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Spectral analysis and synthesis of logical
functions for special-purpose VLSI
implementation

O.L. Bandman and V.P. Markova

Some results of investigation into the spectral properties of k-valued (k > 2) logical func-
tions are presented. The main goal of the investigation is to show the power of spectral
methods in implicant extraction and recognition of some useful logical function properties.
The relation between the sum-of-products form of a logical function and its spectrum is
established by means of a group representation of implicants. It allowed to attract some
results of abstract harmonic analysis of discrete-valued functions. A number of theorems
which states the necessary and sufficient conditions for the existence or absence of an -
implicant and for recognition of monotonicity and symmetry are formulated. The ap-
plication of the results is shown by presenting an algorithm for deriving an irreduntant -
sum-of-product form of a logical function.

1. Introduction

The spectral theory of logical functions studies the properties of logical
functions in the domain of their Fourier transforms (spectra). Investiga-
tion techniques of this theory are based on the powerful tools of harmonic
analysis and have the following properties.

1. The algorithms they generate have natural concurrency at both fine-
grained (calculation of a spectrum) and coarse-grained (analysis of spectral
properties) levels.

2. They are applicable to k-valued logical functions with any k >
2, the Boolean functions being a particular case. Despite the fact that
fundamental works on the spectral theory of logical functions were written
long ago [5-7], it has not become widespread. This is attributed to the
following facts. First, a great complexity of computation of a spectrum
constitutes a large portion of the total complexity of function analysis.
Second, because of the poorly developed multi-valued hardware there is
no urgent need in the techniques for the synthesis and analysis of multi-
valued functions to which spectral methods are more suitable than the
conventional ones. ' ‘
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Due to these reasons the architecture and hardware of nowadays com-
puters will go as computers of new generations emerge. Even now there
exist very fast special purpose processors which perform the Fourier trans-
forms [12]. Multivalued programmable logic arrays are also anticipated to
appear in the near future [14]. In view of the development of optical meth-
ods of computation, spectral methods are to become most useful. The
reason for that is that computing a spectrum is a single-step operation
in optical processor [3,4]. Besides, light invariance to magnetic and elec-
trical fields makes light switching reliable and attracts multi-valued data
representation. —

Hence tlie assurance that progress in the spectral theory of logical func-
tions' will contribute not only to theoretical computer science by enriching
our knowledge, but also to Practical efforts of creating computers of new
generation. This paper presents the results of investigation into the spectral
properties of k-valued logical functions. The first section gives the neces-
sary definitions. A number of theorems on spectral properties of logical
functions are stated and proved in the second section, The third section is .
dedicated to a particular case of the Boolean functions. The fourth section
reports on practical applications of the Tesults by considering an algorithm
for. deriving an irredundant sum-of-products form of function representa-
tion. This contribution is an evolution of the classical work by Lechner
[7] in terms of extending the class of the functions under investigation and.
elaborating the methods for their analysis and synthesis [2,10,11].

Because of the lack of space, complete proofs of theorems are left out.
The underlying postulates are pointed out instead.

2. Group representation of a-implicants of
logical functions

2.1. Sum-of-products representation of logical functions

A logical function (function of k-valued logic, k > 2) of n variables f(X)=
f(z1,2,,.. .y Ty) is assumed to be a mapping of the form

f(X): X" > EX,

where EF = {L,2,..,k-1},x" = {Xi:i=0,1,... k" = 1} is a set of
ordered n-dimensional vectors, The vector X; = (%1, z2,. +yZTn), T € B,
m=1,2,...,n,is a decimal i in a k-valued code. The set of vectors such
that f(X;) = a, a € E*, is specified as f~'(a). There exists a number

of ways of specifying logical functions in- the form of a sum of products
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of unary functions. Here the Su and Cheung representation [16] based on
algebra from [1,17] is used, because of its similarity tq the Boolean functions
in the form of implicants.

Su and Cheung representation includes three operations: AND (logical
product), OR (logical sum) and compound literal.

AND (maz) and OR (min) are binary operations in the ring E* such
that for any a and b from E*

a-b = min(a,bd),
a+b = max(a,b).

Compound literal for variable z is a literal or product of literals of the
same variable z

2(Q) = z(a1, b)) z(az,b2)* . ..z(ap, by)*,
where Q, Q € E¥, is a set of values of variable z at which the product z(Q)

takes the value equal to (k- 1), a; < b; forall i = 1,2,...,p, z(a;, b;)* is
an uncomplemented literal

k-1, if ea;<z<b;,
0, otherwise

a:(a.', b,') = {
or a complement literal

x(a. b')_— k-1, if a; >z >b;,

U7 0,4 otherwise.

An example of a compound literal z(Q) = z(0,5)z(2,3)", k = 7, is
given in Figure 1. Here the set Q of values of z is equal to {0,1,4,5}. Let
the power of @ be referred to as the cost of a compound literal and be
denoted by Q.

A function of the following form
h(X) =Ty (ail ’ bl'1 )*37:'2 (ai'za bfz )“l cee 3l'p(a"p, b“p)‘ (1)

is called a multiplicative term. Variables z;; in (1) form a set of bound
variables X’ C X. A set of vectors X; such that h(X;) = a is called a set
of constituents of a of the function h(X) and is denoted by V(h).

In [14] a theorem is proved which states that any logical function can
be expressed by a logical sum of multiplicative terms, ie.,

A
1) = 3 h(X). @
=1
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Figure 1

It is referred to as a sum-of-products form.

Definition 1. Function (1) is called an a-implicant of the logical function
f(X) iff
h(X:) < f(X;) forall X;eV(h).

An a-implicant may be represented by a 3-tuple < a,X’,Q >. Here
X' = {%i,...,%;,} is a set of bound variables. The power p of the set
X' is called the dimension of the a-implicant. Q = {Q;,,...,Q:,} is a set
of subsets of E¥, where each Q‘-J. is a set of values which z,, takes in the
vectors X; € V(h). For example, the implicant

h(X) = 331(0,3)321(1, 1)_22(1,2)13(1, 3)

corresponds to the 3-tuple < 3, {z;, zq, 24}, {{0,2,3}, {1,2},{1,3}} >.
It follows from (2) that any logical function can be expressed by a

logical sum of a-implicants. Let’s say that the a-implicant of the function
f(X) covers the vector X; € V(h).

Definition 2. A logic.al sum of a-implicants of a logical function f(X) is
called the irredundant cover of f(X) iff it has the following properties:

1) a-implicants cover those and only those vectors X; at which f(X) # 0;

2) no a-implicant can be removed from the logical sum so that property
1) holds.
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Example 1. The function f(X),k = 3,n = 3, (see Table 1) can be ex-
pressed by a sum of two implicants hy(X) = 2z,(0,2)z1(1,1)"z2(1,2) and
ha(X) = £,(0,0)z2(0,0)z3(1,2), which may be represented also by 3-tuples:

hM(X) = <2,{z,22},{{0,2},{1,2}} >,
ho(X) = < {z1,22,23},{{0},{0},{1,2}} > .
The sum of these implicants is an irredundant cover of f(X).
Table 1
riz2z3 | f(z1,22,23) || z12223 | f(21,22,23) " z12223 | f(z1, 22, %3)
000 0 100 0 200 0
001 1 101 0 201 0
002 1 102 0 202 0
010 2 110 0 210 2
011 2 111 0 211 2
012 2 112 0 212 2
020 2 120 0 220 2
021 2 121 0 221 2
022 2 122 0 222 2

3. Group representation of a-implicants of logical
functions

The set of vectors {X; :1=0,1,...,k" — 1} forms the Abelian group X™
under (mod k) addition. The zero of the group is the element X, =
(0,0,...,0), the element (—X;) inverse to X; is estimated by (-X;)® X; =
Xo.

Let us now return to the definition of a-implicant. We will consider the
case of all bound variables of a-implicant being equal to zero. It means
that V(h) includes these and only these elements X; in which the values
of all bound variables are zero. The remaining variables z,, € X”, where
X" = X\X',| X"|=n-p, take all the values from the E* and are called
Jree variables. Such a set of elements {X; : X; € V(h)} forms a subgroup of
order k™7 of the group X™ with the maximum element b = (by,bs,...,b,)
whose components have the following values

b = 0, if z, €X',
™ k-1, if z,€X"

Subgroups V such that V = {X; : X; < b} are now denoted by Vj.

Thus, element b partitions a set of variables z into two subsets: of bound
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and free variables X’ and X" respectively. The weight of the vector b (the
number of nonzero components) b=p.

Now let an a-implicant consist of a single compound literal z,,(Q,).
Let us first consider a simple case of QOm =1, Qm = {d}, d € E¥\0. Then
V(h) is a coset of the subgroup V4, i.e., V(h) = {X;®c: X; < b}. Here the
vector ¢ = (¢1,€2,...,¢€n), ¢ € X™, is a leader of a coset of the subgroup
Vb. Its components are evaluated as follows:

. _{mifdeam

0, otherwise.

Secondly, let us have Qm > 1, ie, Qm = {d1,da,...,d;}, r = Qm.
Then

Vi) = JWed),

el

where T' = {c!,c?,...,c¢"} is a set of leaders of cosets of V, r =| T |= Om.
For all ¢ €T, ¢* = (c},¢h,...,¢}), their components are defined as follows:

c;_{¢,ﬁ di € Qm,

0, otherwise.

Finally, let an implicant h(X) =< @, X,Q > contain several compound
literals with Q,, > 1 and let D be a scalar product of all @,, € @, D =
{D', D?...,D"}, where r = [o.co Qm. Then the set of the leaders
T = {c!,c%...,c"} is isomorphic to D, the components of each vector ¢
are evaluated as follows:

3-‘.

C.

_{ d, if deD'nQm,

0, otherwise.

The set of all leaders of the cosets of the subgroup V; under (mod k)
addition forms a subgroup. The maximal element of this subgroup is the
vector b = (by,...,b,), whose all significant components correspond to the
bound variables of the a-implicant and are

- k-1, if by =0,
™10, if b,=k-1.

Hence, the order of Vj is k7, I' C Vj.
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From the above it follows that an a-implicant h(X ) in terms of groups
may be represented with a 3-tuple < a,b,T >. :

Example 2. Let h(X) =< 2,{2,,2,},{0,1,4},{1,2} >,k =5,n = 4. A
set of bound variables X' = {z,,z,} specifies the vectors b and b , ie.,
b =+0,0,4,4), b = (4,4,0,0), V§ = {W; : W; < (4,4,0,0)}. The set of
leaders I is constructed from the Cartesian product of Q, = {0,1,4} and

Q2 = {19 2}'
Q1% Q2 = {{0,1},{0,2},{1,1},{1,2},{4,1},{4,2}}.
So, the group representation cﬂ' h(X) is

h(X) = <2, (0’.0’4,4)1{(03 130,0)$ (012s03 0),(11 110!0)5
(1,2,0,0), (4,1,0,0),(4,2,0,0)} >.

4. Main theorems of the harmonic analysis
of logical functions

4.1. Abelian group characters

It is known [13] that aset of functions x(X™)= {x;(X): j=0,1,...,
k™ — 1} called a group of characters may be constructed for any Abelian
group. FElements of the group x(X"), x;(X)= (x5(Xo0), x;(X1), ...,
Xj(Xkn_1) called characters are mappings x;(X): X"— > C* such that

Xi(Xi @ Xp) = Xi(Xi)x;(Xp) for all X, X, € X",

where C*is a cyclic subgroup generated by a primitive route /1. Values
of x;(X;) are estimated as

xi(X:) = &Y forall  X; e X, (3)

where W; is an element from the transform domain W™, identical to X™,
X:W} is a vector product with (mod k) addition.

Further, we consider the characters of the group X™, which are the
Cartesian products of n cycle of k-order groups. The set of the Vilenkin-
Chrestenson functions ordered according to Kronecker will be used. as a
group of characters of X®. An example of the group of characters with
k=3, n=2is aset of columns of the matrix ¥, which is called a
transform matriz (Table 2). Here C* = {1,¢,€?}, € = ¥/1, vectors X; and
W; are ordered correspondingly to their decimal values. Each element x;;
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Table 2
00 01 02 10 11 12 20 21 22
X0 Xt X2 X3 X¢ X5 Xe XT X8
001} 1 1 1 1 1 1 1 1 1
011 € € 1 € €€ 1 ¢ &
021 €€ € 1 € ¢ 1 €& e
X= 101 1 1 € € € €& & ¢
1)1 € € € & 1 €€ 1 ¢
12|11 € € € 1 € & ¢ 1
2001 1 1 €€ € € € € ¢
2111 € &€ € 1 € € & 1
211 € ¢ €€ ¢ 1 € 1 é
Go 01 02 65 0, 65 85 06, 83
0 0 0 0 0 0 0 0 o
o 1 2 0 1 2 0 1 2
0 2 1 0 2 1 0 2 1
T= 0 0 0 1 1 1 2 2 2
. 0 1 2 1 2 0 2 0 1
0 2 1 1 0 2 2 1 0
0 0 0 2 2 2 1 1 1
0 1 2 2 0 1 1 2 0
0 2 1 2 1 0 1 0o 2
6o=0 0 =z 2=z @122
0 =z =110z 0s =21 D2 P12
be=21021 Or1=2:00:19%1 O=202, Dz D22

of the matrix c is equal to the value of j-th character for X; and may be
evaluated by (3). From the definition of the character it follows that X is
a symmetric matrix, i.e., x;(X) = x(X;) .

Let the matrix T be associated with the matrix X so that each element
of T ;; = X;PP’_;-‘. Since 7;; € E*, the columns of T may be interpreted
as logical functions 6;(X), j = 0,1,...,k® — 1. These functions may be
analyzed in accordance with the partition on the set of W™. Wn = w0 y
WO y...u WM™, Each element of the partition W), I = 0,1,...,n,
is called a level. An [-th level contains those W; € W™ whose weight
is 1, i.e., W) = {w; : Wj = I}. Hence, W) = {W,}, w() = W;
the m-th component of W, being equal to d, all others - to 0. Each
subsequent level W) contains W; € W™, which may be represented as
a (mod k) sum of ! different vectors from W), The partition of W»
induces a similar partition on the set # of logical functions 8;(X), so that
6 =6UeP y...uh™. A function 8;(X) € 80, if W; € W, Evidently,
6© = {6y(X)} and p(X) is an identical function equal to 0. Any function
from #(1) is a function of one variable since for any X; € X" 0:(X) =
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Tij = (T1y- -y Ty oo+, 20 )(0,.. ., d,. .., 0) = d2,p,.
Similarly, 6;(X) € 8") is a function of ! variables. Since it may be
obtained as a (mod k) sum of different 8;(X) € ().

4.2. Spectra of logical functions

The character group x(X") is known [13] to form a complement orthog-
onal basis. It means that any logical function f(X) may be expanded in
a spectrum (the Fourier transform). Each coefficient of the spectrum is
evaluated as '

(X5 = f(X)-x:(X)= 3 f(Xa)e™s, (4)
X;eXn
where x;(X) and x;(X) are componentwise complex conjugate, i.e.,
X(X;) = x;(X;) = x;(—X;) for all X; € X™. From the logical interpretation
it follows that each coefficient f*(W;) reflects the dependence of f(X) on
the subset of variables from 6;(X).
In the matrix form the Fourier transform pair is defined as follows:

ffw) = f(X)x
f(X) = k" f'(W)-x.
Example 3. Let f(X) = 1z,(2,2) + 224(0,0)22(0,0) + 225(1,1)z2(0,0),

n=2,k=3. Then f*(W)=(1,0,0,2,0,0,1,1,1)-x = (5,3, 3,€? + 2¢, 1 +
€2,1+4 2€%, e+ 2€%,1 + 2¢).

Theorem 1 [10]. For any logical function f(X)
ffWo)= Y f(X). (5)
X;exn
Each coefficient f*(W;) may be represented in the form of a polynomial
FW;) =Y (W), (6)
TeE*

where s,(Wj) is the arithmetical sum of those f(X;) for which X;(-W;)t =
T.

Let L(W;) be 2 set of powers of ¢ of polynomical (6). Then the following
theorem holds.

Theorem 2. Let f*(W) be a spectrum of the logical function f(X). Then
D s (W) < f(Wo) forall WjeWn.
reL(W;) " :
The proof is straightforward.from (5) and (6).
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4.3. Spectral properties of a-implicant of logical functions

As it was stated above the implicant h(X) =< a,X’,T > in the term of
group theory is considered as a function which is constant and equal to a
for all elements of a quotient group X™/V},V; being a subgroup of X™.

The proof of theorems which determine a-implicant behavior in the
transform range is based on the very important property of the quotient
group characters. The abstract proof of this property is given in [8]. In [7]
it is proved for the special case of X™ with (mod 2) addition, k¥ = 2. For
k > 2 it is formulated here in the form of the following lemma.

Lemma 1. Quotient group of characters X™ [V}, is isomorphic to a subgroup
of the group of characters x(X™), this subgroup contains all characters that
are constant on cosets of Vi, i.e.,

x(X"/Vb)z {x;(X): (Xi®c)W} =0, forallX;€V; andeveryce Vs},
where Vi = {W; : W; < b}.
This lemma is the basis for the following theorem.

Theorem 3 (on the a-implicant spectrum) [9] . Let h(X)=< a,b,T > be
an implicant. Then

» (-W;)* £
h(W;) = { ak cg‘cc , Jorall W€V,
0, otherwise.

From the preceding theorem it follows that the coefficients of the a-
implicant spectrum are nonzero only on elements of the subgroup V;. Re-
lations between a, X’ and @ determining the Su and Cheung representation
of an implicant and the coefficients of its spectrum h*(W) are stated by
the following theorem.

Theorem 4. Let h(X) =< a,X’,Q > be an implicant. Then for all coeffi-
cients h*(W;) such that W; € Wm and W; < b the following holds:

Y s(W)=ak* [] @m=A4,

T€L(W;) QmeQ
St(W;) = s.,:(‘W,-) =A/Qm for all pairs ,7' € L(W;).

Let E be a set of vectors W; € W" such that W; < b and W; =
(0,...,k—1,...,0), k-1 being equal to the m-th component of W;. Then
the following corollary is straightforward from Theorem 4.
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Corollary 1. Let h(X) =< a,X’,Q >. Then
Li=Qm forall W;€E,
where Qn, € Q.

The relations between the sum of values of f(X) on the cosets of the
subgroup V; of X™ and the sum of coefficients of f*(W) on the subgroup V;
of W™ are stated by the summation theorem. For the continuous functions
this theorem was proved in [8] (the Poisson theorem). For the case of the
Boolean functions it is formulated and proved in [7]. Here this theorem
is given for logical k-valued functions (k > 2) in the form of the following
lemma.

Lemma 2. Let V;, be a subgroup of X™ of order k?, Vi be a subgroup of W™,
and let T' be a set of these coset leaders. Then for any logical function f(X)

Z Z J(Xi®ec)=krm Z 2 (W) e

cel’ XieV, cel'  W;ey;

4.4. Conditions for a-implicant extraction

It follows from Lemma 2 that a-implicant extraction may be done through
the analysis.of spectral coefficients on the subgroup V; of W*. The following
theorems give the criteria for this analysis.

Theorem 6 [9]. Let a logical function f(X) contain no o’ -implicant, o' =
k—1,k-2,...,a+1. Then if for any subgroup V;

Y W) < ak™,
ijVB
then there is no coset of V, on which f(X) is constant and equal to a, i.e.,
here is no leader c € Vg such that (Vs & ¢) C f~(a). Here | f*(W;)| is a
module of a complex number f*(W;). '

Theorem 7 [10]. Let f(X) be a logical function and (Vy ® ¢) C f~!(a).
Then for any subgroup Vi of W™ such that b'b* = 0 and any c € Vi coset
(Vo @ c) is not included in f~(a).

Theorem 8 [9]. Let a logical function f(X) contain no a'-implicant, o' =
k—1,k—-2,..,a+1. Then if for any c € V

Y FWHEYs = ak', then (Vide)C fla),  (7a)
W"EVE '
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Y FW)EM = 0, then (Vi@c)C £0). (7b)
WieVy;

This theorem states the existence of an. a-implicant hA(X)= < a,b,c >
(condition 7a) or of a G-implicant A(X) =< 0,b,c > (condition 7b) in
f(X). The test for these conditions may be done as follows. The vector
f{ is formed with a subset of spectral coefficient {f*(W;) : W; < b},
being allocated in f in the same order as in f*(W). This vector is then
multiplied by the matrix ¥ ‘minor generated by the subsets of rows and
columns corresponding to the subgroup V;. If the resulting vector f/(X) has
a component f'(X;)= ak™ (f'(X;) = 0), then f(X) contains the implicant
h(X) =< a,b,c > (or h(X) =< 0,b,c >) with ¢ = X;.

The following rule helps to determine the analytic representation of the
excluded by’ Theorem 8 a-implicant.

Rule. Let t.;ondition (7a) hold for a set of the leaders T of W™ and let
| T | = Tlw,eg | Lj |- Then logical function f(X) contains an implicant
h(X)=<a,X',Q >, where

X' = {gm:bn=k-1},
Q = {Qm:Qm=LJ' for WJ‘EE} if Z'mEX’.

Theorem 9 [10]. A logical function f(X) may be represented in the form
F(X) = 20(Qm)9(X) iff for all W; = (0,...,d,...0) having b as the m-th
component, d € E*\0,

Y 8 (W;) = f1(Wo).

T€EL;
Subset Qm = L; for W; € E.

Theorem 10 [10]. Let h(X) =< a,b,c > be an implicant of a logical func-
tion f(X). Then any other implicant h'(X) =< a’,¥', ¢’ > such that b'bt = 0,
¢’ € Vi has a nonempty intersection with h(X).

The above theorems present the following conditions helpful for spectral
analysis:

1) the sufficient condition of the absence of an a-implicant of the di-
mension equal or greater than a given value (Theorem 5);

2) the sufficient condition of the absence of an a-implicant wiht a given
et of bound vatiables (Theorems 6,7);

3) the necessary and sufficient condition of the existence of an a-impli-
cant with a given set of bound variables (Theorem 8);
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4) the necessary condition of factorization (Theorem 9) and implicant
intersection (Theorem 10).

Example 4. Let a function f(X), n = 2, k = 3, be given with the spectrum
fY(W) = (13,€%,6,5 + 5¢,€,1,5 + 5¢,1,€?). Determine all 2-implicants of
the dfmention p = 1. Since the condition of Theorem 5 does not hold, the
search for implicants in Vj = (0,2) (Theorem 8) is negative, since

Y L) |=15 < ak™.

WieVy;

A similar test for b = (2,0) gives

S £ (W5) |=29 > ak™.

Hence, f(X) has a 2-implicant with X’ = {z,}. For finding the leader of
a coset of V;, the vector 8 b = (2,0), is multiplied by the minor of Xs
constructed on rows and columns indexed as {(0,0),(1,0),(2,0)}

1
€ €
e ¢

(13,5 + 5¢,5 + 5¢) - = (18,0,18).

1
1
1

From the resulting vector it is seen that J(X) has the implicant with a = 2,
b = (0,2) and T = {(0,0),(2,0)}. With the help of Rule the following
analytic representation is obtained:

h(X)=<a,X,Q >=<2,{z1},{0,2} > or h(X) = 22:(0,2)zy(1,1)".

5. Recognition of the Boolean function
properties using the spectrum

The Boolean functions spectra are studied in detail in [5-7]. Their distin-
guishing features are the following. 1) The spectrum is an integer-valued
vector. 2) The group of characters is a set of the Walsh functions, ordered
according to the Hadamard transform. Hence X; = - X;, x~1(X;) = x(X;),
C* = {-1,1}. The coefficients of a spectrum are evaluated by the formula:

(W;) = z f(X.')(—l)x"W; for all W; € W™.
XieXn )



18 O.L.Bandman and V.P.Markova

5.1. Condition of the Boolean function monotonicity

The Boolean function is called monotonous iff there exists its sum-of-
products representation, which contains no variables in the inverse form.
From this definition it follows that a monotonic function may have an im-
plicant only on one of the cosets of any subgroup V; of X™ with the leader
c;. Hence follows the lemma.

Lemma 3 [10]. Let h(X) =< 1,b,b > be an implicant of a monotonous
Boolean function f(X). Then

signf*(W;) = sign(—l)Wi forall W;eVg,
where W; is the weight of the vector W;.

Theorem 11 [10]. A Boolean function f(X) is monotonous iff there ezists
a set of subset U such that

U Wed)=r"0)

VoeU

and for all Vi, € U meet the following conditions:
sign f*(W;) = sign(—l)wi Jor all W; eV,
> =2
W;eVy
The algorithm for monotonicity recognition of the Boolean function,
using its spectrum, is given in [11].
5.2. Condition of the Boolean function symmetry

A Boolean function f(X) is called symmetric with respect to a pair of
variables z,, and zj iff

J(Xi) = f(XiPnx ®c) forall X;e X",

where ¢ € X™, P, i is a permutation matrix of (nxn) order which permutes
T, and zx in X;. '

The necessaty spectral conditions for the Boolean function to be sym-
metric with respect to a pair z,,, zx € X™ are obtained in [1]. Necessary
and sufficient conditions are stated by the following theorem.
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Theorem 12 [11]. A Boolean function f(X) is symmetric with respect to
a pair of variable z,,, zy € X", iff there ezists a matriz P, x and a vector
¢ € X™ such that for all levels W, 1=1,2,..,n -1, the following holds:

(W) = (-1)W f(W;) for all W;,W; e W,
such that W; = W, Py, .

A Boolean function f(X) is completely symmetric (or symmetric) iff
f(Xi) = f(X;P @ c) for all X; € X" any permutation matrix P and any
c € X™. It is well-known that any permutation matrix may be expressed
as the product of matrices of P, & type. Hence follows a corollary from
Theorem 12.

Corollary 2. A Boolean function f(X) is symmetric iff there ezists a vector
¢ € X™ such that for all level W), [ = 1,2,. vy —1,

fW;) = (-1)Waf*(W,)  for any pair W;, W, e WO,

6. Spectral algoritm for finding an 1rr1dundant
cover of logical function

The spectral algorithm for irredundant cover constructing has the following
features.

1. Unlike the classical two-stage scheme (first: finding the complete set
of implicants, second: constructing a cover) the irredundant cover is formed
by means of extracting a-implicants by turns, and immediately excluding
their spectra from the spectrum of the original function.

2. The search for implicants starts with the maximal values of a and p.
The decrementing of values of a and p is stipulated by two reasons. First,
the sufficient conditions for the existence of an a-implicant are obtained only
for the case when the function has no a’-implicants with @’ > a (Theorem
8). The decrement of a is not a disadvantage of the algorithm. It is
shown by computer experiments [15] with the great number of algorithms
for multi-valued functions minimization that the algorithms where a is
decremented are more efficient than those starting with a = 1. Second,
decrementing the dimention of implicants permits us to reduce significantly
the algorithm complexity, since the amount of computations increases with
the decrease of implicant, and also due to the fact that the absent conditions
(Theorems 7 and 10) for large 1mphca.nts exclude amounts of subgroups
from the subsequent test.
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Another advantage of this algorithm is the possibility of extracting all
implicants of the same dimention in parallel.

G

HX) = (W)

cycleon a
a=k-1,..., o -

i cycle on VB
b= Pmax,.--,0
< T Wl < akn? yer

end

Theorem 6
no
An(z) =< a,be>? no
' Theorem 8
yes
no yes
a=207?

<a,bl'>=<a,Xx, Q>

]l-‘+1'(W) = 1](W) = KwW) exclusion Vj
b-b =Wy
Theorem 7

exclusion VB
- = Wo
Theorem 10

Figure 2

For simplicity the algorithm for obtaining an irredundant cover with
orthogonal implicants is presented here (Figure 2). The algorithm has two
nested loops: on the external loop all a-implicants for a signal value of
a are extracted; on the internal loop one a subgroup V; of W" is tested
for having cosets in f~1(a). Let f*(W) be a current spectrum, pmax the
maximal dimention of the implicant under extraction, determined according
to Theorem 5. Then six steps of the internal loop are as follows:

1. The condition of the absence,of a-implicant on the cosets of V,
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(Theorem 6) is tested. If it does not hold then go to step 2. Otherwise
take a new subgroup Vy with b=¥ and go to step 1.

2. For the set {f*(W;) : W; < b} the existent condition of an a-
implicant on the cosets of V; is tested (Theorem 8). If it does not hold,
then go to step 1, otherwise - to step 3.

3. If a > 0, then the Rule is used to determine the analystic form of
the extracted a-implicant, which is then included in the cover. If a = 0,
then go to step 6.

4. The spectrum f7(W) is modified so that f},,(W) = f3(W)—h*(W).

5. Subgroups Vj, such that b'b* = W, are excluded from the subsequent
analysis (Theorem 10). '

6. Subgroups Vj, such that 4'd = W, are excluded from the subsequent
analysis (Theorem 7). '

The algorithms stops when f*(W) is a zero vector.

7. Conclusion

Presenting here some results in studying of logical functions, the authors
yearned to show that the implementation of spectral techniques opens a
new area in combinatorics. There are two reasons for that. The first is that
" examining the spectrum of the function we may see the properties which are
hidden in its analytic representation. The second reason is based on the
possibility of using the most powerful methods for solving combinatorial
problems transfers the computational complexity from the procedures of
searching fo. best solutions to those which compute spectra and manipulate
with vectors «nd matrices. The prospect of matrix vector fast processors
would reduce total computer cosets of spectral techniques and stimulate
their development.
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