equations, to simulate statistically
the filtration algorithms, and the dynamics of the controlled system.

Numerical procedures of solving the Cauchy problems, occurring in the
automated control theory, are usually characterized by the following fea-
tures:

- necessity of joint solution of ODE and SDE systems,

- components of the systems solved obtaining segments of rapid transi-
tion,

- necessity to solve unstable systems,

- large dimensionality of the systems solved.

Let the signal model be described by a nonlinear SDE system (1), where
f(y) is a differentiable vector function of size N, and o(y) is a matrix of
size N x N.

Let the observation model have the form

z(t) = H(y(1)) + Gé(1), (30)
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where 2(t) is an observation vector of size r, H(y) is a differentiable vector
“function of size r, G is a constant non-singular matrix of size r X r, §(-) is
the “standard observation noise”, the Gaussian stochastic process with zero
mean and correlation function Rs(7) = Iép(r), where ép(r) is the Dirak
delta-function. The processes §(-) and y(-) are assumed to be independent.
For estimation of the state vector y(t) by the results of observation 2(t),
the approximate nonlinear filtration algorithms are applied. For instance,
the first order filter has the form [3]:

WO = f(§(1)) + P(t) 2D (GGT) (1) - H(H(D))],
#(0)

(31)

<Y >,

where the symmetric covariance matrix P(t) of the estimation error vector
is determined from the matrix equation

i _ A p p2Iii)
T ] y » ~
- PUEGNGETY 1 P 4 o(§(1))oT (1), (32)
P(O) = Dg. -
Here Dq is the covariance matrix of the random vector yo.

Let the linear mathematical model of the controlled object have the
form

W=+ [ ‘(Ay(s) + Bu(s))ds + ou(t), 0<1<tm  (33)

where u(t) is the synthesized d -dimensional vector function of the con-
trolling effects, B is a constant matrix of size N x d, and the observation
model is

2(t) = Hy(t) + Gé(2), (34)

where H is a constant matrix of size r X N. Then the dynamics of the
controlled object for the minimized functional

thin

I =3 < [WTOQ)+ TR+ 57 (tan) Pr(thn) >, (35)
_ ! _

where Q, R, Pin are constant symmetric matrices, thereto the matrix R is
positive definite, according to the Bellman optimality priniciple and the
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separation principle, with regard to the Kalman-Bucy filter, is determined
by equations [3]:

dy(t) = [Ay(t) - BR™' BT P(t)j(t)}dt + adw(1),3(0) = yo, (36)

%Et) + P(t)A+ ATP(t) - P(t)BR™'BTP(t) + Q = 0, P(tg,) = Ppn, (37) |

4t — (A — BRBT P(t))i(t) + P(t)HT(GGT)[2(t) — H{(t)], (38)
§(0) =< 3o >,

‘-’%ﬂ = AP(t)+ P()AT - P()HT(GGT) ' H P(t)+ 00T, P(0) = Dy. (39)

Here Dy is the covariance matrix of the random vector yo, P(t) and P(t)
are symmetric matrix-valued N X N functions, the solutions of the Riccati
equations.

Before solving numerically systems (36), (38), one has to solve the Ric-
cati equations (37), (39) first. The matrix differential Riccati equations
before the numerical solution are reduced to ODE systems for the elements
of the matrices P(t) and P(t). Meanwhile, one has to take into account
that the appearing ODE systems might be stiff. Solving the Riccati equa-
tion (37) numerically in forward time scale one has also to take account of
possible instability of the resulting ODE system, which may bring about
large error values. Thus it is recommended to save the values of P(t;),
calculated in backward time scale and the values P(t;), calculated in for-
ward time scale, and then apply those for the solution of system (36), (37),
possibly using interpolation. With regard to these features of joint ODE
and SDE systems, it is recommended to apply the generalized variable step
algorithm for their numerical integration.

FEzample 1. Let a linear stochastic controlled system have the form

dyi = (y2 + w)dt + dwy(t) + 0.1dwy(t),

(ys + u2)dt + dw,(t),

(—6y2 — 5y3 + uz)dt + 0.1dws(t), (40)
dys = (1 + 40y; — 10y + 2uy + uz)dt + 0.2dwq(2),

dys = (31 +40y2 — 2ys + 3wy + 2uz + uz)dt + 2dws(2),

dy,

I

dys

and y(0) = yo be a normal random vector with independent components,
< yoi >= 10¢, Dyo; = 0.01,i = 1,...,5. Note that the uncontrolled system
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(40) is conditionally stable, since one of the eigenvalues of the matrix A

of SDE system equals zero. Only two components of the solution are
measured:

= wu+éh,
2 = ys+V26.

It is easy to verify, that system (40), (41) is observable and controllable
[3]. The functional to be minimized will be defined in the form

(41)

tan 5 3 5
Jw)= 3 < °j (Lo + L odcs 3wt > (42

The variable step algorithm RKF45 with €abs = €re1 = 10™2 will be used for
the solution of the Riccati equations (37), (39), corresponding to problem
(40)-(42). Each Riccati equation in this case is equivalent to an ODE
system of size 15. Figure 1 illustrates the behaviour of the component
P22(t) of the solution of the Riccati equation (39). Here we observe both
rapid and steady-state segments of the solution.

Figure 1. The component pa2(t)

12.09

2,09

°. 00

4. 00

..00 = f*‘“‘

2.0 Figure 2. A trajectory of the stochastic pro-
oMb a3 " i cess y1(t) and of its estimate g (¢)

Systems (36) and (38) of size 10, corresponding to equations (40), was
solved by the variable step algorithm (29) with

-3
Eabs = Erel = 1077,
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Figure 2 presents the charts of a trajectory of the stochastic process y;(t)
(the solid line) and of its estimate §;(t) (the dotted line), obtained by
means of the Kalman-Bucy filter.

A complexity and an awkwardness of mathematical models for solving
problems of analysis and synthesis of an automatic control of dynami-
cal systems demand the large preliminary work when setting input data,
when choosing a suitable numerical algorithm, when organizing a digital
and a graphical output information. The realization of this job may be
considerably facilitated by using the achivements of modern programming.
In particular, special compilator can be used for representating functions
of diffusion and drift; the system of analytical calculations can be used
for writing the derivation of the function; the work with input and out-
put information and a choice of numerical algorithm and its parameters
may be produced in limits of a modern users interface with using "menu”
and ”windows”. During the calculation of the problem we must have an
information about arising extremal situations; statistical and reference in-
formation; possibility to interrupt the work of numerical algorithm in any
time and to renew it after some correction. All the enumerated possibili-
ties are planned to realize in the dialogue system "Dynamics and Control”.
In the dialogue system we will realize algorithms of linear and non-linear
filtrations, an estimate of parameters of ordinary and stochastic differen-
tial systems, algorithms of modelling dynamics of controlled systems. The
dialogue system is based on modern numerical methods of linear algebra,
algorithms for solving ODE and SDE, algorithms of minimization of the
function.
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