
Joint NCC & IIS Bull., Comp. Science, 18 (2002), 15–26
c© 2002 NCC Publisher

Some modifications of Sugiyama approach⋆

D. Baburin

We present a graph drawing algorithm that was developed for real-life call graphs,
data flows and class hierarchies. The algorithm is an extension of the hierarchical layout
method of Sugiyama [12]. The main difference is that we achieved an orthogonal layout
with the maximum number of edge bends equal to 2. For that purpose we have designed a
special algorithm for horizontal coordinate assignment and solved the task of minimizing
the number of orthogonal edge crossings between any pair of adjacent hierarchy levels.
We have also tried out a new heuristic approach for creation of an initial position of
nodes before starting a crossing reduction step of the algorithm. Finally, we provide some
experimental results and references to applications that already use our algorithm.

1. Introduction

This work has appeared in the development of the RescueWare system by
Relativity Technologies, Inc [8]. The system is designed for reengineering
of a real world COBOL, PL/1 and Natural systems. Different parts of the
system at all levels of abstraction needed a visual support to ease the user
perception of reengineered systems and their parts. To this end, a special
visual component BED (Boxes and Edges Diagram) has been designed.

The main part of this work describes a graph drawing algorithm that has
been developed for automatic drawing of graphs in BED component. The
algorithm is suited to draw large, directed, dense graphs with multiedges,
labels and nodes of nonzero size. The layout emphasizes a uniform edge
orientation and allows the grouping of nodes into the levels of a hierarchy.
In reengineering such graphs are call graphs, data flows, class hierarchies,
etc.

Hierarchical layout method of Sugiyama [12] has been modified and ex-
tended to fit our needs. The main difference was that we achieved an or-
thogonal layout with the maximum number of edge bends equal to 2. For
that purpose we have designed a special algorithm for horizontal coordinate
assignment and solved a task of minimizing the number of orthogonal edge
crossings between any pair of adjusted levels of the hierarchy. Also a new
heuristic was tried to create an initial position of nodes before starting a
crossing reduction step of the algorithm.

⋆Supported by the Russian Foundation for Basic Research under Grant No 01-01-794
and the Ministry on Education of Russia.



16 D. Baburin

Figure 1. Graphical potentialities of the BED component

In the next section we would give some functional descriptions of the
visual and programming interface of the BED component. Section 3 deals
with the graph drawing algorithm that we use to place graphs and dia-
grams. The last section sketches some experimental results and references
to applications that use our algorithm.

2. BED

A practical aspect of program visualization does not allow us to be limited
just by visualization of a graphical structure. Some extended information
should also be displayed. Studies like [3] and [4] show what kind of extended
information is desired for visualization of entity relationship diagrams and
different hierarchies. Work with these graphical structures requires boxes
of different sizes, label placement mechanism, and several different types of
edge ends. Also we need to take into account that diagrams could have sev-
eral edges between two vertices and edges that connect a vertex with itself.
We have considered all these requirements while designing our component.
In Figure 1 you can see the variety of graphical potentialities implemented
in the BED component.

The BED component has one constraint on the form of edges between
vertices. Edges are drawn as polygonal lines with labels and marks on them,



Some modifications of Sugiyama approach 17

they could be orthogonal or nonorthogonal. But in any case the form of an
edge is defined by two fixed points. The geometry of polygonal lines could be
uniquely reconstructed by positions of these two points according to some
internal rules and the edge type. Figure 2 shows what kind of edges could
be drawn in our component. Fixed points are displayed by bold dots.

Figure 2. Edges in the BED component

We concentrate our work on the program analysis and transformation
rather than on visualization of arbitrary graphs and diagrams. So the main
requirement to the component was its extensibility and easiness of embed-
ding it into other environments and applications. In Windows, the most
adequate way to satisfy such a requirement is to use a mechanism of Ac-
tiveX controls.

In several cases, a printable document should be provided as a result
of work with the component. To do this, we implemented procedures of
image storing into graphical formats EMF (Enhanced Metafile) and BMP
(Windows Bitmap).

There are two typical scenarios of forming the structure of our diagram.
In the first case the graph structure is filled through the programming in-
terface and then it could be manually edited by the user. For the second
case we designed a special XML format to store information that is required
for reconstruction of the internal state of the diagram. This gives a user the
possibility to create additional methods of diagram processing by using such
XML files as interface to the component. One of these external methods is
the graph drawing algorithm discussed in the next sections.

3. Graph drawing algorithm

In a number of works [9–11], Sander presents his methods and heuristics on
how to combine hierarchical approach with the methods of orthogonal graph
drawing and Manhattan conventions. In our work we develop and extend
these ideas. The main difference is that we have achieved an orthogonal
layout with the maximum number of edge bends equal to two as compared
to four bends in Sander’s works. We have also solved the task of minimizing
the number of orthogonal edge crossings between any pair of adjacent levels



18 D. Baburin

of hierarchy and tried a new heuristic to find an initial position of all nodes
before starting the crossing reduction step of the algorithm.

Hierarchical approach is suited for drawing graphs in any direction: from
top to bottom and from left to right. We have chosen the left to right
direction according to the following argument. All vertices and edges in
graphs that do appear while reengineering contain some semantic informa-
tion that is depicted as the box and edge labels in the diagram. If layers in a
graph are directed from left to right, then most of the edges have horizontal
direction and this allows us to draw edge labels on them. It was also noticed
that most of the graphs in our processes have relatively small depths (the
length of the longest path). Being combined with a large width of boxes, this
fact makes horizontal direction more appropriate for creating compact and
balanced diagrams. So, in our work the coordinates X and Y were swapped
comparing to the usual description of this approach.

Now we will remind the basis of the hierarchical approach as described
in [4]. This approach consists of the following steps:

• The layer assignment step constructs a layered digraph where the ver-
tices of a graph G are assigned to the layers L1, , Lh, such that if (u, v)
is an edge with u ∈ Li and v ∈ Lj, then i < j. In the final drawing,
each vertex in the layer Li will have the x coordinate equal to i. Also
during this step, the dummy vertices are inserted along the edges that
span more than two layers so that each edge after that connects the
adjusted layers.

• The crossing reduction step produces the order for the vertices on each
layer. The order of the vertices on the layers determines the topology
of the final drawing and is chosen in such a way that the number of
crossings is kept as small as possible.

• The y-coordinate assignment assigns the final y coordinates to the ver-
tices while preserving the ordering computed in the crossing reduction
step. The edges are also positioned during this step.

In Figure 3, we present a part of a diagram constructed by our algorithm
to illustrate the further discussion.

3.1. Heuristic method for the crossing reduction step

The crossing reduction step considers the problem of drawing a layered di-
graph with a small number of edge crossings. The problem of minimizing
the number of edge crossings in a layered digraph is NP-complete, even if
there are only two layers. So a variety of heuristics has been used to reduce
the crossings. Surprisingly, but we did not find any studies that refer to the



Some modifications of Sugiyama approach 19

Figure 3. Sample layout produced by our algorithm. The graph has 40 vertices
and 60 edges

problem of finding a good initial order of vertices before applying different
iteration-based heuristics. So, we present a heuristic method that could be
used to form an initial ordering with a relatively small number of edge cross-
ings. Then this ordering could be improved by any of the known crossing
reduction heuristics, such as barycenter or median.

The main idea is a refinement of the tree-based initial ordering of nodes
in the layers presented in [6]. As an input, our heuristic takes the spanning
tree constructed during the layer assignment step or right after it. Then
it changes the order in which subtrees appear in this tree to minimize the
crossings that are formed by non-spanning edges. This heuristic is recursive
and is applied to each vertex to determine the order of its subtrees in a
spanning tree. The subtrees are ordered greedily according to the number
of edges connecting them to the left top and down neighbors.

Let V be a current vertex observed by our heuristic and Ti, where
i ∈ {1..p}, be its subtrees. The algorithm orders these subtrees by find-
ing the most appropriate subtree to place at each step. At each step the
algorithm places the best subtree with all subtrees that could be found re-
cursively inside of it. Let us assume that k subtrees are already placed and
the algorithm looks for the next subtree from the Ti set, where i ∈ {k+1..p}.
For this we calculate a balance for each unplaced subtree. The balance is the
number B1j −B2j , where B1j is the number of edges that connect this sub-
tree with a part of the graph that is already placed, and B2j is the number
of edges that connect vertices of this subtree with the rest of the graph. A
subtree with the maximal balance is chosen and is being placed next. After
that the algorithm recalculates balances of the residual subtrees.



20 D. Baburin

Figure 4. Placing of subtrees

The basis of this approach is that the higher balances correspond to cases
when there exist a lot of edges to a part of a graph that was already placed.
And if we place the subtrees bottom-up, then these edges would push this
subtree to be placed before the others.

The algorithm is kept being quadratic by introducing a special binary
ordering on the vertices that allows us to recalculate the subtree balances
quickly.

Figure 4 illustrates placing of subtrees T1, T2, T3 for a vertex V .

Step 1. None of subtrees are placed yet. Balance for T1: B11 − B21 =
1− 1 = 0, for T2: B12 −B22 = 0− 1 = −1, for T3: B13 −B23 = 0− 1 = −1.
T1 is chosen.

Step 2. T1 is already placed, choosing between T2 and T3. Balance for
T2: B12 −B22 = 1− 0 = 1, for T3: B13 −B23 = 0− 1 = −1. T2 is chosen. So,
the calculated order is T1, T2, T3.

3.2. The vertical coordinate assignment

Originally the step of the vertical coordinate assignment in a hierarchical
layout deals only with vertices and leaves the task of edge positioning to fur-
ther steps of the algorithm. In our work we divide the edge-positioning task
into two separate steps. The first step is performed along with the vertices
vertical coordinate assignment and each edge gets vertical coordinates of its



Some modifications of Sugiyama approach 21

horizontal segment at this step. And at the final edge-positioning step, the
vertical edge segments get their horizontal coordinates.

In our algorithm we introduce a notion of an edge width. Each edge has
an assigned width of some minimum value Wmin. The width could appear
to be greater than Wmin, if the edge has some label. The other reason for
having a greater width could be multi edges that are combined into one edge
at the preprocessor step of the algorithm. Later, when a drawing is made,
we draw all edges from such multi edge package in a space that was assigned
to this edge. This conversion allows us to draw parallel multi edges.

The concept of the edge width is also used in assigning vertical coordi-
nates to the vertices. Originally, at this step coordinates are assigned accord-
ing to some order generated at the previous step (while crossing reduction).
Then vertical coordinates are adjusted by some iteration process, like the
pendulum method. In our drawing algorithm we cannot use such technique
because it cannot assure that long edges consisting of dummy vertices are
drawn as straight lines. In [9], the method that draws segments of dummy
vertices in one horizontal line is presented. But this algorithm cannot be
applied together with our BED component, because it generates edges that
have at most four bends and only two bends are allowed by our component.

In our approach we are not assigning exact vertical coordinates to ver-
tices — instead of it we assign some vertical ranges. These ranges can be
bounded by some coordinates or can dynamically depend on the neighbor
ranges. After the range assignment for all layers, we are fixing the precise
coordinates by straightening the maximum amount of edges.

In the range assignment, we guarantee that all dummy vertices of one
chain would get the same vertical range. For this we traverse the hierarchy
from the layer n to layer 1 and for each nondummy vertex we form a sorted
list of edge ends that are entering this vertex and has a dummy vertex at
the other end. Such edges get a range of possible vertical coordinates that
are bound by the vertical coordinate of a box that is currently being placed.
The dummy vertices get ranges according to the ranges already assigned in
the previous layer.

Sometimes in this process the vertex coordinates interlace with coordi-
nates of dummies that got their predefined vertical range. In such cases the
interfering ranges are squeezed. And if such interlacing could not be elimi-
nated by this operation and the vertex could not be placed according to the
order defined at the previous step of the algorithm, then such an order is
adjusted and this vertex jumps over dummy vertices that took the required
space by their ranges.

In Figure 5, we show the example of range assignment for edges. While
placing the vertex V 3, all incoming edges were sorted and for edges from



22 D. Baburin

Figure 5. Range assignment for edges

dummy vertices (e2 and e3) the vertical range R1 was assigned. Then, when
the algorithm places the next level with vertices v1, d1, d3 and v2, it shrinks
the range R1 to a smaller range R2. Now the range bounds are defined by
vertical coordinates of vertices V 1 and V 2.

3.3. Positioning of edges

The problem of edge positioning is very similar to the well-known issue from
VLSI channel routing [13]. The task is to route orthogonal edges between
two levels of hierarchy when edge endpoints are fixed.

When we draw edges between two adjacent levels of hierarchy, we divide
the horizontal space between layers Vi and Vi+1 into Ki vertical levels that
would contain vertical segments of edges.

Let us say that the edges (U1,D1) and (U2,D2), where Ui and Di stand
for the vertical coordinates of their up and down ends accordingly, are po-

tentially crossing if there exists i ∈ {1, 2} such that Ui ∈ (U3−i,D3−i).
This potential crossing could be eliminated if there exists i ∈ 1, 2 such that
Ui ∈ (U3−i,D3−i) and Di < D3−i and if these edges follow the same vertical
direction. The relationship of potential crossings sets a partial order in the
set of edges.

It is clear that any pair of edges that are potentially crossing should be
drawn in different vertical segments. For eliminated crossings we need to use
the levels in a proper order to actually eliminate them. Elimination of all
such crossings would minimize the number of edge crossings for this pair of
adjusted levels of the hierarchy. The number of vertical levels should also be
minimized.



Some modifications of Sugiyama approach 23

In VLSI terminology, this channel routing problem is completely charac-
terized by the vertical constraint graph and the horizontal constraint graph.
The first graph constraints the order of vertical segments for edges that has
the same vertical coordinates of their ends. And the second graph restricts
two edges to be placed in one vertical segment if they do have a potential
crossing.

Figure 6. Edge crossings

Figure 6 illustrates three cases of edge crossings. All these cases corre-
spond to the relation of potential crossing because U2 ∈ (U1,D1). But only
in case (a) such potential crossing could be eliminated: U2 ∈ (U1,D1) and
D2 < D1 and both edges point upward. To do this, the vertical segment of
the edge [d2, u2] should be drawn to the right of the vertical segment of the
edge [d1, u1].

In our approach we solve the routing problem by constructing a supple-
mentary graph G′. We create a vertex of G′ for each edge in the original
graph and create an edge for each pair of edges that are potentially crossing.
An edge in a graph G′ is directed if the potential crossing presented by it
can be eliminated. The edge direction then shows what edge in the original
graph should be drawn first (the leftmost edge) to eliminate such crossing.

So, G′ is a horizontal constraint graph that is directed so to represent
the information of the vertical constraint graph. We do not have potential
doglegs in our case, so the vertical constraint graph becomes acyclic and
could be depicted as a partial order on the vertices of the horizontal con-
straint graph.

Now our edge routing problem could be formulated in terms of a coloring
problem for a supplementary graph G′. The vertices of G′ need to be colored
in a minimum number of colors so that any adjusted vertices would have
different colors. Also, all directed edges should point from vertices with
smaller color indices to vertices with larger color indices. If such a coloring



24 D. Baburin

scheme is found then we can draw edges in the original graph by assigning
vertical levels to colors in the increasing order.

It is known that the coloring problem is NP-hard, but some good linear
heuristics exist for it [5]. Our challenge was to adapt these heuristics for
directed graphs.

Figure 7. Supplementary graph construction

In Figure 7 we show how the task of edge positioning for the simple graph
is solved. 7(a) represents an initial ordering, with three potential crossings:
edges 1 and 2, 2 and 3, 3 and 4. Only one crossing could be eliminated —
between edges 1 and 2. These facts are depicted in the supplementary graph
G′ 7(b). To color G′, only two colors are needed: edges 1 and 3 get the
same color and edges 2 and 4 get the other one. Figure 7(c) shows the final
drawing with only two crossings and only two layers for vertical segments.

4. Conclusion

The first version of our algorithm was implemented in 2000 by means of
C++ and with the extensive use of STL. Then it was embedded into the
RescueWare system [8] and used there to place the routine call graphs, data
flows, and different kinds of the system diagrams. Our experience in using
it in this system is described in [2].

Experiments have shown that the algorithm can work with “real-world”
graphs. On PII-300 computer, it had placed any graph of less than 100
vertices in less than one second. Each thousand of vertices required from
10 to 20 seconds of additional run time. Actually graphs larger than one
hundred vertices were out of our interest due to other visualization aspects —
screen area, scale, labels, navigation, etc. Different methods were tried to



Some modifications of Sugiyama approach 25

ease the graph understanding at the level of a graphical component rather
than at the level of a placement algorithm [1].

In 2001 the graph drawing algorithm was provided with an interface that
enabled its usage in the Higres system [7].

An open question is how does the overall number of bends compare
with methods where the number of bends on a single edge can be arbitrary.
We also need to gather more accurately run-times and data on how our
initial subtree ordering improves the work of different heuristic methods for
crossing reduction step in Sugiyama approach.

Acknowledgements. We would like to acknowledge the work of M. Bulyonkov
and N. Filatkina as the authors of the BED component.

References

[1] Baburin D. E., Bulyonkov M. A., Emelianov P. G., Filatkina N. N. Visualizing
facilities in program reengineering // Programming and Computer Software. —
Interperiodica Publishing, 2001. — Vol. 27, N 2. — P. 69–77.

[2] Baburin D.E. Using graph based representations while reengineering. // Proc.
of Intern. Conf. on Software Maintenance and Reengineering, CSMR2002. —
Budapesht, 2002. — P. 203–206.

[3] Batini C., Talamo M., Tamassia R. Computer aided layout of entity-
relationship diagrams // J. of Systems and Software. — 1984. — Vol. 4. —
P. 163–173.

[4] Di Battista G., Eades P., Tamassia T., Tollis I.G. Algorithms for drawing
graphs: annotated bibliography // Comput. Geom. Theory Appl. — 1994. —
P. 235–282.

[5] Bulyonkova A.L, Aproximate algorithm of coloring for large graphs // Prob-
lems of Theoretical and System Programming. — Novosibirsk State Univer-
sity. — 1982. — P. 81–86 (in Russian).

[6] Gasner E.R., Koutsofios E., North S.C., Vo K.P. A technique for drawing
directed graphs // IEEE Transactions on Software Engineering. — 1993. —
Vol. 19, N 3. — P. 214–230.

[7] Lisitsyn I. A., Kasyanov V.N. Higres — visualization system for clustered
graphs and graph algorithms // Proc. of the Symposium on Graphdrawing,
GD’99. — Lect. Notes Comput. Sci. — 1999. — Vol. 1731. — P. 82–89.

[8] Relativity Technologies RescueWare system http://www.relativity.com

[9] Sander G. A fast heuristic for hierarchical mangattan layout // Proc. of
the Symposium on Graph Drawing, GD’95. — Lect. Notes Comput. Sci. —
1995. — Vol. 1027. — P. 447–458.



26 D. Baburin

[10] Sander G. Graph layout through the VCG tool // Proc. of the Symposium on
Graphdrawing, GD’94. — Lect. Notes Comput. Sci. — 1995. — Vol. 894. —
P. 194–205.

[11] Sander G. Graph layout for applications in compiler construction. 1996. —
(Tech. Rep./ Universitas des Saarlandes; N A/01/96).

[12] Sugiyama K., Tagawa S., Toda M. Methods for visual undertanding of hierar-
chical systems // IEEE Trans. Syst., Man and Cybern. — 1981. — Vol. 11,
N 2. — P. 109–125.

[13] Yoshimura T., Kuh E. Efficient algorithms for channel routing // IEEE
Trans. on Computer-Aided Design of Integrated Circuit and Syst. — 1982. —
Vol. CAD-1. — P. 25–35.


