Bull. Nov. Comp. Center, Comp. Science, 3 (1995), 1-17
© 1995 NCC Publisher

Cellular-neural computations:
formal model”

O.L. Bandman

A formal model for the fine-grained parallel computations is presented, which
combines the connectionist approach of Artificial Neuron Networks with the cellular
_like communication structure. The model is based on the concepts and formali-
ties of Parallel Substitution Algorithm, which is considered the most theoretically
advanced generalization of Cellular Automaton. Principles of cellular-neural algo-
rithms synthesis are discussed, and three simple examples (optimization on graphs,
pattern retrieval, image processing) are given.

1. Introduction

There are two exotic approaches to the fine-grained parallel computations,
which take their theoretical origins from the early years of computer science.
The first ascends to von-Neumann’s Cellular Automaton [1]. The second -
to Mc-Calloch’ and Pitts’ Logical Calculus [2]. Both are progressing rapidly,
each in its own way of formal methods sophistication as well as in searching
for proper hardware implementation. - '

The first approach has gained greatest advancement in the theory of Par-
allel Substitution Algorithm (PSA) [3], which is directed to the investigation
and design of cellular algorithmically oriented architecture. . The following
fundamental concepts form the background of the PSA. '

1. The PSA processes cellular arrays which are sets of cells, characterized
by a state and a name. The set of states form the PSA alphabet. The set of
names represents a discrete space, in which interaction patterns are defined
by means of naming functions. S

2. Operations over a cellular array are specified by a set of substitutions.
All substitutions are applied in parallel (at once) at every cell of the array.
The substitution is applicable to an array at a certain cell if the left-hand
side containing this cell is included in it. The execution of an applicable
substitution is in replacing the subarray of its left-hand side to that of its
right-hand side. ' '

3. The computation is an iterative procedure. At each step all applicable
substitutions are executed, resulting in a new cellular array. The computa-

*Supported by the Russian Foundation for Basic Research under Grant 93-01-01000.

tion terminates when the array is obtained to which no single substitution
is applicable.

4. Each PSA has an explicit interpretation by an automata net.

5. Due to the context in the left-hand side of substitutions, similar
constructs are used to represent both processing and control. This fact
underlines PSA composition and decomposition techniques as well as the
methods for control synthesis.

The second approach is under intensive elaboration for creating the Ar-
tificial Neural Networks (ANN), the interest being concentrated on two
paradigms: Hopfield’s Associative Memory [4] and Boltzmann’s Machine
[5]. The ANN is a model of fine-grained parallel computation belonging to
connections type. The main difference of this model from other massively
parallel computations is in that the results are not computed under the pro-
gram control, but are obtained when the network is settled in a stable state.
The implicit and redundant form of storing data as connection weight val-
ues provides the ability of restoring the lost information. So, the main field
of ANN application is as follows: pattern retrieval, pattern classification,
searching for optimal solution.

The followifg features characterize the ANN computational model.

1. The ANN processes a data array which represents the states of bistable
elements, called neurons. Each neuron is connected to all others, the con-
nections being characterized by real non-negative numbers, referred to as
connection weights.

2. The algorithm for ANN to solve a given problem is specified by the
nonlinear function and the values of connection weights — the weight ma-
trix. Constructing the weight matrix and choosing the non-linear function
constitute the process of ANN programming or learning, which is the most
complicated stage of problem solving by the ANN, requiring much skill and
time.

3. Two modes of computation are admitted in the ANN theory. Origi-
nally, a continuous variant of computation was proposed, and its implemen-
tation as an asynchronous transition from a given initial state to a stable
one, characterized by the minimum (possibly, local) of the energy function
was studied [4]. Later on, the discrete time synchronous mode of ANN oper-
ation has become more popular. In this case the iterative procedure starting
from the initial state at each step brings the network closer and closer to a
stable state, where the computation stops, because no single neuron changes
its state. .

4. There are two ways of implementing the ANN. The first is widely
used nowadays. It consists in simulation the ANN algorithm on a conven-
tional computer, sometimes augmented by special-purpose processor for fast
computing sum-of-products. The second way is associated with the direct
implementation of neural network architecture. Much investigations hav-

ing been done to find the technologies (optics, opto-electronics, holography)
which provide the effective implementation of ANN, the most difficult task
being global connections realization. i

5. The ANN model of computation has no special means for composing,
decomposing, and making equivalent transformations of the algorithm.

In spite of the fact, that the two above models have some opposite fea-
tures, we here make an attempt to cross them, cherishing the hope that the
resulting hybrid would possess some merits of both. Particularly, we want
it to inherit the interaction boundedness from PSA and the connection-
ist mode of computation from ANN. However, since parents disadvantages
should also be inherited, the problem arises to study them and determine
the limits of the new model capabilities. Speaking more specifically, the
aim of the paper is to construct a formal representation and a set of tools
for studying the computation process in cellular arrays, whose cells perform
neural functions. The table bellow shows, what properties cellular-neural
computations inherit from those of its parents.

PSA ANN Ceﬂular-ne}lral
computation
Process discrete continuous discrete
Mode synchronous asynchronous synchronous
Co " bounded each with all bounded
nnections unweighted weighted weighted
Cell function | finite automaton | - sigmoid _sigmoid

The quest for connection restriction in neural networks has stimulated
a number of investigations of Hopfield’s type ANN with local connections.
There are three lines of inquiries in these studies. The first is associated with
the ANN implementation in a form of asynchronous cellular system with
amplifiers [6]. The main theoretical result is stability conditions expressed
in terms of circuit parameters. The applications are confined to pattern
classification problems. The second line [7] is concerned to the investigation
of the capability of Hopfield’s ANN, in which cell connections outside the
given neighborhood are cut off, the loss of connections being paid by the
decrease of memory capacity. The third direction of investigations seems to
be the most fruitful [8]. It introduces the method of construction a sparse
weight matrix with the predetermined locations of zeroes, which provides
the correspondence of stable states to the given set of stored patterns.

Here the cellular-neural algorithm is regarded as a PSA with sigmoid
(neuron-like) cell functions. There are two reasons for that. Firstly, we
hope that the wide expressive ability of PSA (naming functions, context,
operation on subsets of cells, equivalent transformations, etc.) would com-
pensate the constraints imposed on connection structure. Secondly, PSA is

a model born and bred in our staff, and we have in our possession all the
facilities (methods, techniques, computer simulating tools) to deal with.

The pés.per consists of five sections. The first section is the introduc-
tion. The second section contains formal concepts and definitions. In the
third section the general principles of cellular-neural algorithm synthesis are
stated and general principles of its solution are discussed. The fourth section
deals with examples, illustrating the expressive capability of the proposed
formalism.

2. Formal representation of a cellular-neural
algorithm

When constructing the formal representation of ceéllular-neural algorithm
the priority is given to “cellular” notation, which is as close as possible to
that of PSA. Sometimes, if necessary, the ANN concepts are also used.

Definition 1. A triple (¢, m, v), where a € A, A - a finite alphabet, m € M,
M - a naming set, and v € V, V —a weight vector set, is called a neuron. A
pair (a,m) is referred to.as a cell, a being interpreted as a state, m — as a
name. '

Definition 2. A set of neural cells N = {(a;,m;,v;) : i = 1,...,¢} with no
pair of elements in N having equal names, is called a cellular-neural array.
The set of cells, obtained by omitting the vectors v; from the triples in N

C(N) = {(aiymi) : (ai,m;,v;) € N} (1)
is called a cellular array, generated by N and denoted as C(N).

The alphabet A consists of three parts: A = AgU A, U A,, where Ag C
R is a state alphabet, A, = {z1,23,...,2,} is an alphabet of variables with
the domain in Ao, A = {@,0,...} is a control alphabet. The naming set
M may consist of any kind of symbols or tuples of symbols. The set V of
weight vectors has the same cardinality as that of the naming set, the length
of vectors being not more than this value, the component being from R.

The set of all finite cellular-neural arrays, generated by an alphabet A,
a naming set M, and a set of weight vectors V isomorphic to M, is denoted
as K (A, M, V). The set of cellular arrays, generated by A and M is referred
to as K(A, M).

Definition 8. A function ¢(m) determined on a naming set M is called a
naming function. A finite set of naming functions

T(m) = {m,¢1(m), ..., ¢a(m)}, (2)

* in which for any m € M ¢;(m) # ¢j(m), i,j € {1,...,n}, i # j, is called
a template. A set of names T'(m;) = {m;, ¢1(m;), ..., dn(m;)} is referred to
as a template element for the cell named m;.

Each template element T'(m;) is characterized by a weight vector v; € V,
v = {w(m"¢1(mi))!- --:w(mi:¢n(mi)}’ (3)

whose components are interpreted as weights of the connections between the
cells named m; and ¢;(m) € T'(m).

Definition 4. A mapping S(m) = K(A, M), expressed by the equation
S(m) = {(a0, m)(a1, $1(m)), ..., (an, $u(m))}, (4)

in which the set of naming functions constitute a template, is called a con-
figuration, the vector S4(m) = (ao,ay,...,a,) being referred to as a state
configuration vector. '

A configuration is called k-bounded if each name m; appears not more
than in k elements of it. A bounded configuration is called local if a metric
is given on a set of names, and within this metric a sphere of a finite radius
may be constructed such, that for each m; € M all cell names appearing in
S(m;) are inside this sphere. The configuration is global if there exists a cell
m' € M such that the amount of cells with this name depends on the size
of the array.

Definition 5. The expression of the form
6 : S'(m) = S"(m), (5)

where S’ and S” are configurations, is called a parallel substitution (substi-
tution for short).

S’(m) contains two parts separated by the sign *, §'(m) = S} (m)*Sh(m).
The first part

S1(m) = {(ao, m), (a1, $1(m)), ..., (an, #n(m))}, a; € AgU A,,

is referred to as a base, and the second part

Sz(m) = {(b1, ¥1(m)), ..., (br,%i(m))}, @i € AU A,

— as a contezt. In the right-hand side of (5)

§"(m) ={(fo, m), (fi, ¢1(m)), - .., (fa, #u(m))},

fi» 3 =1,...,n, are nonlinear (sigmoid or threshold) functions of the inner
product of the state configuration vector by the weight vector. The most
frequently used is the function

Joa, if ¥i,a;w; >0,

Ji= { b, c>ther:'vi$e,J ’ (6)
where a;, w; are components of S4(m;) and v; respectively, a,b € Ap. It is

. worth to pay attention that we use here stationary substitutions which have
configurations S} and S” generated by the same template.

- A substitution is considered to be applicable to a cellular-neural array
N € K(A,M,V), if there exists M’ C M such, that for any m; € M’ the
following holds:

S4(mi) U Sy(my) C C(N). (7)

If S}(m) contains variable symbols, then the substitution 8 is applicable
at any m; € M, where all components of S4(m;) arein Ag. An application of
0 to an array N results in substituting the states a; in the cells of S C C(N)
for the values of f; in the equally named cells of the right-hand side of (5).
This is done simultaneously all over the array.

The set of substitutions ® = {6,,...,0;} constitute a parallel substitution
system or a PSS. A PSS is applied to a cellular-neuron array in accordance
with the followmg procedure.

Procedure 1. Let N € K (A, M,V) be a cellular neural array to be pro-
cessed by ®, C(N); — an array at the ¢-th step of computation, C(N)o =
C(N). Then

1) if there exists a nonempty subset of substitutions ® C &®, applicable
to C(N)q, then all of them are applied simultaneously, the obtained
array being C(N)¢41;

2) if the application of ® does not change the array or no substituﬁion
is applicable to C(t), then C(N); is the result of the computation,
denoted as &(N).

The determinacy of computations generated by a given PSS @ is pro-
vided by its noncontradictoriness [3]." This property guarantees that the
application of ® to any N € K(A, M, V) results in a cellula,r -neuron a,rra,y,
i.e., such one which contains no equally named neurons.

Definition 6. A noncontradictory substitution set ®, applied to N €
K(A,M,V) in accordance with Procedure 1 is called a cellular-neuron al-
gorithm which is represented by a pair (®, K(A, M, V)).

A cellular-neural algorithm has a direct interpretation by an artificial
neural network.‘ This network consists of a set of processing elements, P =
P1y. ..y Pqy ¢ = |M|, which corresponds to the set of neurons. Each processing
element should be capable to perform the following:

1) to be in any state from a state alphabet,

2) to perform the non-linear functions indicated in the right-hand sides
of all substitutions, and

3) to store the connection weight vector.

The connections between processing elements are predetermined by the sub-
stitution- system ®. If ® consists of a single substitution, then the weight
vector contains the names from T”(m;), T" being the template generating the
configuration of the left-hand side of the substitution. In the general case
the connection vector of p; corresponds to the union of template elements
generating the left-hand sides S’(m) from (5) of all substitutions 8 € ®.

Definition 7. Let T}(m) be the template, generating the substitution
§5(m), which constitutes the left-hand side of § € ®. Then the set of names

k
Q'(my) = |J Timi), k=@, (8)
j=1
is called a neighborhood of a cell named m; € M.
The neighborhood is represented, sometimes, as a vector
Q(mi) = (ml'v m;a veey m:')'

where the neighbors are ordered in an arbitrary way, but, once chosen, the
order is kept when forming the neighborhood weight vector,

v; = (w(mi, my), w(mi, my), ..., w(m;, m'r)) = (wo.wn, ..., w,),
and neighborhood state vector
S'(m;) = (ap, ay, - .., a,),
which characterize the neuron named m;.

Example. Let N € K(A, M, V) be given such, that A = {-1,1}U{z,y, 2,

u,v}U{o,8}. M = {(i,j):i=0,1,23 j = 0,1,2,3,4}). The initial

cellular array is C(N)o = {(1, (1, 1))(L, 0,2))(L, (0, 3) (a, (0, 4)) e, (1, 4)

(e, (2,4))(B, (3,4))}, the state of other cells being equal to —1 (Figure 1a).
The following templates are used:

J
01 2 3 4 012 3 4 012 3 4
0 |-1}-1{-1]-1] e 0 |-1{-1]-1|-1| @ 0 |-1|-1]-1{-1]| e
i 1 |-1]1]-1]-1]e 1 1|1{-1|e 1 j-1f1f1(1]e
2 |1]-1-1]-1]e 2 [1]-1]-1]-1]a 2 |-1]-1]-1 a
3 |1]-1}-1]-118 3 [1]-1]-1]-1]|8 3 |-1l-1]-1]1|8
c(0) lo) C;
(a) (b)
[z]
8, : * Iu y]ooo E =
[#]
[z
w: [0 - G- .- @ =
(b)
Figure 1
T = {(i,)},

T2 = {(7' - 11.7)$(?';J+ 1)7(3+ 1,]),(’;] - 1) (1"4)}1
T; = {(3 = 1:j)?<i!j+ 1),(i,j— 1): (ia4)}s
The neighborhood of cells whose names have i = 0, 1,2 corresponds to

the template T; UT5, the neighborhood of cells whose names have i = 3 - to
the template 75 U T3. Neighbor numbering corresponds to that of naming
functions in the template. The weight vectors w((i,)) = (w,..., ws) :
(i,7) € M} are computed according to the formula: w; = a,-jafg- + b,-jbfj,
where afj and bfj are the states of k-th neighbors of the cells (a;j, (i, j)) and
(bijy (i5)) in the two given stored patterns, respectively (Figure 1b). The
weight' vectors are given in the table below.
The set of substitutions & = {6,,6,}:

b1 = {(v, &N} {(2, (1 = 1,3))(w, (i 5+ 1)) (=, (i + 1, 5)) (w, (i, 5 — 1))
(@ G, 4)} = {(f1, (30}

02 = {(v, (5, 3N} * {(=, (i = 1,3) (y, (3,5 + V) (w, (5,5 - 1))}
(ﬂi (%J))} = {(.f2: (i,.ﬂ)},

where

. J 0 1 2 3
0 | (10200 | (102-20) [(1,02,-22) | (10002)
1 [(1,0020) [(1,-2.2,-20) | (1,-2,0-2,0) | (1,2,0,2,0)
2](1,2020) | (1,-2220) | (1,-2022) | (1,20,2,0)
3 | (1,2,0,0) (1,2,2,0) (1,2,0,2) (1,2,0,0)

fi = 1 ifw1v+1bga:+w3y+w4z+w5u20,
'7 1 -1 otherwise, '

f = 1 if wiv+ woz + way + wau > 0,
27 1 -1 otherwise.

The application of ® to the cellular-neuron (C, W) after one iteration
results in the stored pattern C(N); = C;.

3. Methods for cellular-neural algorithm
synthesis

Synthesis procedure of a cellular-neural algorithm for solving a given prob-
lem consists in the following: 1) choice of the alphabet, 2) choice of the
naming set, 3) computation of weight vectors, and 4) writing the substitu-
tions. N

The alphabet is determined by data representation in the problem ‘to
be solved. The state alphabet Ay is a one-to-one mapping of data to be
processed. For example, in the problems of pattern retrieval Ay = {0,1}
or Ag = {1,—-1} for bistable patterns and Ay = R, if the patterns. are in
multigraduated grey or colored. The variable alphabet A, contains as many
symbols as is the cardinality of a neuron neighborhood. If the computation
process requires controlling actions, then a set A. = {a,3,...} should be
added.

The neural naming set is chosen according to data representation of the
problem to be solved, and the way of mapping the given parameters to the
set of neurons. Thus, in the optimization problems the neuron naming set
is in correspondence with the set of parameters forming the domain, where
the objective function is determined. When the optimization problems on
graphs are to be solved, the naming set may be put in one-to-one correspon-
dence with the set of vertices, circuits, edges or other parameters. If some
kind of activity is to be optimized, the naming set is to be isomorphic to
the set of actors or subjects the actors are dealing with. The names in these
algorithms are symbols or digits, the naming functions are constant or in
the form of shifts ¢;(m) = m + d, where d € N. When the initial data are

10

represented as a picture in the space (image processing, pattern retrieval),
the most frequently used is the set of coordinate in the Euclidean space,

M={(jk):i=0,...,m;,7=0,...,n;,k=0,...,n;}.

The templates may contain any kinds of naming functions defined on M, but
the most usable are also shifts and constants. The neighborhood or at least
its admissible size also should be chosen at this stage of synthesis. It is done
according to the requirements imposed by the implementation conditions.
The naming set may consist of several subsets, M = {M;:i=1,...,q}, each
M; being peculiar to its own cellular-neuron algorithm ®;. The interactions
of ®; with any other ®; is represented by means of context configurations
in substitutions of ®; containing naming functions defined on M;.

Weight vector set determination is the most important and the most
labor consuming stage in cellular-neural algorithm synthesis. This part of
synthesis constitutes the “learning process” and should exploit the same ap-
proaches, than those of the ANN theory adapted to cellular-neural arrays.
Though the methods of weight determining strongly depend on the prob-
lem to be solved, there is a fundamental concept forming the basis for all
of them, which in its turn is based on the dynamic properties of cellular-
neural algorithm operation. The point is that the cellular-neural array is
an autonomous system, such that its dynamic characteristics depend on the
weight vectors on the one hand, and on the other hand the computation
results are in correspondence with its stable states. Hence, the weights may
be determined starting from the dynamic stability condition of the array,
which is characterized by the extremum of the following function.

E= - Z a; Z w;a;, (9)

mi€EM m;eQ(m;)

where w; and a; are the equally indexed neighborhood weight vector and
state neighborhood vector components, respectively. In the ANN theory
the expression (9) is called Liapunov’s function or energy function [4]. Its
inverse B = —F is used in the Boltzmann machine theory being called there
as the consensus function [5]. The minimal value of E (the maximum of B)
indicates that the cellular-neural array is in a stable state, i.e., being left to
perform the cellular-neural functions without the outer intervention, it does
not change neuron states. From above it follows that the strategy for weight
vector synthesis should be grounded on the following requirements.

1. The result of computation should be represented by a stable state of
the array. Formally it is expressed as follows. Let the result of applying
a cellular-neural algorithm to an array N € K(A, M, V) be N with the
cellular array C(N), corresponding to the result of the computation.
Then for the resulting array the following condition is to be met:

11

®(N)=N. : (10)

2. Starting at any initial cellular array C(N) € K (A, M) the algorithm
should reach a stable state, i.e., no oscillation should occur in the
array.

3. There should be no spurious stable states, which do not represent any
result in the problem.

It follows from above that the methods of weight vector synthesis are
based on solving the set of equations of the form (10), or comparing the
given parameters of the problem with the condition (10). It is not always
possible to perform this precisely, therefore some approximate and iterative
methods are developed and studied. Sometimes, the expression for energy
function increment caused by a state change in a single neuron

AFE; = -2q; Z w(m;, m;)a; (11)
m; €Q(m) -

may be used as well. Till now in the ANN theory there are no methods of
determining the connection weights, which provide all three above require-
ments to be met completely. Though some approaches are developed which
succeeded to come close to the aim [9]. As for weight vector determining in
cellular-neural synthesis, the problem is only touched [8]. We hope that the
capabilities of celullar-neural model would help to develop proper synthesis
techniques.)

Moreover, the learning algorithms are essentially cellular, because the
connection weights are computed as the functions of neighbor neuron states
of the prototypes (stored patterns) the computations being independent for
each neuron and, hence, may be executed in parallel.

The substitution system is formed according to the rules of PSA theory
[3]. The main peculiarity is as follows. The cellular-neural algorithm is rep-
resented by a PSS containing functional substitutions performing sigmoid
function of the inner product of two vectors. These functional substitutions
are structurally similar to the class of Neumann substitutions (the cardinal-
ity of the base is equal to 1).

The PSS should contain also substitutions which makes the algorithm
to stop and to generate a signal of termination when the result is obtained.
Some general techniques for that are described in [3], but in any particular
algorithm this is to be done taking into account the peculiarities of the
problem.

The PSS for weight vector set determining is formed according to the
methods of PSS theory. This “learning” algorithm belongs to a class of
functional PSA’s, operating on the same cellular-neural array, the weight
vector components being considered as cell states.

12

4. Examples of cellular-neural algorithm
application

The expressive capability of cellular-neural algorithm is displayed here by
three simple examples chosen as representatives of three following classes.
of problems: 1) optimization on graphs, 2) retrieval of patterns, and 3)
identification of figures. Some considerations based on the experience of
study and computer simulation are suggested.

~4.1. Optimization on graphs

The synthesis of cellular-neural algorithm for solving these problems consists
of direct. mapping the graph representation onto the cellular-neural array,
the weight vector determination being reduced to the direct comparison of
the objective function expression to that of the energy function (9).

Let a weighted graph G = (V, E), where V = {vy,...,v10} is the set of
vertices, E = {e;; : i,j = 1,...,10} is a set of integers, interpreting the
weights of edges, be given (Figure 2). A path between two given vertices v;

1 Y15
v2 l!)3
I
i 5 2 5
’ ta 2 ';5 I3 8
Iy
U4 4 Vg 1 UT
ls 6 1 le
10 [ve
ls
3 I 1 |7
] 4
V10
Figure 2

and vy is to be found such, that the total weight of its edges is minimal.
The problem is reduced to the problem of searching a circuit of minimal
weight. The circuit is formed by adding an edge between.v; and vy with
€1,10 = 0. The solution is sought as a stable state of a cellular-neural array
corresponding to the minimum of the inverse of the energy function B = —F
(9). So, the set of neural cells is to be isomorphic to the set of simple
circuits, representing the graph, the set of neurons in the state equal to 1
corresponding to the set of circuits forming the sought circuit. The algorithm
is based on the calculation of the increment AB; caused by the change of
the state of the neuron named m; (11), and then changing the states of

13

those neurons whose increments are minimal. The result is obtained when
for all neurons the increments are positive, indicating that B. has reached
its minimum. The synthesis procedure according to Section 3, is as follows:

1. The alphabet A = AgU A, UA,, A = {0,1}, A, = {zo0, 21, 22, 23, k},
A.CN. - o ' C

2. The naming set is the union of two subsets: ‘
MUM', M = {m,,...,mg}, M' = {m},...,m}}. Both are isomorphic to
the set of simple circuits L = {i,,..., Ig} of the graph. The naming functions
used are constants. The templates are defined for each neuron separately,
so that T'(m;) contains m; together with the names corresponding to the
circuits adjacent to /;. For example,

T(ml) = (ml, ma, m3, "19)1 T(m2) = (m21 m;, my, m9)-

3. The weight vectors are computed according to the following assump-
tions:

a) The weight of any circuit ! is the sum of weights of its edges. The
weight of a simple circuit I; is e(l;) = ¢! + ...+ €], where €} is the
weight of edge shared by I; and ;.

b) The weight of a circuit / composed of a subset L = {i},...,IT} of the
simple circuits is as follows:

e)=Y et)-2 ¥ €. (12)

LEL! €Lt

Comparing (12) with (9) it is easy to obtain the expression for computing
the weight vectors. ' :

w(mi,m;) = e(l;), w(m;,m;)=—-2¢!, m;,m; € T(m;).
For example,
v = (13,-4,-10,-2), v, = (9, -4, -4, -10).

4. The substitution set is represented here by two substitutions: 6,
which performs the cellular-neural computation, and 6,2, which performs a
controlling function, changing the threshold at each step of iteration.

6, : {(30: m%)} * {(ml!' mtl)i ceey (I;-‘, m:)(k| m:)} = {(ft'a mi)}a
0y : {(k7 m:)} = {(f! m:)}s ’

where

14

The initial cellular state is chosen arbitrarily, in our case it is C'(N Jo =

{(1,m1), (0,m3), (1, ma), (0, my), (1, ms), (0,me), (1,m7)(0, mg)(1, mg) }.
The results of computations are given in the table bellow.

neuron states energy decrements k B
1,0,1,0,1,0,1,0,1 | —1, -5, -5, =3, =12, 3,0, —19, 10 | —19 | 46
1,0,1,0,1,01,1,1 | -1, —5,-5, -3, 0,3,6, 19,10 | -5 | 29
11,001,011 | =7, 5 5,-5 0,56, 19,20 -7 19
0,1,0,0,1,0,1,1,1 , 1,15 -5 0,56, 19,20| -5 12
0,1,01,1011,1 | 7, 5 13, 5 856, 19, 20 o| 7

-3

C AR B =2 S

As it is seen from the table the result is obtained after the fourth itera-
tion. The sought circuit is the composition of simple ones from the subset
L = {i3,14,15,17,18,lg}, which yields the minimal weight path from v; to vyg
going via the vertices: vy, vs, vg, vg, and having the weight equal to 7.

4.2. Pattern retrieval

The cellular-neuron algorithm for pattern retrieval descends from Hopfield’s
neural associative memory [4]. The problem is as follows. A number of
patterns (prototypes) is given to be stored in the array, weight vector values
providing the correspondence of each prototype to a stable state. So, if the
initial cellular array is set to represent an arbitrary pattern, the algorithm
should start the computations and terminate in a stable state corresponding
to a prototype with closest resemblance to the initial pattern. This class
of problems presents a good illustration of synthesis procedure, where a
cellular algorithm (PSA) is used for weight vector determining, which gives
the possibility to combine the learning and the processing stages.

Let a set of patterns P = {p,,...,p,}, represented by two-dimensional
white-black pictures, be stored in the array. Then the synthesis procedure
is as follows.

1. Following Hopfield’s model, Ao is taken as {1, -1}UN, A, = {z, zq,
X1y++4yTpy V0, ..., Vs }, 7+ 1 is the cardinality of the neighborhood, s — the
number of prototypes.

2. The naming set consists of two subsets M and M’, both being taken
as sets of coordinates in a 3D Eucledian space. The first is the naming
set for cellular-neuron array, where the main computations are performed,

15

M = {(i,7,k)}. The ranges of i and j are defined according to the size of
the patterns, £ = 0,1,...,r + 1. The plane {(3,5,r + 1)} is dedicated for
pattern representation, the cells named {(3, j,0), .., (i, j,r)} are for storing
the weight vector v;; = (]}, ..., w[;). The second subset M’ = {(i', j', h)},
¢,j' ranging asi,jin M, h = 1,..., sis dedicated for storing the prototypes.

3. The method used for weight vector synthesis.is based on a well-
known iterative algorithm of perceptron learning [10]. Here it is presented
in the form of a PSA. The initial array is composed of N and N’, where
N € K(A,M,V) all cell states being equal to 0, N’ € K(A, M’) whose
planes represent the prototypes. The substitution set is & = {61,6.}, 6,
performs the calculation of weights, 8, transfers the prototypes from N to
N'. The geometrical representation of the configuration S’ with (r=9),
used in 6, is shown in Figure 3. :

.) z2 z3
l : J
. Ty | To | T

L

z‘a/'.t1 zs
(5,7,0) | vo | I { i, 3,9)

Figure 3

01 {(vk (3,5, k) } * {(o(s, 4, 9, (z1, (- 1,5 - 1,9)),...,
7 (zs (i+ 1,74+ 1,9))(vo, (4,5,0)), .-, (vs, (4, 4, 8))}

= {(£, (,4,k)},
025 {(o, (7B} = (v, (67, O],

f= { v if 02;;1 z;v; >0,
v+2z;z; otherwise.
These two substitutions show only the main operations of the algorithm.
Some substitutions should be added to make them be applied alternatively,
and to transfer the prototypes in turn until the weight become stable.
4. The main algorithm for the retrieval of a stored pattern consists of a
single substitution, in which the same configuration S is used.

0: {(I, (’)],9)} * {(zl(i— 1»] =5 1’9» ey (z& ('+ 11] + lv 9))
(v, (£,5,0)), .-, (v8, (3, 5,8))} = {(f, (3,5,9)},

where

16

f...—.{ 1, if El_oz,v,>0

-1, otherwise.

The simulation of the algorithm shows that all prototypes correspond to
stable states and more than r patterns may be stored.

4.3. Image processing

Here the problem of making some transformation on images is briefly con-
sidered. The image is given in a colored or in a multigraduated gray form.
The most typical problems are the following: to classify the cells or the ar-
eas by colors, to determine the locations of some given symbols or figures,
to clean the image from the noise, to distinguish contours, edges, angles,
etc. The peculiarity of cellular-neural algorithms for these problems is in
that the weights are associated with the configurations (cloning templates
in [6]) of the substitution rather than with the cellular-neural array. In the
neural-cellular algorithm synthesis the alphabet is the set of codes of the
colors, representing the image. The naming set is a set of coordinates of a
2D plane the size being determined by the size of the image. The templates
are usually taken in the form of squares or crosses. The main difficulty is
to determine the weight vector. There is no regular methods for doing this,
except the intuitive choice with subsequent simulation. The substitution set
consists of functional substitutions, the function being in the form of (6).

5. Conclusion

A formal model for fine-grained parallel computations is presented. The
model combines the features of Parallel Substitution System and Artificial
Neural Nets. It is shown that such combination provides new useful possi-
bilities in representation, synthesis, and simulation of neural-net algorithms
with bounded number of each neuron connections. The future investigations
are to be directed to develop method of cellular-neuron algorithms synthesis
which provide satisfactory quality of problem solution and to define the field
of model application.

References

(1] J. von-Neumann, Theory of Self-Reproducing Automata, ed. A.W.Burks, Uni-
versity of Illinois Press, Urbana and London, 1966. .

[2] W.S. Mc-Culloch, W. Pitts, A Logical Calculus of the Ideas Immanent in
Nervous Activity, Bull. of Math. Biophysics, Vol. 5, 1943, p. 115.

17

B] S. Achasova, O. Bandman, V. Markova, S. Piskunov, Parallel Substitution
Algorithm. Theory and Application, World Scientific, Singapore, 1995.

H4] JJ. Hopfield, D.W. Tank, Computing with Neural Circuits: a Model, Science,
Yol. 233, 1986, p. 625.

/5] J.H.M. Korst, E.H.L. Aarts, Combinatorial optimization on Boltzmann ma-
chine, Journ. of Parallel and Distributed Computing, Vol. 6, 1989, p- 331.

6] L.O.Chua, 1.Yang, Cellular Neural Networks: Theory amd Application, IEEE
Transactions, Vol. CS-35, No. 10, 1988, p. 1257.

{71 J. Zhang, I. Zhang, D. Yan, A. He, L. Liu, Local interconnection neural network
and its optical implementation, Optics Communication, Vol. 102, 1993, p. 13.

[8] D. Liu, A. Michel, Sparsely interconnected artificial neuron networks for asso-
cative memories, Lecture Notes in Comp. Sci., Vol. 606, p. 155.

9] A.M. Michel, J.A. Farell, H. Sun, Analysis amd synthesis techniques for Hop-
field type synchronous discrete time neural networks with application to asso-
cative memory, IEEE Transactions, Vol. CS-37, No. 11, 1990, p. 1356.

{10} F. Rosenblatt, Principles of Neurodumamics, Washington, Spartan, 1959.

