Joint NCC & IIS Bull., Comp. Science, 11 (1999), 1-14
© 1999 NCC Publisher

A recursive parallel programming
language and its application to algebraic
computations®

Nikolay M. Badin German M. Brodskiy Valeriy A. Sokolov

This report presents an informal description of the GSTC language and some
methods of recursive parallel programming language which enable us to organize
parallelizing with the help of a set of basic structures (stencils). This makes it
possible to design effective recursive parallel programs and to create, on their basis,
some libraries of standard subprograms. The methods are intended, in particular,
for organization of algebraic computations and are illustrated by recursive parallel
programs for matrix multiplication.

1. Introduction

There are a number of approaches to the software development for sequen-
tial computer systems, a special place among them belongs to structured
programming (1, 4, 5]. The development of software for parallel computer
systems is much more complicated. The methods and means of program-
ming proposed in this report are applied under the following limitations:

1) a recursive parallel form of a program representation;

2) dynamic parallelizing;

3) homogeneity of the computer system structure.

Both in sequential and parallel systems, the recursive method of program-
ming is natural and convenient, it is very useful in designing program com-
plexes from top to bottom.

However, to write a program in the recursive parallel style is not sufficient
for its effective implementation. Such a parallel program should be written
so that overhead expenses of organizing the recursive procedure calls, the
generation and synchronization of parallel processes would be less than the
amount of effective computations connected with parallel processes. The de-
scription of a recursive parallel C (RPC) language and a number of effective
methods of recursive parallel programming are presented in [6]. Note that
while the principles of recursive programming for sequential computer sys-

*This work is supported by the INTAS-RFBR (grant No 95-0378)

2 N.Badin, G.Brodskiy, V.Sokolov

tems have been studied in detail [1, 3], the automation of recursive parallel
programming raises a number of problems.

First, there are some difficulties in writing library procedures for multi-
processor systems with two-level memory. They are associated with different
ways of data organization.

Second, in many cases modular programming for multiprocessor systems
allows us to obtain only sequential-parallel programs [7] which are sometimes
far from being the most effective. A simple example will make it clear. Let it
be required to write a recursive parallel program for multiplication of three
square matrices A, B and C of order N. It can be done by using two calls
of the library procedure for multiplication of two matrices: for calculation
of the matrix D = AB, and then DC = ABC. However, there is a more
effective program that uses cutting of the matrix A into horizontal layers 4;
of K x N dimension with the subsequent calculation of every product A;BC
on the corresponding processor [2].

Third, in the case of recursive parallel procedures there are no methods
similar to those of structured coding which permits one to obtain, from sim-
ple logic structures, programs convenient for testing, modifying and using.

Such research is actively being carried on at present. In particular, it is
possible to mention Standard Template Library (STL) of the Rogue Wave
company.

The article contains an informal description of some new methods for
solving the above mentioned problems of recursive parallel programming and
the GSTC (Generalized STencil C) language which supports these methods.
Their capabilities are illustrated by an example of recursive parallel pro-
grams of matrix multiplication. Now a compiler for the GSTC language is
under development, but its description is beyond the scope of the article.

The reader is assumed to be familiar with the basic operators of the C
language.

2. Preliminaries

This section contains a description of some RPC language constructions [6],
that will be further required.

A recursive parallel C language (RPC) is a subset of the standard C lan-
guage, extended by special system calls (macrocommands). The expression
"recursive parallel” derives from the corresponding programming style. The
language satisfies the following requirements:

- it is a parallel programming language oriented to the architecture of a
virtual multiprocessor system with dynamic parallelizing (a recursive paral-
lel machine — RPM);

— a parallel program in the RPC language can be translated by the

A recursive parallel programming language 3

standard C compiler both to a parallel mode executed by RPM, and to a
sequential code executed by a usual sequential computer;

— it can be used to study parallelism of programs (or their models), as
well as the efficiency of RPM executing the programs (or their models).

The RPC language, as a subset of the standard C language, is a result
of some restrictions. Many of them are due to the necessity of considering
in the program the specific organization of a memory system which consists
of local memory of the processors and the common shared memory.

The RPC language is based on parallel procedures described in a special
way. The exchange of data with a procedure occurs through a particular
block of parameters. All parallel processes generated by a parallel proce-
dure should be synchronized at least by one operator Wait(). The parallel
operators are the calls of a parallel procedure, the operators of access to
the common shared memory, and some others that use the common system
resources.

One of the RPC characteristics is a block of parameters containing local
data for their transmission from a calling procedure to the called one, and
vice versa. For the procedure parameter block with name pname, the cor-
responding data structure type named Bpname is declared. The name of a
local variable of a given type (the name of a parameter block) is declared
in the calling procedure. This name provides access to the elements of the
parameter block. The access to the elements of the parameter block in a
child procedure can be done only by the command P_(elem), where elem is
the name of a structure element. An example of a recursive parallel program
for summing array elements given below will make it clear. First, however,
we present some more macrocommands of the RPC language.

The command of the title declaration for a parallel procedure is:

Parallel(pname);

where pname is the procedure name. It is used as the procedure title.
The command of a parallel procedure call is :

P_call(pname, param);

where pname is the called procedure name; param is the parameter block
name with the type Bpname. As a result of calling a parallel procedure by
P_Call(), a potentially migratory process is generated which can be run at
any processor.

The command for synchronization of parallel processes is:

W ait();

It suspends the execution of the procedure to wait for the completion of
parallel processes started in the given procedure before executing Wait().

4 N.Badin, G.Brodskiy, V.Sokolov

Let us consider a recursive parallel program in RPC for calculating the
sum s = Y7 a[i] of array elements a[0],a[l],...,a[n — 1]. A well-known
algorithm is used: calculate the sum of the first n/2 elements (that is, the
integer part of n/2) and, independently, the sum of the rest n—n/2 elements.
The solution will be the sum of two partial results. Similarly we treat each
of two "halves” of calculations, etc. The calculation of the sum of k array
elements will be divided into two independent parts only if k£ > vn, where"
vn is the procedure parameter, by varying which it is possible to change
the volume of calculations on "leaves” of the recursion tree and to choose
experimentally the optimum value of vn. Now we can present the text of
the program.

struct BSum /* The structure of a parameter blockx/
{ int n,on; float s,*a; }
Parallel(Sum); { /*The declaration of the parallel procedure Sumx/

parameter blocksx/
/*for recursive calls Sumx/

int 1,
if(P-(n)>P_(vn)) { /*The condition of recursive bootstrappingx/
bpl.n=P_(n)/%; /xThe preparation of parametersx/
bpl.un=P_(vn); /*of the first recursive %/
bpl.a=P.(a); /xcall */
P_Call(Sum,bpl1); /*The designation of the first processx/
bp2.n=P_(n)-bpl.n; /*The preparation of parameters*/
bp2.vn=P_(vn); /*of the second recursive */
bp2.a=bpl.a+bpl.n; /* call */
P_Call(Sum,bp2); /*The designation of the second processx/
Wait(); /xSynchronization of the processx/
P_(s)=bpl.s+bp2.s; /*The "reverse” of the recursive ezecutionx/
else {
P_(s)=0; /* Computation on %/
for(i = 0;i < nji++) /xthe “leaf” of the treex/
P_(s)=P_(s)+P_(afi]); /xof the recursion x/

} /* end of Parallel */

3. Skeletons, stencils and the language STC

In this section the STC (STencil C) language is described. It is a subset of
the GSTC language considered in Section 4.

The STC language is the RPC language extended with some special
constructions to describe a work layout for each specific procedure. The

A recursive parallel programming language 5

work layout for a particular procedure is agreed to be called the skeleton
of the procedure. The STC language provides for the organization of the
procedure skeleton as a sequence of stencils, that is, elementary modes of
dividing work into some parts. A set of stencils recommended for use is
included into the library of standard programs. Stencils can be parallel and
sequential. The cause of using a sequential stencil, that is, an elementary
mode of work layout not connected with parallelizing, can be, for instance,
a limited volume of the local processor memory in a computer system with
two-level memory organization. The sequential stencils are not considered
in this report, so further the skeleton of a procedure can be understood as a
way of recursive rolling, and the stencil, as the elementary way of recursive
rolling.

To explain how the procedure skeleton, as a sequence of stencils, is or-
ganized, we consider the following example. Let it be required to write a
recursive parallel program for multiplication of two square matrices A and
B of order N. First, the matrix 4 can be slit into horizontal layers A; of
size K * N by recursive rolling described by the first stencil. On the "leaf” of
the recursion tree obtained for calculation of the product A;B, it is possible,
using the recursion again, to cut the matrix B into vertical layers Bj; of size
N * L, which is described by the second stencil. So, the procedure skeleton,
being the sequence of two stencils, divides the calculation of the product AB
into some parts, each of which is connected with the calculation of a product
A;iB; and is intended, in general, to work in its own processor module.

The STC language is a language of macrodefinition, and each stencil is
a macrodefinition (macro) with parameters. Here the notion of a macro has
more general meaning than is usually accepted. The STC language allows
us:

1) to declare macros with parameters while some other macro can be
used as a parameter;

2) to use the nesting of macros;

3) to declare a macro in the text both before and after its call.

Every STC command consists of three parts. It is obligatory for the
first symbol to be §. It is followed by a key word defining the type of
the command. Finally, depending on the key word, there are the concrete
contents of the command. The commands will be considered below. Note
that the symbol $§ is used in the STC language, its extension GSTC, and
some other cases. In particular, if $ stands before the macro name, it means
that the macro’s body is substituted for it here. As an example of a parallel
stencil, consider the stencil parvec.

$stencil parvec(n,vn, Nameproc,bl1,bl2,bpil, bpi2, M erger,Leaf) [*1x/
if(P-(n)>P_(on)) { Jx24/
blI.n:P_(n)/E; /*3*/

bll.vn=P_(vn); [xdx/

6 N.Badin, G.Brodskiy, V.Sokolov

$bpil; [*%5%/
P_Call(Nameproc,bll); [x6%/
bl2.n=P_(n)-bil.n; [*¥Tx/
bi2.vn=P_{vn); [%8%/
$bpi2; [*9%/
P_Call(Nameproc,bl2); /#10%/
Wait(); [*11xf
$Merger; [¥12x/
} /*13x/
else { $Leaf } [*¥14x/
} /* end of stencil */ /*15%/

Here the command $stencil of the STC language means the declaration of
a stencil with the name parvec and parameters n,vn, etc. The parameter n
corresponds to the dimension of the vector, with which some operations will
be done (for example, summing its elements), vn is the maximum dimension
of a subvector that cannot be further divided. The parameter Nameproc is
the name of the called parallel procedure. Further there are the names of
parameter blocks bl1 and b2 which correspond to the first and the second
recursive calls Nameproc. A number of parameters are declared here in
the stencil (lines 3,4,7,8), the definitions of other parameters depend on a
problem and are being set by a programmer with the macros bpil and bpi2.
A macro Merger declares the "reverse execution” steps of the recursion,
that is, merging of results obtained by parallel processes. The name Leaf
belongs to a macro containing actions on a "leaf”, when bootstrap of the
recursion has been finished. The macros Merger and Leaf, as well as bpil
and bpi2, should be defined by the programmer.

To declare a macro in the STC language, the command $def ... $endd is
used, and to include a library stencil, the command $ins. More precisely, to
call the first library stencil from a sequence of stencils forming the procedure
skeleton, $ins stencill is used, to call the second stencil, $ins stencil2 is
used and so on. Now we are able to write a program of summing the array
elements not only in the RPC language, but in the STC language too.

struct BSum /*The structure of a parameter blocks/
{ int n,vn; float s,xa; }

Parallel(Sum); { /*The declaration of the parallel procedure Sumx/

struct BSum bpl,bp2; /*The declaration of parameter blocksx/

/*for recursive calls of Sumx/

int i;

$ins stencil parvec(n,vn,Sum,bp1,bp2, BPI1,BPI2, MERG,LEAF)

$def BPI1 /*The definition of the macros BPI1+/
bpl.a=P_(a);

$endd

A recursive parallel programming language 7

$def BPI2 /*The definition of the macros BPI2/
bp2.a=bpl.a+bpl.n;

Sendd

$def MERG /*The definition of the macros MERGx/
P_(s)=bpl.s+bp2.s;

$endd

$def LEAF /*The definition of the macros LEAFx/
P_(s)=0;
Jor(i =0;i < nji++)

P_(s)=P_(s)+P_(afi));
$endd
} /% end of Parallel */

4. Generalized procedures, the GSTC language
and recursive parallel programs for
multiplication of two matrices

The idea of using macrodefinitions received its further development in the
GSTC language, an extension of the STC language. The GSTC language
uses another type of macros with parameters — generalized procedures. A
library of standard programs is formed of stencils and generalized proce-
dures. A generalized procedure (g.p.) is not intended for direct calls from
recursive parallel programs. They differ from typical procedures, above all,
in multivalence, which is connected with the availability of so-called setting
parameters. G.p.’s are intended for a preprocessor which can generate a
procedure from the generalized one according to the values of setting pa-
rameters chosen by the programmer. Multivalence of the following three
types can be involved in the g.p.

First, in the case of two-level memory organization, the g.p. can be
multivalued as far as its memory (local or common) is concerned. Just as
stencils fix the ways of the work layout, it is natural to have library access-
to-memory methods. To do this in the GSTC language, a command

$if < condition > ... [$else] ... $endif (1)

is used whose processing by the preprocessor makes it possible to eliminate
some parts of the text and to retain others in accordance with the values of
the setting parameters chosen by the programmer.

Second, the g.p. can be multivalued as far as the kinds of problems solved
are concerned. For example, the use of command (1) and setting parameters
provide a way of generating, from the same g.p., an effective procedure for
multiplication of two matrices, an effective procedure for multiplication of a

8 N.Badin, G.Brodskiy, V.Sokolov

matrix by a column and an effective procedure for scalar multiplication of
vectors.

Third, the g.p. can be multivalued with respect to the skeleton chosen
by the programmer through specifying the values of corresponding setting
parameters. This type of multivalence of the g.p. is of special interest. It
will be considered in detail and illustrated by an example of the g.p. for
multiplication of two matrices. Let us begin with the example. Let it be
necessary to write the g.p. of calculating the product AB, where A is an
m % n-matrix, and B is an n * p-matrix. If we want, with the help of the
preprocessor, to generate from this g.p. an ordinary recursive parallel pro-
cedure for multiplication of two matrices and to apply it for m much less
than t, and p > t (¢ is the number of the processor modules of the computer
system), we see that the first stencil of cutting the matrix A into horizontal
layers is unsuitable. When generating an ordinary recursive parallel pro-
cedure from the g.p., the GSTC language allows us either to retain each
stencil included into the skeleton of the g.p. in the generated procedure or
to exclude it. This is organized by means of command (1) and the follow-
ing technique: a setting parameter stl is connected with stencill from the
skeleton of the g.p., a setting parameter st2 is connected with stencil2 and
so on. The value of each parameter is equal to 1, if the corresponding stencil
is used, otherwise it is equal to 0. The name of an ordinary procedure gen-
erated by the preprocessor is formed from two parts (a prefix and a suffix).
The prefix is the name of the g.p., and the suffix is a symbolic form for the
decimal representation of the number numl calculated by the preprocessor
according to the formula:

numl = st1+ 2571 4+ 12+ 252 4 . + stk

where k is the number of stencils forming the skeleton of the g.p. By choos-
ing various subsequences of the sequence of stencils, a user can generate 2*
ordinary procedures from one g.p., whose names differ in the above men-
tioned suffix. For example, a sequential procedure without stencils will have
the suffix 0. The possibility of calculating numbers (for example, the suffix
numl) by the preprocessor is ensured in the GSTC language by the com-
mand $calc. In order to tell the preprocessor that instead of the suffix numl
one should place its calculated value, the suffix is written as $numl. To de-
clare the name of the g.p. in the GSTC language, the command $gproc is
used. ,

Passing to the design of a generalized procedure for multiplication of the
m * n-matrix A by the n * p-matrix B, we first describe the algorithm to be
used. The first stencil is intended for slitting the matrix A into horizontal
layers A;. The second stencil is planned to be used for cutting the matrix
B into vertical layers B;. Finally, to calculate A;B;, we use the third
stencil intended for cutting matrices A; and Bj, correspondingly, into blocks

A recursive parallel programming language 9

A,‘l,Aiz,... and le,ng, ver o
le
Ai2 | ...) N B:,I = BjE

A = (Ail

As is known, in this case A;B; = >; Ay By;.

We present the text of the generalized procedure for multiplication of two
matrices, where some obvious fragments are omitted. The matrices A, B,
and C = Ax B are supposed to be arranged in the corresponding arrays a, b
and c.

8gproc mulm(m,vm,n,vn,p,vp,a,b,c,st1,st2,st3)
{
$calc num3=st3;
$calec num2=num3+2+st2;
$calec numl=num2+4*st2;
struct Bmulm$numi /*The structure of a parameter blockx/
{int $if(sti==1) vm, Sendif
$if(st2==1) vp, $endif
$if(st3==1) vn, $endif
m, n, p;
float xa, b, xc;

Parallel(mulm$numi) {
$if(st1==1)
struct Bmulm$num? bp11,bp12;/x The declaration of parameter blocksx/
/*for recursive calls mulm$numi */
struct Bmulm$num2 bp1; /+The declaration of a parameter block forx/
/*a call of the procedure mulm$num2 on a leaf of the recursion treex/
$ins stencill parvec(m,vm,mulm$numi,bp11,bp12,BPI11,BPI12,,LEAF1)
$def BPI11

S$endd
$def BPI12

$endd
$def LEAF1
P_Call(mulm$num?2,bpl1);
$endd
Selse /* st1==0 %/
$if(st2==1)
struct Bmulm$num?2 bp21,bp22; /« The declaration of parameter blocksx/
/*for recursive calls mulm$num2 x/

10 N.Badin, G.Brodskiy, V.Sekolov

struct Bmulm$num3 bp2; /+The declaration of a parameter block forx/

/*a call of the procedure mulm$num3 on o leaf of the recursion treex/
$ins stencil? parvec(p,vp,mulm$num?2,bp21,bp22, BPI21,BPI22, LEAF?2)
$def BPI21

Sendd
$def BPI22

$endd
$def LEAF?
P_Call(mulm$num3,bp2);
$endd
Selse /x st2==0x/
$if(st8==1)
struct Bmulm1 bp31,bp32; /*The declaration of parameter blocks+/
/*for recursive calls mulmi */
struct Bmulm0 bp3; /+The declaration of a parameter block for a callx/
/*of the procedure mulm0 on a leaf of the recursion treex/
int 4;
$ins stencil? parvec(n,vn,mulm1,bp31,bp32,BP131,BP132, MERG,LEAF3)
$def BPI31

$endd
$def BPIS?

$endd
$def MERG
for(i =0; i <m=xp; i++);
P_(c[i])=bp31.c[i]+bp32.c[i];
$endd
$def LEAF3
P_Call(mulm0,bp3);
$endd
$else /x st3==0x/
. . . /xthe body of a sequential procedure of multiplying m » n-matriz ax/
.« . /* by n*x p-matriz b and writing the result into m * p-matriz cx/
$endif /* st8 x/
Sendif /x st2 x/
Sendif /x st1 x/
} /* end of gproc */

By using the preprocessor it is possible to generate, from the g.p., any of
8 different procedures for multiplication of two matrices: from the sequential

A recursive parallel programming language 11

procedure mulmO to the procedure mulm?7 that uses all of three stencils. As
the text of the procedure mulm7 contains the call of the procedure mulm3
with a reduced skeleton and a block of parameters, the procedure mulms3, in
turn, uses the call of a more simply organized procedure mulm1 and, finally,
mulml calls the sequential procedure mulm0, it is advisable to generate,
in addition to the procedure mulm?7, the procedures mulm3, mulml and
mulm0.

5. Sticking together the generalized procedures
and a recursive parallel program for
multiplication of three matrices

In the previous section we have already pointed out that the preprocessor
makes it possible to generate a particular recursive parallel procedure from
a generalized one. In this section a description of some other abilities of the
preprocessor is given, which underlie the considered technology of recursive
parallel programming.

Side by side with a command of generating a recursive parallel proce-
dure from the generalized one, the CSTC language contains a command of
specialization of the g.p. The use of the command assumes that the pro-
grammer assigns 0 to some setting parameters. Besides, the programmer
can rename non-setting parameters of the g.p. A specialization command is
processed in the following way. The stencils for which the corresponding set-
ting parameters equal to 0 are removed, and the structure of the parameter
block is processed in the same way. The text of the generalized procedure
is transformed according to new symbols of parameters. The g.p. obtained
is renamed by the programmer. The stencils remained in the g.p. are re-
enumerated and the calculation of the number sequence numl, num?2, ... is
reorganized. Below we give an example showing in which cases the special-
ization of the g.p. is necessary.

A g.p. is called "prepared” if the names of its non-setting parameters are
fixed. For instance, we have got the prepared g.p. as a result of execution
of a command of the g.p. specialization by the preprocessor. Two prepared
g.p.’s are called consistent if:

1) the structures of their parameter blocks are consistent, that is, the
parameter types used in both blocks and the conditions under which they
are included into the parameter block structure coincide (that is, the union
of the parameter blocks is noncontradictory);

2) the skeletons of the g.p.’s contain the same number of stencils (say,
k);

3) for every i (1 < i < k), the stencils stencili are of the same type

12 N.Badin, G.Brodskiy, V.Sokolov

(say, parvec) and, for instance, for a stencil parvec the first two parameters
must, respectively, coincide.

For consistent prepared g.p.’s there is a special command in the GSTC
language such that the processor sticks the procedures together when pro-
cessing. The consistency control of sticked prepared procedures is made by
the programmer, as well as by the preprocessor. Without citing the bulky
definition of the results of the sticking-together operation for two consistent
prepared procedures, we only note that the sticking-together operation units
the parameter blocks of sticked g.p.’s and changes the parameters on which
this operation is done into working variables of a new prepared g.p. The
skeleton of this new g.p. (named by the programmer) is constructed, in a
definite way, from the skeletons of the sticked precedures. It contains as
many stencils as there are skeletons of the sticked procedures, and the types
of these stencils are the same. Finally, a "leaf” of the lowest level in the g.p.
(that is, a fragment corresponding to a sequential program) is obtained by
concatenation of the corresponding "leaves” of the sticked procedures.

Let us show now, using the operations of specialization and sticking
together and the preprocessor, how to get, from the g.p. mulm, an effective
g.p. for calculation of the product ABC, where A, B and C are matrices of
size m *n, n*p and p * g. This is done in three steps.

At the first step the specialization of the g.p. mulm is performed ac-
cording to the given values st2 = 0 and st3 = 0 and to the redesignation
of the parameter c to d. Having named the new g.p. mumat , we obtain a
prepared g.p.

mumat(m,vm,n,p,a,b,d, stl). (2)

At the second step we perform the specialization of the obtained g.p.
mumzt which only renames some parameters: n becomes p, p becomes g,
a becomes d, b becomes ¢ and d becomes f. Having named the new g.p.
mumat, we obtain a prepared g.p.

mumat(m,vm,p,q,d,c, f, stl). (3)

At the third step the prepared generalized procedures (2) and (3) are
sticked together over the parameter d. Having named the result of the
operation mtm, we get the g.p. for multiplication of three matrices

mtm(m,vm,n,p,a,b,q,c, f,stl).

Note that the g.p. mtm is based on the effective recursive parallel algo-
rithm for multiplication of three matrices mentioned in Section 1.

Besides the sticking-together command in the GSTC language, there are
some other constructions which permit us to obtain some new effective g.p.’s
from the available ones. For example, one of them makes it possible, with
the help of the preprocessor, to obtain an effective g.p. for multiplication of
r matrices from the g.p. for multiplication of two matrices.

A recursive parallel programming language 13
6. Conclusion

The proposed technology of recursive parallel programming resembles struc-
tured programming. In particular, the design of every generalized procedure
by means of a sequence of stencils is analogous to structured coding that
permits us to construct arbitrary programs on the base of a limited set of
the basic logic structures.

This technology gives us new tools of module programming for a multi-
processor system. We abandon ordinary requirements for program modules,
in particular, the requirement of module independence from the context
where it will be used. It is connected with the fact that by forming g.p.’s
we ensure polyvariation of their usage. Unlike sequential programming, the
result of processing such a generalized "module” becomes dependent on the
source of input data and the usage of output data. Next, we have to aban-
don the formation of large programs without knowing the internal structure
of the program module. We can console ourselves with the fact that not
all information about module organization is needed but only the method
of partitioning calculations, the skeleton. Finally, we abandon the attain-
ment of independence between modules. It is reflected, for instance, in the
sticking-together operation, a new kind of superposition of recursive parallel
procedures.

The GSTC language underlying the new technology allows us to develop
some g.p.’s which admit different versions of usage according to the type
of work layout (in particular, the type of parallelizing), the type of data
exchange and the type of the problems to be solved. The g.p.’s allow effective
recursive parallel programs to be obtained in the case of a multi-staged
recursion.

The practical value of the GSTC language and the suggested technology
of the recursive parallel programming is defined by their feasibilities, namely

1) they point out the style of writing recursive parallel programs which
increases their efficiency, reliability, and readability and ensures the inde-
pendence from the programming product of its producer, which is necessary
for design, support and modification of the programming product;

2) they allow a problem to be divided into some modules whose assem-
blage is made without a loss of efficiency, which gives us a possibility, in
particular, of ensuring purposeful work of programmers;

3) they make it possible to develop and effectively use libraries of stan-
dard programs for multiprocessor systems;

4) they open the scope of the development of effective tools for automa-
tion of recursive parallel programming.

14 N.Badin, G.Brodskiy, V.Sokolov

References

(1] S. Alagic, M.A. Arbib, The Design of Well-structured and Correct Programs,
Springer-Verlad, 1978.

(2] N.M. Badin, G.M. Brodskiy, An Approach to Recursive Parallel Program-
ming, Design, Modeling and Optimization of Complex Information Systems,
Yaroslavl State University, 1993, 14-19 (in Russian)

(3] W.H. Burge, Recursive Programming Techniques, Addison-Wesley Publish-
ing Company, 1975.

(4] O.J. Dahl, E.W. Dijkstra, C.A.R. Hoare, Structured Programming, Academic
Press, 1972,

[5] R.C. Linger, H.D. Mills, B.J. Witt, Structured Programming: Theory and
Practice, Addison-Wesley Publishing Company, 1979.

[6] V.V. Vasil’chikov, V.P. Emelin, Recursive Parallel Programming for Com-
puter Systems with Dynamic Parallel Development, Yaroslavl State Univer-
sity, 1992 (in Russian)

[7] Y. Wallach, Alternating Sequential / Parallel Processing, Springer-Verlag,
1982.

