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Simultaneous determination
of source-time function and velocity
via full wave field inversion*

A.V. Avdeev, E.V.Goruynov

This paper describes a numerical method for the solution of the inverse problem
of acoustics in the case of recording of the full wave field at the free surface. The
solution is sought by means of minimization of the data misfit functional which
is a mean square deviation of the given wave field from the wave field calculated
for some “test” medium model. The main attention is given to the problem of
simultaneous determination of the form of the sounding signal and the velocity
structure of the vertically-inhomogeneous medium in the case of the point source
and receivers located at the free surface.

Introduction

This work presents a numerical method for the solution of the inverse prob-
lem of acoustics in the case of the recording of full wave field at the free
surface. It is an extension of the articles [1, 2].

The solution to the problem being considered is sought by means of the
minimization of the data misfit functional which is a mean square deviation
of the given wave field from the wave field calculated for some “test” medium
model. This approach often called “inversion” was described in many works
([3-6]). The main difficulties associated with its application are well-known.
This is the problem of determination of the trend component, i.e., the pa-
rameters of the medium under study cannot be reconstructed when there is
no information on its low-frequency structure. The other problem is that it
is necessary to know the exact form of the sounding signal.

The articles [5-6] are devoted to the investigation of the first problem,
and therefore we shall not consider it in detail. The main attention will be
given to the solution of the second problem - simultaneous determination of
the form of the sounding signal and the velocity structure of the vertically-
inhomogeneous medium in the case of the point source and the receivers
located at the free surface.

*Partially supported by the Russian Foundation for Basic Research under Grants 96—
05-66058 and 95-05-15567.
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The problems in similar statements were investigated theoretically and
numerically in [7-11]. The article of Cheverda and Voronina [11} where the
theorem of uniqueness of the minimum point of the data misfit functional
was proved should be pointed out. It proposes a new numerical algorithm
for the solution of the inverse problem of vertical seismic profiling (VSP).

The present work describes the use of this algorithm in the case of record-
ing of the full wave field at the free surface. It should be noted that here
the proof of the theorem of uniqueness turns out to be problematic.

1. Statement of the inverse problem

The inverse problem we are studying here is of the following type: waves
propagate in a three-dimensional medium, but the velocity distribution char-
acterizing the medium is assumed to depend on only one variable 2. Let the
point source be applied at the surface point (0,0,0). We denote the wave
field caused by this excitation by U(z,y, z). This function is the solution to
the following initial boundary value problem:
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where c.(z) is a piecewise-continuous function characterizing the wave prop-
agation velocity in a vertically inhomogeneous medium, f(t) describes the
influence in time of the source wavelet at the free surface. Let zq,..., 2, be
boundaries of layers with the velocities ¢y,...,¢,. For this model, we add
the conditions at z = z; for relations (1)—(3):

[Ue=s, = [%g]z=za =0, i=1,...,N.

For system (1)—(3), let us consider the following inverse problem:
It is necessary to determine the functions c(z) and f(t) using the infor-
mation on the oscillation regime of the observation surface z = 0

U|z=o=Uu($,y,t); 0<t<T (xsy)esc {(z,y,z): 220}' (4}

Following [6], we rewrite the initial statement (1)—(4) in the following
way:
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., = Fle), (6)
U!z=.0 = Uo(k,UJ), (7)

where r
Flw) = f £(t) exp(—i - wt)dt,
1]

and for the unique solution it is assumed that the principle of limit absorp-
tion, i.e.,
U(z,k,w) = cl-l»To U(z, kyw - ig),

where, in turn, U(z,k,w —ic) — 0 as z = oo, is fulfilled (¢ is the parameter
of absorption). '

Let us introduce some additional definitions.

The set of functions {c*(z), F(w)}, where

0<6<(z)<cd; )=, z>H;
(2) — ¢ € La(0,00) N C%(0, 00),
F(w) € La(wr,w2),

will be called the set of models M.

The operator A[c?, F}(w, k) transferring the element (c2, F) of the set
M to the solution of the boundary value problem (5)-(6) at z = 0, will be
called the operator of the solution to the direct problem. It can be shown
that this operator is differentiable over Frechet with respect to the functions
'F and ¢2.

Then the image of the set M under the action of the operator A will be
called the set of acceptable data D (D = A(M)).

2. The method of solution

Solution of the inverse problem (5)-(7) will be sought as the minimum point
of the following data misfit functional:

k3
®[c*(z), F(w)] = 7dwj |Uo(k,w) ~ A[c*(2), F(w))(k,w)*kdk, (8)

wi ky

where (w1,w2) and (ky, k2) are time and space frequency ranges determined
by the spectral composition of the sounding signal F(w) and the size of the
observation domain S.
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As shown in [6], realization of the search process of the minimum point of
the data misfit functional in the frequency range (k,w) enables a considerable
reduction of computational resources necessary for the multiple solution of
the direct problem. Moreover, it is possible-to make detailed analysis of
spectra of the wave fields at each step of calculations.

It can be easily shown that functional (8) is also differentiable over
Frechet with respect to its variables ¢?(z) and F{w). So, we can obtain
the following expressions for its gradient:

wy

V 2 ®[c(2), F(w)](€) = —2Re f (@ + ie)2F (w)dw x
- 2
f [Uo(k,w) - Al (=), F@)](k,w)] G*E kyw)k dk,  (9)
ky
VFe[c*(2), Fw)](w) =
k2
—2Re / [Ua(k,w) - Al (2), Fw)](k,w)] G (€, k,w)k dk -
k1

k2
2i-Im [ [Uo(k,w) - Al*(2), F@))(k,0)] G(E k) dk,  (10)
ky
where G(£, k,w) is the solution to the problem (5), (6) at F(w) = 1.
Let there exist the point {(c2, F;) € M where the gradient of the func-

tional vanishes. Then, from (9) and (10), it is easy to obtain the following
expression:

k
1 G(0, k, w)Uolk, w)kdk
ky

Fy(w) = , (11)

ko 2
J IGz(O,k,w)l kdk
ky

where G(0, k,w) is the solution to the boundary value problem (5), (6) at
F(w) = 1, and ¢?(z) = c?(z) taken at the point z = 0. In [11], it was
proposed to use the formula similar to (11) for the calculation of the impulse
Fi(w) at the k-th iteration.

It is worth noting that [11] gives the proof of the theorem of uniqueness of
the minimum point of the data misfit functional which is a square deviation
of the wave fields recorded at several internal points of the medium from
the wave fields calculated at the same points for the “test” medium model
(VSP problem). In the case being considered, it is not possible to prove the
theorem of uniqueness. '



Stmultaneous determination of source-time function 23

3. Numerical experiments

In order to conduct numerical experiments, two models of the vertically in-
homogeneous medium were chosen. The first model is simple, without large
differences of the velocity function. The second model is relatively complex.
It contains waveguides and has sharp velocity variations. Reconstruction
of the medium was made up to the depth of 1 km. Below this depth, the
velocity was assumed to be constant and equal to the velocity value in the
last layer. The whole medium, from its surface to the depth of 1 km, was
divided into 10 equivalent layers with constant velocity.

In the calculation of the initial data, i.e., of the function Up(k,w), the
function :

F(w) = [exp ( - (w ;?wf)z) + exp ( - (w :iﬂf)z)] X
exp(—i-1.75w/f), (12)

was taken as an input impulse. Here f is the dominant frequency equal
to 20 Hz. The calculations were made with the help of the semi-analytical
method described in [12]. The range of time frequencies was taken from 5
to 40 Hz.

For the search of the minimum point of the data misfit functional (8),
we used the method of conjugate gradients in the following interpretation

ci+1(2) = ¢(2) — ;Fj(z),

o = argmin @ [e;(2) - aP,(z), F;(w)],

Fo(2) = V@ [eo(2), Fo(w)],
Pj(2) = Ve®[c;(2), Fj(w)] - B;iPi(2), j>1,
B; = (V®[c;(z), Fj(w)], Ve®le;-1(2), Fj_1(w)] — VeBlc;(2), F;(w)]),

where the step a; was chosen using the method of “golden section”.

In order to calculate the impulse F;(w) at the j-th iteration, the condition
of vanishing of the gradient of functional (8) with respect to the function F;
at the current velocity ¢;(z), i.e., expression (11) was used.

Figure 1 shows the first velocity model of the medium (solid line) and the
initial approximation (dashed line). Figure 2 gives the form of the impulse
of the input signal f(t) and the first approximation for it obtained from
(11). As a result of 35 iterations by the method of conjugate gradients, it
was possible to reconstruct, with good accuracy, both the velocity distribu-
tion of the medium and the function f(t). The results of calculations are
presented in Figures 3-4. It should be noted that in this case we used the
initial approximation which describes well the low frequency structure of the
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‘medium (i.e., the trend). Therefore, as expected, there were no difficulties
with the reconstruction.

A more complex model was chosen for the other series of calculations.
It is shown by the solid line in Figure 5. The initial approximation shown
by the dashed line is far from the real velocity distribution. The exact value
of the impulse form and the approximation calculated for it using (11) are
presented in Figure 6 (in the frequency domain) and in Figure 7 (in the
time domain).

In this case, there arises the well-known problem of trend component.
Therefore, the calculations were made using the technique described in the
article of Alekseev et. al. [6], i.e., the appropriate space frequency ranges k
were chosen in order to compensate for the absence of low time frequencies
w in the spectrum of the recorded signal Up(k,w).

The final results are represented in Figures 8-10. It is seen that the im-
pulse form was reconstructed sufficiently well. However, it was not possible
to reconstruct the velocity function with a good accuracy.
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4. Conclusion

The results of numerical experiments cited in the previous section showed the
efficiency of the numerical method proposed for the solution of the inverse
problem of acoustics in the case of the recording of the full wave field at the
free surface.

They also confirmed the main difficulty associated with the use of the
optimization approach (inversion), namely, the necessity to have information
on the low velocity structure of the medium under study.

One way out of this situation is the search for a good initial approxima-
tion (i.e., containing low frequency components of the velocity function) with
the help of the different scales’ basis, as was done in the work of Cheverda
and Voronina [11]. Another possible approach is the consideration of com-
bined inverse problems [13, 14]. In this case, the solution is sought as the
minimum point of the complex data misfit functional taking into account a
priori connections between the parameters of the medium under study.
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