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Numerical solution of one inverse
problem with an unknown source wavelet*

A.V. Avdeev

The problem of the simultaneous determination of the sounding signal form and wave
propagation velocity in a vertically-inhomogeneous medium is considered in the paper.

It should be noted that usually the form of the sounding signal is either unknown
or given only approximately, although its accurate estimate is necessary for the practical
solution of many inverse problems.

We propose an interactive numerical algorithm enabling simultaneous determina-
tion of the wave propagation velocity and the sounding signal form in a vertically-
inhomogeneous medium. This algorithm is based on the optimization approach, i.e.,
on minimization of the data misfit functional of observed and calculated data.

Results of numerical experiments are given to illustrate the efficiency of the method.

1. Introduction

The paper considers simultaneous determination of the sounding signal
form and wave propagation velocity in a vertically-inhomogeneous medium.
The solution of this problem is sought as the minimum point of the data
misfit functional. The data misfit functional is defined as quadratic devi-
ation of the wave field that is recorded at the free surface, from the field
calculated for “experimental” values of velocity and input signal. Advan-
tages of this approach over the other numerical methods are its universality
and the capability to take into account a priori information on the struc-
ture of the medium under study at each step of the process of the functional
minimization. The approach is described in many papers, including those
of [1, 2].

It should be noted that usually the form of the sounding signal is either
unknown or given only approximately, although its accurate estimate is
necessary for the practical solution of many inverse problems.

Similar statements of these problems were studied theoretically in [3, 4].
Unique solvability of the given problem to some finite depth was shown
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and uniqueness theorem for the linearized statement was proved in these
publications.

More complete bibliography on numerical solution of problems of simul-
taneous determination of the medium structure and the input signal form
is given in [5]. Of particular interest is the paper [6], in which least-squares
inversion is proposed for the solution of problems of this type. However,
this work does not contain any numerical results.

The given paper describes an interactive numerical algorithm enabling
simultaneous determination of the wave propagation velocity and the
sounding signal form in a vertically-inhomogeneous medium. This algo-
rithm is based on the optimization approach, i.e., on minimization of the
data misfit functional of observed and calculated data. Results of numerical
experiments are given to illustrate the efficiency of the method.

1. Wave propagation in a vertically inhomogeneous medium is described
by the following initial boundary value problem:

o?U

W = CE(Z)AU, (1)
Uit(O = 0, (2)
., = fotz), 3

where ¢,(z) is piecewise-continuous function, characterizing wave propa-
gation velocity in a vertically inhomogeneous medium, f(¢) and g(t) de-
scribe, correspondingly, influence in time and space distribution of sources
on the free surface. Let zy,..., z, be boundaries of layers with the velocities
€1y...,Cn. For this model it is necessary to add the conditions at z = z;
for relations (1)-(3):

dv]m =0, i=1,...,N.

[U]e=z, = [E
For the system (1)-(3) let us consider the following inverse problem:
It is necessary to determine the functions ¢(z) and f(t) using the information
Ul:=0 = Uo(x,9,1); 0 <t <T; (2,9)€ 5 C{(z,9,2): 2=0} (4)
on the oscillation regime of the observation surface z = 0.

Solution of this problem will be sought as the minimum point of the
following data misfit functional:
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T
[c*(2)] = f dt / {Uo(z,9,1) - Ble*(2), f(D)|(=,y,t)} dady,  (5)
0 b

where B[c?(z), f(t)] is the operator, transforming the functions c(z) and
f(t) into the solution of the direct problem (1)—(3) at z = 0 (wave field on
the set S).

2. Semi-analytical method, described in [7], was chosen for the solution of
the direct problem (1)—(3).

Using this method, the initial statement in (1)-(4) will be rewritten in
the following form:

d*U
:{2,7 = V2U, (6)
dUv
dz )0 = F(w)'w (7

where ’
V2 =k - Wl (z2), F(w)= /f(t) exp(—iwt)dt,
0

and for the unique solution it is supposed that the principle of limiting
absorption is fulfilled, i.e., «

Uz, k,w) = ]ir_[F_10 U(z,k,w — i),

where U(z,k,w —ic) — 0 as z — oo.

As it was shown in [1], realization of the search process of the minimum
point of the data misfit functional in the frequency range (k,w) enables con-
siderable reduction of computational resources, necessary for the multiple
solution of the direct problem. Moreover, it is possible to make detailed
analysis of spectra of the wave fields at each step of calculations.

In this connection, assuming that the recording time T and the size
of the observation domain § on the free surface are sufficiently large, we
rewrite the functional (5) in the equivalent form

wa ko
¥’ ()] = [ do [ Uok,0) - Bie?(), F@(k o) kak,  (8)
wi k1

where (wy,w2) and (ky, k2) are time and space frequency ranges, determined
- by the spectral composition of the sounding signal F(w) and the size of
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the observation domain §. B[n?(z), F (w)] is the operator transforming
the functions n?(2) = ¢=2(2) (¢(z) is current wave propagation velocity)
and F(w) (spectrum of the sounding signal) into the solution of the direct
problem (6), (7) at z = 0.

3. The set of functions {n?(2), F(w)}, where

0<é6<n’(z) SN <oo, limn?(z)= na,
Z—00

n?*(z) — nk € Ly(0,c) N (0, 00),
F(w) € Ly(wy,wq),
will be called the set of models M. .
Image of the set M under the action of the operator B will be called
the set of acceptable data D (D = B(M)).

After introducing scalar products on M and D, the data misfit func-
tional (8) can be rewritten in the following form:

B[n’(2), F(w)] = (Uo - Bln’(2), F(w)], Us — B[n*(2), F(w)]) .

Using the method of the conjugate Green function [8] we obtain ex-
pressions for the gradients of the data misfit functional (8) over velocity
and impulse:

wy

V28[n?(2), F(w)](£) = —2Re / ( + ie)2F(w)dw
b B (9)
X / [Uolk,w) = Blni(2), Fw))(k,0)] G2(€, k,w)kdk,
k1
VEd[n(2), Fw))(6) =
kay
—9Re / [Ualk,) = Bl (=), Pk, )] GLe, kyw)hak
ki (10)

ko
—%-Im / [Uo(k,w) - B[nz(z),F(w)](k,w)] G(€, k,w)kdk,
ke

where G(&, k,w) is the solution of the problem (6), (7) at F(w) = 1.

4. First-order optimization methods of descent were used for the realization
of the search process of the minimum point of the data misfit functional:
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a) method of steepest descent (for the impulse spectrum):

Fi1(w) = Fj(w) — a;Vp@[n?(2), Fj(w)],
aj = argg;_ig $ [Fj(w) — aVE®[n®(2), Fi(w)]] ;

b) method of conjugate gradients (for velocity):

n}41(2) = ni(2) — a;Pj(2),

— H 2 .
a; = a,rggl?{g ® [n}(z) - aP;(2)],

Po(z) = Vi@ [nd(2)], Pi(z) = Vi [nd(2)] — B;Pi(2), j > 1,
B; = (Vao[n}(2)], VA®[n}_,(2)] — VE@[n3(2)]).

The step «@; in the both methods was chosen using the method of “golden
section”.

' These methods proved themselves to be very efficient in the solution of

a wide range of problems. :

Program package GEOMIN [9] was used for the calculations. Program
blocks were written for it that make it possible to organize the iterative
process of simultaneous determination of the sounding signal form and wave
propagation velocity in a vertically-inhomogeneous medium.

The chosen velocity model of the medium is shown in Figure 1. The
impulse in the spectral domain was given in the following form:

= [exP (- (Q_J%ﬁ)z) rexp (- (Lfr?d)z)] (11)
X exp(—i-1.75w/ f). '

Initial approximation for the impulse was chosen to be zero and for the
velocity it was chosen in the form of the linear function (Figure 1).

All calculations were made for the time frequency range from 10 to
40 Hz, typical for seismic prospecting,

The method, described in [1], was used, i.e., space frequency ranges
were chosen that provide the best convergence of the iterative process to
the minimum point of the data misfit functional.

The first approximation for the vélocity and impulse is shown in Fig-
ures 2-4. The final results of calculations are shown in Figures 5-7.
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Figure 4. Imaginary part of the wavelet spectrum’
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Figure 7. Imaginary part of the wavelet spectrum
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