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Numerical analysis of stochastic
auto-oscillating systems*

T.A. Averina, S.S. Artemiev, H. Schurz

The paper considers the questions of the numerical analysis of stochastic auto-oscillating

systems. The low computer costs variable stepsize algorithms was.constructed for solving
_the non-linear stochastic differential equations. There are given results of numerical

experiments obtained with the help of the dialogue system “Dynamics and Control”.

1. Introduction

. In recent years the chaotic oscillations in dynamic systems of different na-
‘ture have raised considerable interest among physicists and mathematicians
-[1, 2]. Since the determinate chaos is observed in the non-linear systems
of the Ordinary Differential Equations (ODEs) when their dimension is
N > 3, obviously, the role of numerical simulation in analyzing ODEs is
rising. Using the classical Runge-Kutta methods of the 4-th order for nu-
merical solution of the auto-oscillating ODEs with a constant integration
step may lead to quite improper conclusions about properties of the solu-
tion ocsillations of ODEs. The complicated non-regular behaviour of the
solution trajectories of such ODEs requires the compulsory presence the
estimation of the error of the numerical solution and the procedure of the
automatic choice of the integration stepsize in the numerical algorithm. A
number of highly effective variable stepsize algorithms for solving ODEs
have been constructed by the present time [3, 4].

Random fluctuations affecting the auto-oscillation systems may have
principal significance, because they may determine the type of newly es-
tablished oscillations [2]. Numerical simulation of the oscillating ODEs
under the influence of random fluctuations is reduced to statistical sim-
ulation of the solution trajectories of the system of non-linear Stochastic
Differential Equations (SDEs). As in the determinate case, variable step-
size algorithms for numerical solution of oscillating SDEs are also required.

*Supported by the Russian Foundation of Fundamental Research under Grant
94-01-00074.
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The existing variable stepsize algorithm is based on the imbedded 5- and
6-stage generalized Runge-Kutta methods [5]. It is intended for solving
problems of the optimal control, where usually there is no need in the
simulation of the large number of trajectories. However, for obtaining dif-
ferent probabilistic characteristics of stochastical oscillations the simulation
of the large number of trajectories is needed, but it is a time-consuming
task. Therefore, the variable stepsize algorithms for solving the stochastical
oscillations systems must require low computer costs and in the proposed
paper we will construct the generalized 3-stage Runge-Kutta method as the
basis for low computer cost variable stepsize algorithms for solving SDEs.
The main demand for this algorithm is to provide the possibility of simulat-
ing the oscillating trajectories with not high accuracy and with the stable
integration stepsize.

Using the interaction system “Dynamics and Control” including the
constructed variable stepsize algorithm, numerical experiments on different
test SDEs were carried out.

2. Strange attractors, bifurcation, phase
transitions

Consider a system of ODEs in the form:

'dz_(tt) = f(ty(t)p); to St < tena (1)
y(to) = vo,

where f is N-dimensional vector function, p = (g1,..., k) is a vector of
real parameters. Throughout the paper we assume that system (1) for
a certain p is auto-oscillating, i.e., it has a limit cicle. The limit cicle
is a particular case of the attractor — a bounded attractive limit set. The
attractor which has the non-periodic auto-oscillating mode is called strange.
Only the auto-oscilating system of N > 3 dimension can have a strange
attractor. The classical example of the system of SDE’s with a strange
attractor is the Lorence system :

dyi(t)
7o -y — v2),
dys(t .
iﬁ? = pot1 — Y2 = Ni¥s, (2)
dya(t)

g - Havs + v192-
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With p continuously changing along some curve ¥ in the space of pa-
rameters it can be appear that in passing some points on this curve the
qualitative rebuilding of the phase portrait takes place. Such values of
parameters are called points of bifurcation of the phase portrait, and this
phenomenon is said to be the bifurcation. So u* is the point of bifurcation
if in an arbitrary small vicinity there are points with qualitatively different
phase portraits. The transition from one phase portrait to another with
changing the vector of parameters p is called the phase transition. The bi-
furcation of the strange attractor can exist as phase transition of the types
“chaos-chaos” or “chaos-order”.

Any movement of real dynamical objects takes place under the influence
of random fluctuations. The role of fluctuations gains special importance
near the points of bifurcation when even small fluctuations of parameters
or exterior noise can initiate various phase transitions. The investigation
of influences of random disturbances on a dynamic system usually reduces
to the analysis of SDEs

dy(t) = .f(t’ y(t), p)dt +o(t, y(t))dw(t), (3)

where o(t,y) is a matrix function of N x M- dimension, w(-) is M- di-
mensional standard Wiener’s process. The solution of SDEs has such prob-
abilistic characteristics as mean, the matrix of covariance, the function
of correlation, the probability distribution density function. For station-
ary ergodic random processes the spectral density is also the probabilistic
characteristics.

3. Variable stepsize algorithm

Let the s-stage Runge-Kutta. method for solving ODEs (1) has the form:

I ]
Yntl = Un + Zpikis (4)
=1
i-1
ki = hf(ta +cihyyn + ) Bijkjnm), i=1,....s,
i=1
i=1
ﬁ10=0: ci::Zﬂl'j: i=21'--53)
i=1

where p;, 3; ; are the coefficients of this method, y, is a numerical solution
at the mesh node t,, h is the integration step at the mesh node t,. It
can be generalized for the solution of SDEs in the sense of Ito (3) in the
following way:
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Yngl = Yn + Zpiki + \/]—w'(tm yn)‘:m (5)

i=1

where (, are M-dimensional random vector of independent standard Gaus-
sian components. More detailed description of the various families of nu-
merical methods for solving SDEs may be found, for example, in. (6,7,8].

The Taylor expansion of the numerical solution (5) in the neighbour-
hood of the point ¢, on a uniform mesh has the form:

Ynt1 = Yn + \/Ea(tm 'yn)Cn + hf(tn; Yn, J”) + C(h), (6)

and for the moments of the remainder term C(h) are valid the following
asymptotic behaviour:

(C(R)) = O(R?), (C*(R)) = O(h")

as h — 0. Here (-) denotes the mean operation. Comparing the Taylor
expansion (6) with the Taylor expansion of the exact solution of SDEs in
the sense of Ito [7] we see at once that numerical methods (5) have the
first order of convergence in the meansquare for arbitrary SDEs and have
the second order — for SDEs with a constant matrix o.

The well-known imbedded Runge-Kutta—Fehlberg methods of the sec-
ond and third order for solving ODEs (1) have the form [4]:

1 . 1
Yntl = Yn + E(kl + ka4 4k3), Ynp1 =Ynt §(k1 + k2), (7)

kl = hf(tﬂaynnu')r
k? = hf(tn + hayn + klﬂ”)s

h 1
ks = hf(tn + 5 Yn + Z(kl +k2), 1),

where y,4; is a numerical solution at the point tn4, which is obtained by
the method of the 3-rd order, y;,, is a numerical solution at the point .41
which is obtained by the method of the second order. According to (5) the
following methods are the generalization (7) for solving SDEs in the sense
of Ito:

1
Yntl = Yn + E(kl + kg + 4k3) + Vho (tn, Yn)Cn,
. 1 ' (8)
Yn41 = Un + i(kl + kg) + \/Ed(tmyn)fn-

Variable stepsize algorithms automatically choose a stepsize so that the
local error of the methods should not exceed the given quantity e. The
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following choice procedure of the integration stepsize is used in the variable
stepsize algorithms for ODEs (1) based on methods (7) [4].

If h is the chosen initial step at the point t,, then yn41 and y,; are
calculated with this step. Then estimation of the error of the numerical
solution at the node ¢,4; is calculated by the formula:

N

* o , 1/2
b1 = (%f- Z (—-—*~———yn+l" 4 yn-H“)z) ) 9)

=1

where the scaling factor is equal to d; = max{1,|yn+1,i|;|¥n,il}. The ob-
tained estimation 8,43 is compared to €, which allows us to predict the
optimal stepsize

h

max{ry, min{ry, (22£2)1/3/r}}’

(10)

hnew =

where 7 = 0.9 is a guaranteed factor which is used for the estimation in
the nearest mesh node be admissible with high probability. The coefficient
of maximum increasing the step is set as r; = 0.1 and the coefficient of
minimum decreasing the step is set as ro = 5. The step from ¢, to t,41 is
assumed successful, if

"5n+1 < € (11)=

and for further calculation from the mesh node t,,4; to t,42 the integration
stepsize is chosen according to (10). If inequality (11) is untrue then the
return is done and the integration from the mesh node ¢, to t,41 is realized
with the integration stepsize hpew according to (10)

This procedure of the choice of the integration step is transferred to
solving SDEs in the sense of Ito (3) with inconsiderable change: instead of
inequality (11) the inequality

bny1 < Be (12)

is verified. The fluctuations of the numerical solution at the expense of the
diffusion term in the error estimation (9) are not taken into account, as

1
Ynt1 — y:..;-] = *5(1’01 + ko — 2k3).

Method (7) can be generalized for the solution of SDEs in the sense of
Stratonovich in the following way:
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1
Yntl = Un + E("l + k2 + 4k3) + Vh(2G3 — G1)(n, (13)
Gl = a(tn'.- yn)’
6 1
Gy = O‘(tn,yn + ‘5*’@1 + 501‘/’_1Cn)a

h 1 1
Gz = U(tn + 2 Un + E(kl + k2) + ﬂ(Gl + 56'2)‘/{’_"(11),

where k; are the same as in (7). This numerical methods (13) have the
first order of convergence in the meansquare for arbitrary SDEs and have
the second order — for SDEs with a constant matrix ¢. The procedure
of the estimation of the error and the choice of the integration step for
solving SDEs in the sense of Ito is transferred to solving SDEs in the sense
of Stratonovich without change.

4. Models and numerical experiments

Numerical experiments were made on PC/AT 486DX-2 using the Dialogue
System (DS) “Dynamics and Control”. It is worked out at the. Computing
Center of Sibirian Division of the Russian Academy of Sciences, Nonosi-
birsk, Russia. It is intended for numerical experiments when solving the
problems of analysis and synthesis of automatic control of dynamical ob-
jects.

The DS has the following algorithms of statistical simulation of the
solution of SDE:

¢ the Euler-Maruyama method for SDEs in the sense of Ito;

o the generalized two-stage Runge-Kutta method for SDEs in the
sense of Stratonovich;

o the generalized one-stage Rosenbrock type methods for SDEs in the
sense of Ito;

e the generalized two-stage Rosenbrock type method for SDEs in the
sense of Ito and Stratonovich;

o the Mil’shtein method for SDEs in the sense of Ito with single noise;
o the Platen method for SDEs in the sense of Ito with single noise;

¢ the Newton methods for SDEs in the sense of Ito and Stratonovich
with single noise;

e two variable step algorithms for SDEs in the sense of Ito and
Stratonovich.
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The DS allows one to evaluate the following functionals of SDEs solutions:

e mean;

e covariance matrix;

e correlation function of a required component of the solution;

o distribution density of a required component of the solution;

e spectral density of a required component of the solution;

e joint distribution density of two required components of the solution;

¢ two-dimensional distribution density of a required component of the
solution at two required grid points.

Numerical tests of the constructed algorithm of the variable step were
conducted for stochastic dynamical systems with strange attractors. A
preliminary attempt was made to calculate such systems with the heip of
various numerical methods with the constant step failed because of the
overflow even by using veryv small stepsizes.

All examples given bellow are taken from [1, 2]. Each ODEs was solved
by the algorithm of the variable step RKF45 constructed on the basis of the
imbedded 5-and 6-stage Runge-Kutta-Fehlberg methods [3]. Parameters
of ODEs are chosen so that the solution of the system has complex non-
regular oscillations. Then the solution of SDEs in the sense of Ito obtained
from ODEs with the “noising™ parameters was simulated with the help
of the constructed algorithin of the variable step. In all the examples
the initial value of SDEs solution was the normal random vector with
independent components, having the same variance D = 0.01, and the
demanded accuracy of calculations was equal to ¢ = 10™3. Main objectives
of the numerical experiments are to demonstrate the possibility of the
constructed variable step algorithm to simulate the SDEs solution with
complex oscillating character and to show what happens with SDEs solution
if parameters of the system start to “noise”.

Example 1. Auto-oscillations in the generator with inertial non-linearity
are: C
i (1) L
———— = Y+ HY Y Y
7 YT H1Y1 Ny

Sed -1 (14)

— = pal=ya + (0¥,

where \(y) is the Heviside function:
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(¥) = 1, at y>0,
X= 0, at y<0.

The change of a phase portrait at the account of high intensity of the noise
of the parameters u can be observed in Figures 1 and 2.

B vi
24 16 08 0 08 16 24 32 4

Figure

Figure 2. Phase trajectory (yi,y2) at g3 = 1.09+ 0.2-4;"11, p2 =09+ 0.2%1

One trajectory of the SDEs solution in the interval [0,200] on the grid
having 2000 nodes was simulated. The number of the algorithm steps is
equal to 2346 at the inessential noise and 2412 — at the intensive noise.
There were not fixed any wrongly predicted sizes of the integration step.
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Figure 3 presents a graph of evaluating the spectral density of the compo-
nent y; of the SDEs solution (14), when

_ dw1 _ dwg
p1 = 1.4540.01 o M= 0.3+ 0.01 T

At such parameters the SDEs has a strange attractor and continuous spec-
trum of the solution.

0.6 -
1
0.4 \/

0 . ., i , T
03 0.6 0.9 12 15 18 21 24

Figure 3. Spectral density of the first component of the solution (14)

Example 2. A system of the Lorenz equations (2) is a simple three-mode
model of the convective turbulence. Assume that in system (2) the param-
eters py = 10, pz = g, and the parameter py is “noising”.

Y3

-
e
w
FS
“
™
-
oo
.
15
=
o

Figure 4. Phase trajectory (y1,ys) at inessential noise
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In this example high intensity of the noise of the parameter p; brings
about the qualitative change of the phase portrait. Figure 4 shows the
phase trajectory (y1,ys) of the SDEs solution (2) at ps = 18+0.04%-5'tl, and
Figure 5 - at py = 18+ 0.4%52.

Y3

0 T Y1
5 & % < 3 06 3 & % n

Figure 5. Phase trajectory (yi.us) at the intensive noise

As is seen, SDEs (2) has a regular attractor at the inessential noise
and a strange attractor at the intensive noise. One trajectory of tho SDEs
solution in the interval [0,100] on the grid having 2000 nodes was simulated.
The number of the algorithm steps is equal to 2330 at the inessential
noise and 4603 — at the intensive noise. There were not fixed any wrougly
predicted sizes of the integration step.

Example 3. A system of the Rossler unilions

dy (1

—yﬁlfﬁ) = —Y2 ~ Uas

dy,(t

duill) - y1 + iy, (15)
dt

dys(t

ﬁyr’;:_‘) = py+ hys — mal

describes a hypothetic chemical reaction. vignre 6 presents the phase tra-
jectory (u;,y3) of the ODEs sclutioun (15) at py = 0.2, yry = 0.2, ju3 = 2.83.
Figure 7 presents a graph of the joint deusity of the first and the second
components of the SDEs solution (15) with the following noising parame-
ters:

dun du, dwsy
=0.2+001l—— 5 = 0. 01—, = 2.8. gd—.
uy =0.24+0.01 R py = 0.24+6.0 T B3 2834—01({1
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' f‘igﬁre 7. Graph of the joint density

The estimation of the joint density is obtained along one trajectory of
the SDEs solution in the interval [0,20000] on the grid having 2% 10° nodes.
The number of the algorithm steps is equal to 266750. There were not fixed
any wrongly predicted sizes of the integration step. With increasing the
intensity of the noise of parameters in the algorithm, the integration step
size can decrease up to the computer zero, and simulation of the problem
terminates with the message: “The demanded accuracy of computation is
not attained”. ' _

Figure 8 presents a graph of the estimation of the spectral density of
the component y; of SDEs solution at '

d'w1 d’UJ2 d’w:;
#1 = 0.3+ 0.001 0 M= 0.4+ O.OOIE—, 3 =85+ 0.00I—di——.

With these parameters SDEs (15) has a strange attractor.
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Figure 8. Spectral density

Example 4. Two connected brusselators

dyq(t

Lc}t(_) = p3 — 5.56y; + yfya + p2(y2 — 1),

dya(t |

%() = pz — 3.3083}3 + yqu + .u'2(yl - y2)1

a (16)
yst = 4.563}1 - yfys +F2(y4 “.y3)$ o

dya(t 3

y;—t() = 2.308y2 — Y394 + p2(¥s - ¥a) )

L4

describe concentration oscillations of responding substances in a chemical
reaction. At constant parameters yu; = 1.6, go = 0.125, uz = 0.555 the
phase trajectory (y2,y4) of the SDEs solution (16) is of the form presented
in Figure 9. ©

Figure 10 shows for component y; of the SDEs solution (16) a graph
of estimation of the correlation function R(t,t + 7) at the point ¢ = 10,
obtained at the following noising parameters: -

d
b =16401% 4 =0125+ 0192

d’UJ3
= p3 = 0.555+0.1—2.

dt’ d

The correlation function estimation is obtained by the simulation of an
ensemble of 100 trajectories of the SDEs solution (16) in the interval [0,20]
on the grid having 200 nodes. The total number of steps of the algorithm
is equal to 33563. 21 wrongly predicted integration step sizes were fixed in
the course of computation. '
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Figure 10. Graph of the correlation function

Example . A seven-dimensiomal discrete model of the Navier-Stokes equa-
tion, as a system of the Lorenz equations, describes the convective turbu-
lence: ‘ '

'd, . :
ydl—t() = =2y + p1(y293 + yays),

~dyo(t
“l;t(-—)‘ = =92 + pa(v1y3 + Ye¥7),

dys(t
__!f_;t(_)_ = —5y3 + payyr — ™Voy1 92 + 16,
dy4(t)

praniaiat Tl Vou1s, (17)
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dys(t) _
ek Ys — HaY1Y4,
d
y;t(t) = —8ys — 4‘\/5'!}23,73
dyr(t
y;f ) = —5yr + V5y2y6 — HsY1Y3,

where pg is an analogy with Reinold’s number. Figure 11 presents the phase
trajectory (ys,ys) of the ODEs solution (17) at the following parameters:
i = 4V5, py = 3V5, p3 =9, pa = 3v5, ps = 9, pe = 360.

13
15

Figure 11. Phase trajectory (ys,ys)

Six noising parameters will be set in the following manner:

d d d
= 4V5 + 0.001%, po = 3V5+ 0.0017“:‘1, g3 =9+ 0.001%,
_ d'l,U4 dtD5 _ d'we
pa =3V6 + 0.001—*, ps=9+0.001—=, 4o =360+0.1-7

Figure 12 presents a graph of the joint density estimation of the third
and the fifth components of the SDEs solution (17), and Figure 13 - one-
dimensional density of the third component.

Density estimations are obtained along one trajectory of the SDEs so-
lution in the interval [0,500] on the grid having 2 x 10° nodes. There were
no difficulties in the numerical simulation. The number of steps of the
algorithm is equal to 379766, no wrongly predicted integration step size
was fixed. For testing the procedure of changing the integration step size,
similar calculations for the high noise intensity of parameters:

3 dwy _ dw, _ dws
H1 = 4‘\/5-{-01?, H2 = 3\/5-}- 0.1 i Ha = 9+0-IT’

dwg

d'tU4 _ d’i.v5 _
u4—3\/5+017, Hs —9+01?, Ue —~360+"‘E¥—
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Figure 12, Graph of the joint density
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Figure 13. Graph of the one-dimensional density

were carried out. The number of steps has increased up to 427068 and 22
wrongly predicted integration step sizes were fixed.

Example 6. A model of three-wave resonance interaction describes the
combinative light scattering in the dielectric:

dy (1)

o = mynt (st i),
dys(t '
_?_;f_) =yo + my + n(3ys — v3), (18)
dys(t
'"%35—) = —l2¥y3 — 2Y1Y2Y3-

Figure 14 presents the phase trajectory (y2,ys) of the SDEs solution (18)
for the parameters: u; = 1.15, p; = 2.52.
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Y3
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Figure 14. Phase trajectory (yz,ya)

Figure 15 presents a graph of the integral curve y1(t) of the SDEs
solution (18) for the case of “weakly noising” parameters:
dw1 d’LU2

1 =1.154 0.000]E-, B2 = 2.52 + 0.001 —dt—,

T

0 3 6 % 120 B0 10 20

Figure 15. Graph of the integral curve y; () at the inessential noise

Figure 16 - for the case of “intensively noising” parameters:

d,'wl _ dtﬂz
—d"i—, H2 = 2.52+01 di B

Integral curves are obtained at the simulation of the trajectory of the SDEs
solution (18) in the interval [0,200] on the grid having 2000 nodes. The
number of steps of the algorithm at the inessential noise is equal to 3785.
At the intensive noise we failed to do simulation due to decreasing the
integration step size up to the computer zero.

p,] = 115+ 0.1
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Figure 16. Graph of the integral curve y;(t) at the intensive noise

Example 7. In a model of the ecological system “plunderer — victim”

dy(t) _ ny2 nMo
@ - P 21008y T T 0.080y
dya(t) Y1y
at - Mt TG0y 19)
dys(t) _ _ g Ys¥s Mo
dt H2¥s = 11 0.08y3 * 1+ 0.08My°
dya(t) _ Y3Y4
at - Rt 1008y

where My is the quantity of the biogenic element: My = 20—y~ —y3—y4,
11 and y3 are the biogenic contents in victims, y2 and y4 are the biogenic
contents in plunderers. Figure 17 presents the phase trajectory (ys,y4) of
the ODEs solution (19) at the following parameters: u; = 1, puo = 2.

Two noising parameters of the system will be given as follows:

duy
dt’

duwy

=1 . .
I + 0.1 7

p2=2+0.1
Figure 18 presents a graph of estimation of the correlation function
R(t,t 4+ ) of the third component of the SDEs solution (19).

Estimation of the correlation function is obtained at the simulation of
200 trajectories of the SDEs solution (19) on the interval [0,10] on the
grid with 80 nodes. The total number of steps of the algorithm is egual
to 38245. Three wrongly predicted integration step sizes were fixed in the
course of computation.
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Y4

Figure 18. Correlation function

Based on the results of numerical experiments we can come to the
conclusion of the high efficiency of the variable step algorithm as applied
to statistical simulation of auto-oscillating stochastic systems.
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