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Stability of numerical methods for
solving stochastic differential equations

S.S. Artemiev

This paper deals with the problem of mean-square stability of numerical methods for
solving SDE’s. We introduce the notion of the stiff in a mean-square sense system
of SDE’s, the practical verification of which is not difficult. In the capacity of the
investigated family of numerical methods the generalization of $wo-stage Rosenbrock’s
methods is considered.

1. Introduction

The use of numerical methods for solving stochastic differential equations
(SDE) in the statistical modeling of the dynamics of various stochastic
objects often runs into the problem of the instability of the numerical so-
lution. This fact stimulates the further evolution of the theory of stability
of numerical methods for solving SDE’s. In the construction of such a
theory one can use many ideas from the excellent paper by Dahlquist who
introduced the notion of A-stability of numerical methods for solving stiff
systems of ODE’s [1]. Analysis of stability of numerical methods for solving
SDE’s with additive noises was carried out in [2], and here we do ot con-
sider such SDE. During studying the stability of solution of general SDE’s
we can use notions of asymptotic stability in probability and asymptotic
p-stability [3].

Analysis of asymptotic stability in probability of numerical methods for
solving SDE’s was made in [4]. Also the notion of stiff in probability system
of SDE’s was introduced in this paper. We must note that at present the
practical verification of the stiffness in probability is hindered because there
do not exist effective numerical algorithmes for calculating the spectrum of
characteristic Lyapunov’s exponents of the system of SDE’s.

In this paper the basic attention will be given to questions of the mean-
square stability of numerical methods for solving SDE’s. Also we introduce
here the notion of the stiff in a mean-square sense system of SDE’s, the
practical verification of which is not difficult. The difficulties of the numer-
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ical solving of stiff SDE are also discussed. In the capacity of the investi-
gated family of numerical methods the generalization of two-stage Rosen-
brock’s methods is considered [5]. The generalized implicit Runge-Kutta
methods [6] are not studied because of the complex program’s realisation
and large computational costs of these methods for solving non-linear sys-
tems of SDE’s. For the numerical methods for solving SDE’s the sufficient
condition of mean-square stability has been obtained when these meth-
ods are applied to the asymptotically mean-square stable linear systems
of SDE’s with multiplicative noises. We carry out the investigation of the
mean-square stability of known numerical methods for solving SDE’s. Also
we present results of numerical experiments obtained with the help of the
dialogue system Dynamics and Control.

2. The mean-square stability of zero solution of
SDE

We give the general non-linear autonomous system of SDE’s in the Ito-sense
in the following differential form

M
dy(t) = f(y(®))dt+ Y e (y(t))duwi(2), (2.1)

k=1
¥(0) = o, (2.2)
where f, o), k =1,..., M are N-dimensional vector functions. We always

suppose that f(0) =0, c((0)=0,k=1,..., M.

Definition 1 [3]. The solution y(t) = 0 of the system of SDE’s (2.1) is
said to be an asymptotically stable in a mean-square sense if for any € > 0
there is such 6 > 0 that for ¢ > 0 and |yo| < § expectation (|y(Z;%0)|?) < &,
moreover tllngoﬂy(t; %)) = 0.

Here y(t;yo0) is the solution of the system of SDE’s (2.1) with initial
condition (2.2).
The linear system of SDE’s of the first approzimation:

M
dy(t) = Ay(tydt + Y SPy(t)dwi(t), (2.3)
k=1

where A = 35(0), St) = i%(;:‘—)(0), k=1,...,M, correspond to the system
of SDE’. In [7] it is proved that zero-solution of the system (2.1) is
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stable in probability providing zero solution of the system of SDE’s (2.3)
is asymptotically mean-square stable.

For SDE’s (2.3) we can write down the equation on the matrix of second
moments of the solution I'(t) = (y(t)yT(¢)):

dr M
al’ _ T (5) p(g(NT
7 = AT+ I'A +k§-—1:s r(s®NT, (2.4)

If we write the matrix equation (2.4) in the form of the system of ODE’s

dl’  ~~

— = AT, (2.5)

where

I'= (7115-- '771N17‘22,-'°172Na“'$7N—1,N—1,7N—1,Na7N,N),

then necessary and sufficient condition of the asymptotic mean-square sta-
bility of zero solution of the system (2.3) is the following requirement

Re)j(A) <0, j=1,...,N(N+1)/2. (2.6)

In [8] it is proposed that the more simple sufficient condition of asymptotic
mean-square stability is the following: A;(A) <0, 7 =1,..., N, where

M
A=A+ AT+ 5 sEBEET,
k=1

Also there is a proof of
Theorem 1. The solution of SDE (2.3) satisfies the following estimates:
lv0l* exp(Amint) < (l¥(®)?) < Ivol® exp(Amazt), (2.7)
where Apin = min AJ-(A), Amaez = ma.x,\j(fi).
According to this theorem we can introduce

Definition 2. The system of SDE’s (2.1) is said to be a stiff in a mean-

square sense if for its first approximation (2.3) the following conditions are
fulfilled:

Amin € Amaz < 0. (2.8)

Moments of solutions of stiff in a mean-square sense systems of SDE’s
contain quick and slow components.
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The solution of the scalar SDE in the Ito-sense
dy(t) = ay(t)dt + sy(t)dw(t) (2.9)
with constant real coefficients can be written in the form of

y(t) = yoexp(at + sw(t)),
where & = a — s2/2. We also have an equation for y(t) = (y%(t)):

d
71% = (2a + 5%)n. (2.10)

At once from (2.10) we see that zero solution of SDE (2.9) is asymptoti-
cally mean-square stable providing @ < —s*/2. Note, the requirement of
asymptotic stability in probability is considerably less stiff: o < s?/ 2.

3. The asymptotic mean-square stability
of numerical methods for solving SDE

We write down the family of numerical methods for solving SDE (2.1) in
the form

M
nt1 = Yo + Brks + VR Y 0@ (g )P,
k=1

M
Ynt1 = Yn + Prk1 + p2ka + \/EZ (010 (yn) + 20 (F11)) ¢,
k=1

ko= [I- ha—g—;f(yn)] A () + roV f} B (a)c)],

k=1

(3.1)

ko

I

af - -1 M
[1- ha—ég(yn)] [P @) + BaVE Y o B (Gngn )W)
k=1

where y,, n = 0,1,...,K are the values of the approximate solution of the
system of SDE’s (2.1) at the mesh nodes with respect to time {¢,}; h is the
step size of the integration at the node t,; p1, 1, P2, ¢1, €1, G2, B10, B21, @
are real parameters of the method; {C,(.l—c)}, n=0,1,..., K-1,k=1,...,.M
is a sequence of independent in totality normal random values:

VA = 09(ta1) = 0H(ta).
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Under the condition ¢®)(y) = 0, k = 1,..., M methods (3.1) are trans-
formed into two-stage Rosenbrock’s methods [5]. While ¢ = 0, methods
(3.1) are the generalization of explicit two-stage Runge-Kutta’s methods.
Parameters p1, p1, P2, 1, 91, 42, P10, S21 are determined from the require-
ment of the provision of the given order of the convergence of a method
in a certain sense, and with the help of the parameter a it is possible to
improve properties of the stability of the numerical method.

Definition 3. The numerical method is said to be asymptotically stable in
a mean-square sense with step size A > 0 (with respect to the given SDE) if
under its application with this step size to the given asymptotically stable
in a mean-square sense system of SDE’s the following condition is fulfilled

Jim (y,[*) = 0. | (3.2)

Definition 4. The numerical method is said to be A-stable in a mean-
square sense if the condition (3.2) is fulfilled by integrating with any step
size h > 0 the scalar asymptotically stable in a mean-square sense SDE

(2.9).

Under the application of the numerical method from the family (3.1)
to the system of SDE’s (2.3), we receive the following recursion formula

Yn+1 = Rn(hf)yn, n= 07 17 25 ey J(33)

where R, (h) is a sequence of joint-independent and with y,, and having the
same distribution random N x N-dimensional matrices of the transition. If
we denote R? = (R, x R,), defining

?’11R T’}NR
Rsz P e P ) (3.4)
Nt - TN R

then lim (|y,|?) = 0 providing all eigenvalues of N? x N2-dimensional ma-
n—od

trix R? are situated inside of the unit circle [3]. Even when N = 2, matrix
(3.4) has 4 x 4-dimension and the receiving of analytical expressions of all
eigenvalues matrix R? as the function of h can be complicated enough. It’s
more easy to check another condition, received from the theorem defining
the conditions of the stability of the product of independent matrices [3]:

Theorem 2. It is sufficiently for the asymptotic stability in a mean-square
sense with h > 0 of the numerical method with respect to the asymptotically
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stable in a mean-square sense system of SDE’s that the solution X of the
equalion '

(RI(A)XRn(h))- X = -Q (3.5)

for any positive definite matriz Q is represented by a positive definite matriz.

In the application of the numerical method of family (3.1) to the SDE
(2.9) we receive in formula (3.3) that the function R,(h) is scalar and the
numerical method is asymptotically stable in a mean-square sense with step
h providing

(R3(h)) < 1. (3.6)

It is not difficult to verify that for the numerical methods of family (3.1)

_ M
ivs = v+ [T bl ()] [A1Gn) + VY 0P ], @)

k=1

for which
M
Ra(h) = (I - ahA)™ (T + (1= a)hd + VRSB,
: k=1

the condition (3.6) is fulfilled for any A > 0 in case a > 0.5. Thus, for
methods like (3.7), the condition @ > 0.5 is the requirement of the A-
stability in a mean-square sense and it coincides with the requirement of
the A-stability of one-stage Rosenbrock’s methods for solving ODE’s.

For Euler’s method

M
Ynt1 = Yn + hf(ya) + ‘/Eza(k)(yn)dzk) (3.8)
k=1

we have o
Ra(h) =TI+ Ah+ VR SW(H
k=1

and an unequality (3.6) is fulfilled when 0 < h < —(2a+ s?)/a?. Limitation
on h becomes much more stiff when we increase —a or approximate s? to
=2a.

Mil’stein’s methods [6]

Wy, 1)y BOOD ) ()2
Ynt1 = Yn+hf(¥n) +VRo M (y,)¢L +§3—y(yn)0 (¥a)((€27)*-1) (3.9)
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and Platen’s method [4]

Yns1 = Yn + hf(yn) + VRoD (g, )¢V

3.10
+ B 4 Vo)~ eGP - 1)

for SDE in the Ito-sense with a single noise has the same matrix of tran-
sition:

Ra(h) = I + Ah + VRSO + LsO(SMT(((M)? - 1)
and for them unequality (3.6) is satisfied when
0< h< —(2a + s?)/(a® + 5*/2).

The latter unequality is even more limitative than the similar in Euler’s
method especially when value s? ~ —2a is large.

By the using of numerical methods (3.8)-(3.10) for statistical simulating
of a stiff in a mean-square sense system of SDE’s the step size of the
integration is defined by the value |Anminl.

If we substitute the transfer matrix of A-stable in a mean-square sense
method (3.7) with @ = 0.5 in the left side of the equation (3.5), then we

receive in view of independence C,(fl) and C,(akz) providing k; # ko that

M .
<(I +247 + \/EE(S“‘))TQ&"’) (I-4aT)'X
k=1

M
A= 447 (14 44+ VR W) ) - X
k=1

M 3.11)
= (I+4AT)Y(I + A + 1D (SW)TYs® (

k=1
—(I-34T)Y(I-44)

M
h(ATY +YA+ Z(s(‘f>)TY5(’°)),
k=1
where Y = (I — £47)"1X(I - £A)~. According to Arnold’s theorem [9],
the system of SDE’s (2.3) is an asymptotically stable in a mean-square sense
if there exist a positive-definite matrix ¥ which satisfies matrix equation

M
ATY + YA+ (sO)TYs® = @, (3.12)
k=1
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for some symmetric positive-definite matrix @,. Let Y be positive-definite
matrix which satisfies equation (3.12). Then, in view of the negative defin-
ity of A, the matrix X = (I - %AT)?(I — 24) is positivly definite and
satisfies the equation

(RI(R)X Ra(h)) — X = —hQ,.

It means that method (3.7) with ¢ = 0.5 is asymptotically stable in a mean-
square sense with any step size h > 0 concerning asymptotically stable in
a mean-square sense system of SDE’s (2.3).

4., Numerical tests

Making numerical tests, the dialogue system Dynamics and Control,
which was developed in Novosibirsk Computing Center of Sibirian Division
of Russian Academy of sciences, was used. This dialogue system presents
essentially new way of the making of the numerical test in a dialogue of
user and computer. The fundamental principles of this dialogue system
contain creation of maximal eases for users, possibility of quick transition
from a statement of a problem to the obtaining of the result of calculations
in graphical or numerical forms, the automatic fulfillment of routine work.
The dialogue system includes various modern numerical algorithmes of lin-
ear algebra, solutions of systems of SDE’s and ODE’s, the minimization of a
function. In the bank of numerical algorithms for solving SDE we included
the most used numerical methods, algorithms of a variable step size [10],
and algorithms of checking the asymptotic stability in a mean-square sense
of linear systems of SDE’s (2.3), and also an algorithm of the estimating
of moment’s functions (2.4) of solutions of linear systems of SDE’s (2.3).

Example 1.
dy = —5ydt + 3ydw(t), y(0)=1. (4.1)

For SDE in the Ito-sense (4.1) we have (y(t)) = exp(—5t) and (y%(t)) =
exp(—t). Concerning to the SDE (4.1) Euler’s method is an asymptotically
stable in a mean-square sense when 0 < h < 0.04, and methods (3.9) and
(3.10) are asymptotically stable in the same sense when 0 < h < 0.015.
By means of methods (3.7)(3.10) we simulated 1000 paths per method
for (4.1) with step size h = 0.2 on the interval [0;5]. With such step size
we have for method (3.8) 7,41 = 1.87n, and for methods (3.9) and (3.10)
Yn4l = 3.427,,,
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In Figure 1 graphs of the second moment ¥(¢) = exp(—t) and the
estimate of §(t), received by method (3.7) are presented. Figure 2 depicts
graphs of estimates of In¥(t), received by methods (3.8)-(3.10).
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Figure 1. The second moment 7(t)
(dashed line) and its estimate by
method (3.7) (solid line)

Figure 2. The logarithm of the esti-
mate of the second moment by Euler’s
method (solid line), by Mil’stein’s

method (dashed line) and by Platen’s
method (point line)

Example 2.

dyr = (~10y + y2)dt + (31 + y2)dwn (2),

dyz = (—y1 — y2)dt + (—0.25y; + 0.25y2)dw; (2).
For SDE in the Ito-sense (4.2) matrix A in (2.5) has the form

-19 4 1
-1.25 -11 1.25
0.0625 -2.125 -1.9375

(4.2)

As eigenvalues of matrix A are negative: A\; = —2.21, A = —11.42, A3 =
—18.31, the system of SDE’s (4.2) is an asymptotically stable in a mean-
square sense. Notice that the system of SDE’s (4.2) is a weak stiff in the
sense of introduced Definition 2. By means of methods (3.7) and (3.8) with
step size h = 0.2 we simulated 1000 paths of the solution of SDE on the
interval [0;5].

In Figure 3 graphs of the exact second moment <;,(¢) and statistical
estimate which was received by method (3.7) is given. In Figure 4 we show
graph of the estimate received by method (3.8).
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Figure 3. The exact second mo-
ment (dashed line) and its estimate

0 1 2 3 4 5 6

Figure 4. The estimate of the second
moment by Euler’s method

by method (3.7) (solid line )
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