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A-m.s.-stable numerical methods for
solving stochastic differential equations
in the Ito-sense*

S.S. Artemiev and T.L. Stepanova

In this paper we investigate the asymptotic mean-square stability (m.s.-stability) of the
family of numerical methods for solving SDE’s in the Ito-sense generalizing Rosenbrock’s
type methods. The connection between the asymptotic m.s.-stability of the numerical
method for solving SDE and the absolute stability of the corresponding Rosenbrock’s
type method are shown. Examples of A-m.s.-stable numerical methods are given.

1. Introduction

One of the most important characteristics of the numerical method for solv-
ing stochastic differential equations (SDE) is its stability. The stability in
a mean-square sense (m.s.-stability) of numerical methods is usually con-
nected with the generalization of the implicit Runge-Kutta type methods
[1-4]. Problems arising here mainly refer to the complex program’s real-
ization and large computational costs of these methods. The more suitable
family from this point of view is the special family of explicit methods
generalizing Rosenbrock’s type methods (RTM) [5]. In this paper we con-
sider such family of methods for solving SDE in the Ito-sense and prove
that methods from this family are asymptotically m.s.-stable in integrating
with any step size in any asymptotically mean-square stable linear system
of SDE’s with multiplicative noises, if original RTM are A-stable.

2. The family of numerical methods

The non-linear autonomous system of SDE’s is given in the following dif-
ferential form
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M . :
di(t) = f(y(@)dt + Y o (y())dwi(t), (1.1)
k=1
¥(0) = %o, (1.2)
where f, o), k = 1,...,M are N-dimensional vector-functions, wk(-),

k=1,...,M are mdependent in the totality standard Wiener processes,
Yo is N dlmensaonal random vector. We always assume that f(0) = 0,
c®(0)=0,k=1,..., M.

The first a,pprommatmn linear system of SDE’s

dy(t)_.Ay(t)dt+ ES(")y(t)dwk(t), T (13)
k=1 .

corresponds to the system (1.1), where

= ﬂ(o) s(k) = a“

k=1,..., M.

Definition 1 [6]. The numerical method is said to be an a.symptoucally
m.s.-stable with the step size h > 0 (with respect: to the given system of
'SDE’s), if under its application with this step size to the asymptotically
stable in a mean-square sense system of SDE’s the following condition:

Im(lw =0 (1)
is fulfilled. | '

Here {y} are the values of the numerical solution of the system of
SDE’s at the nodes of the mesh {t,}, (-) is the operatlon of taking the
mean value.

Definition 2. The numerical method is called A-m.s.-stable, if the condi-
tion (1.4) is fulfilled by integrating with any step size h > 0 any asymptot-
ically stable in a mean-square sense linear system of SDE’s (1.3). '

Definition 3. The numerical method is called Ap-m.s.-stable, if the con-
dition (1.4) is fulfilled by integrating with any step size h > 0 the scalar
assymptotically stable in a mean-square sense SDE ' )

d(O) = oyt + o). (19)

Here a, s are constant real coefficients such that for SDE in the Ito-
sense the unequality 2a < —s? is fulfilled.

- For statistical simulating the trajectories of the solutions of the systems
of SDE’s (1.1) we will use methods in the form -
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Yusr = U+ 3 piki + VA[T h[1 —ah—(yn)] Zo“’(y ),
i=1 k=1

1.6
of _1 i-1 ‘ (1.6)
k;= h[I - ahb——?—l—(yn)] flyn + ;ﬂ.—jkj), i=1,...,m.

Here {yn} are the values of the approximate solutions of the system of
SDE’s (1.1) at the mesh nodes with respect to time {t,}; k is the step
size of the integration at the node t,; p;, Bij, a are real parameters of the
method, with a > 0; {C(k}} k=1,...,M is a sequence of independent in
totality normal random vectors -

VR = wi(tny1) — wiltn),

m is the number of stages of the method. Methods (1.6) are the generaliza-
tion of m-stage RTM for solving ordinary differential equations (ODE’s).
Further we always assume that the mesh {¢,} is uniform and the original
m-stage method has the m-th order of the consistency.

Under the application of the numerical method of the family (1.6) to
the system of SDE’s (1.3) we receive the following recursion formula:

Ynt1 = I—tn(h’)yns n=012,..., (17)

where {R,(h)} is the sequence of mutually independent and independent
with y,, equally distributed N x N - dimensional random matrices of the
transition. Under its application to the SDE (1.5) {R,(h)} is the sequence
of independent normal random values.

The matrix of the transition R,( h) of the m-stage method from the
family (1.6) can be written in the form of [5]:

R.(h) = (I- ahA)""‘[I+z {J Z (( a) IC;, }(hA) +vh Z 5(k>c(k)]

= (I - ahA)™ [I + (1 - ma)hA + 7(hA) + VR Z s(*)c,(,*)] . (L1.8)
k=1

where 7(hA) is m-th degree matrix polinomial in the form of

m(z) = coz® + ... + cuz™.
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3. The theorem of the asymptotic m.s.-stability
of numerical methods

Theorem 1. In order the method of the family (1.6) be A-m.s.-stable, the
sufficient condition is that the corresponding RTM be A-stable.

Proof. To prove this theorem we need:

Theorem (Lyapunov [7]). If the matriz R is converging (i.e., its spec-
trum belongs to the interior of the unit circle), we have for'every symmetric
positive-definite matriz B the only solution X of the equation

RTXR-X=B . (2.1)
is the symmetric negative-definite matriz.

Theorem (Ha.smmskl [8]). For the asymptotic stability in a mean-square
sense of the system of SDE’s (1.3) a necessary (resp. sufficient) condition
is that, for every (resp. for some) symmetnc positive-definite matriz Q, the
matriz equation

M
YA+ ATY + ) (sW)TYs® =@ (2.2)
k=1

has a symmetric negative-definite matriz.

Theorem. (Hasminski [8]). For the asymplotic stability in a mean-square
sense of the process (1.7) with the step size h > 0 it is necessary for every,
and sufficient for some, symmetric positive-definite matriz C(h) the solution
X of the equation

(RE (WX Ra(h)) - X = C(h) (2.3)

be the symmetric negative-definite matriz.

Let R(z) be the stability function of the A-stable RTM, i.e., |R(z)| < 1
for every z, situated at the left side of the complex plane. The matrix func-
tion R(hA) exists if the complex function R(z) is defined at the spectrum
of the matrix hA. If hA1(A),...,hAN(A) are eigenvalues of the matrix
hA, then R(h)u(A)),...,R(ha\N(A)) are eigenvalues of matrix R(hA) [9].
Because for every stable matrix A unequalities
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|R(hA(A))| <1, i=1,...,N

are fulfilled for every step size h-> 0, matrix R(hA) is converging for every
step size h > 0.

Let Y be some symmetric negative-definite solution of (2.2) with the
symmetric positive-definite matrix Q and let X = [[—ahAT]™Y[I-ahA]™;
it follows that the matrix X is symmetric negative-definite matrix for every
stable matrix A and for every step size h > 0. Substituting X and R, (k)
from (1.8) at the left-hand side of (2.3), we receive in view of the equality

(I — ahA)™ = I — mahA +v(hA), ¥(z)=gz®+...+ gnz™
and the properties of random values {C.,{lk)}, k=1,...,M, that
(Rn(h)T X R, (R)) - X

M
= ([T + (1 - ma)hAT + x(hAT) + VR Y ¢(SUNT)[I - ahAT]™™ x
( ]
k=1

M
X[I - ahA]™[I + (1 - ma)hA + x(hA) + VR Y_ SBP]) - x.
k=1

Making substitution of the variable X by the variable ¥ and calculating
the expectation we receive that

(Ra(h)TX Rn(R)) - X
= [T+ (1 - ma)hAT + n(hAT)Y I + (1 - ma)hA + n(hA)] +

M
R (SENTYS®) — (1 — mahAT + y(hAT)|Y[I - mahA + v(hA))
k=1

M

= h(YA + ATy + Z(S("))TYS(")) +8(RA,Y)
k=1

= hQ + 6(hA,Y) = C(h),

where §(hA,Y) is the matrix polynomial depending on matrices hA and
Y, but not on matrices S*), k =1,..., M, with the minimal degree with
respect to h in § is equal to 2, and the meaning of this polynomial is the
symmetric matrix. Let us show that so defined matrix C(h) is positive-
definite for every A > 0.

If we substitute the symmetric negative-definite matrix X in (2.1),
where R is the converging, for every h > 0, matrix of the transition of the
correspondng RTM, then we receive with the help of the Lyapunov theorem
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that the symmetric matrix B = h(Y A+ ATY)+6(hA,Y) is positive-definite
for every h > 0. But the symmetric matrix Y A+ ATY as well as the matrix
@ is positive-definite.

So for every h > 0 the matrix C(h) is symmetric positive definite and
the equation (2.3) has the symmetric negative-definite solution X. But
it means that the sufficient condition of the second Hasminski theorem is
fulfilled and our theorem is proved. a

Corollary 1. If RTM is A-stable, then the corresponding method from the
family (1.6) is Ag-m.s.-stable.

Let us present examples A-m.s.-stable 1-, 2-, 3-stage methods of the
family (1.6). In every case methods have the first order of the convergence
in a mean-square sense:

max(ig — y(ta)|?) = O(h).

m=1: e=03, p=1,
m=2: a=0.25, p =0.75 p;=025 (=1,

—3. g1 _ 17 _.2 _3
m=3: a—3, pl-—lz, P2 = 2 Pa—ﬁ,
2 29 1
B = 5 B3 = 30’ B3z = s

Let us note that A-m.s.-stable methods with the second order of conver-
gence in a mean-square sense even for the simplest SDE (1.5) have not still
be constructed.
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