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Relationships between cellular automata model
parameters and their physical counterparts∗

Olga Bandman

Abstract. When constructing a Cellular Automata (CA) model of a natural pro-
cess one meets a problem of determining scaling relations, i.e. the quantitative
relationships between the CA dimensionless parameters and corresponding values
characterizing the prototype process given in terms of a physical system of units.
The problem has no general solution. Moreover, till now there is no strict statement
and detailed investigation of the problem despite the fact that for some classes of
CA models certain approaches have been proposed. The most formalized and sub-
stantiated approach is based on the similitude theory, which studies dimensionless
characteristics of natural processes that are equal both for a model and its pro-
totype. Certain attempts have been made to use the approach when developing
and investigating particular CA models of natural phenomena, but no systematic
methods have been created. In this paper the problem is discussed, and basic
principles of finding scaling relations are formulated and shown at work for two
most advanced classes of CA models: Lattice–Gas CA simulating viscous flows and
stochastic CA models of Reaction–Diffusion processes.

1. Introduction

The CA is a mathematical model, which maps a natural process onto a se-
quence of spatial configurations, each being a cellular array whose entries
are states, given by a finite set of symbols that characterize a simulated
phenomenon [1]. The array is given by a lattice of finite size with the dis-
tance between the adjacent cell centers ∆l = 1. Each next configuration
results from the current one by application of local transition rules to all
cells of the array. The cell states adjustment happens at discrete time mo-
ments t = 0, 1, . . . , t̂, t̂ being the final iteration number. Briefly speaking,
a CA model is represented by a set of parameters Π = {π1, . . . , πq}, de-
noting the subject and the medium of the process, and a set of transition
rules Θ = {θ1, . . . , θn}, denoting operations governing the process evolution.
The CA models are highly abstract, parameters π ∈ Π being discrete and
dimensionless. In practice, it makes CA modeling valuable only when the
relations µ(π) = π′/π between parameter values expressed in physical terms
π′ and their model dimensionless counterparts π are available. Hence, the
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problem of determining µ(π) also being referred as scaling CA parameters
is an important part of the CA model synthesis.

The CA model parameters may be divided into the three groups:

• Basic parameters of the process domain: the space step ∆l, and the
time step ∆t;

• Cell states, representing objects of simulation: density of a certain
species (integer), averaged density of a certain species (a real num-
ber), dimensionless velocity (Boolean vector), averaged velocity (a real
number), and pressure (integer).

• Medium properties expressed in terms of CA dimensionless character-
istics: diffusion coefficient, heat and electric conductivity, viscosity,
resistivity, reaction rate, etc.

The problem is also complicated by the diversity of the CA models prop-
erties related to the features of simulated phenomena which may have an
unpredictable behavior, exhibiting all features of complexity [2].

Based on the current state of the CA simulation experience, the two
classes of CA models are distinguished:

• Lattice–Gas CA models are the most known and well studied models
of a viscous flow called FHP-models according to the names of the au-
thors [3]. The models are synchronous CA with a hexagonal array of
cells, where particles are moving and colliding governed by probabilis-
tic transition rules. Although these models are not intensively used
due to the Reinolds number limitation, they have served as prototypes
for a series of more practical modifications [4–6]. Hence, the methods
of the CA parameter scaling for FHP models is considered to be basic
for the whole Lattice–Gas CA class.

• Reaction–Diffusion CA models. This class comprises CA models sim-
ulating reaction–diffusion processes on micro and nano levels, that
are used in scientific investigation of heterogenous chemical reactions,
phase transition phenomena, biological and ecological systems [7–9].
The processes under simulation are represented by a set of interacting
particles, which move, collide, and undergo transformations, all those
events being represented by probabilistic transition rules.

The parameter scaling may be performed correctly when a simulated
phenomenon is completely determined, i.e. properties of substances and a
medium involved in the process are known. This problem is quite different
from that of finding unknown values of constants, which should be imple-
mented by solving the inverse problem. The latter is similarly stated as is
done in the numerical analysis and hence not considered here.
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In what follows, an approach to the CA models parameters scaling based
on similitude theory [10] is proposed. The main idea is to determine a
dimensionless characteristic for a simulated process, which is equal both
for the model and the prototype called the process invariants, and use its
value for finding the relation between all the other CA parameters and their
physical counterparts. Further on, to be concrete in the state of the problem,
µ(π) is expressed in MKS unit system (meters, kilograms, seconds).

2. Formal problem statement

The formalism that is further used for representing CA models is Par-
allel Substitution Algorithm [11], modified for the CA simulation objec-
tives. According to this, a CA model ℵ is represented by four notions
ℵ = 〈A,X,Θ, %〉, where A is a set of symbols of any kind, called state alpha-
bet, X = {x1, x2, . . . , xN} is the finite set of cell names, Θ = {θ1, . . . , θn}
is a set of local operators, and % is the mode of operation, which determines
the time-space distribution of operator application. The central concept in
the CA model is a cell, which is the pair (a, x), where a ∈ A is the cell state,
and x ∈ X is the cell name. The set of cells Ω = {(ai, xi) : i = 1, . . . , N}
containing no cells with identical names is called a cellular array.

On the set X, the naming functions ϕ(m) are defined whose values
indicate to the location of cells communicating with a cell named x. When
the Cartesian coordinates X = {(i, j)} are used for names, the naming
functions are given in the form of shifts φk = (i+a, j+b), a, b being integers.
A set of the naming functions

T (x) = {x, φ1(x), . . . , φq(x)}, q � |X|, (1)

is referred to as the neighborhood of x. A subset of the cells

S(x) = {(u0, x), (u1, φ1(x)), . . . , (uq, φq(x))}, (2)

having the names from T (x), is called the local configuration with T (x) as
its underlying neighborhood. A local operator θi ∈ Θ is expressed in the
form of a substitution [11] as follows:

θ(x) : S(x) ? S′′(x)→ S′(x), ∀x ∈ X, (3)

the underlying neighborhoods of S(x) and S′(x) being identical, i.e. T ′(x) =
T (x), and that of S′′(x), T ′′(x) being allowed to be arbitrary.

An application of θ(x) to a certain cell (u, x) ∈ Ω consists in removing
the cells of S(x) from Ω and replacing them by the cells given in S′(x). Such
a concept of a local operator allows one to simulate living organisms which
may grow and die. When simulating physical phenomena stationary local
operators [11] are used which do not change the naming set, only replacing
the states of cells from S(x) in (2) by the states of cells from
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S′(x) = {(u′0, x), (u′1, φ1(x)), . . . , (u′h, φh(x))},

u′ being obtained according to transition functions

u′k = fk(v0, v1, . . . , vq), q = |S(x)|, h = |S′(x)|, h < q. (4)

There are two basic modes ρ = {σ, α} of ordering a local operator ap-
plication to x ∈ X to perform the global transition Θ(X) from Ω(t) to
Ω(t+ 1).

Synchronous mode σ of the operation provides for any substitution θ ∈ Θ
to be applied to all (u, x) ∈ Ω(t), the cell states being adjusted in any order
or all at once in parallel.

Asynchronous mode α of the operation suggests the cells x ∈ X to be
chosen at random, the cell states in S′(x) to be computed and adjusted
immediately.

In both cases, the transition to the next global state is referred to as
iteration occurs when all substitutions θ ∈ Θ are applied to Ω(t).

The sequence
Ω(0),Ω(1), . . . ,Ω(t), . . . ,Ω(t̂)

is called CA evolution, t̂ denotes a terminal iteration number.
Performing a CA simulation task comprises the three stages:

1. Constructing the CA model, i.e. determining ℵ = 〈A,M,Θ, %〉 and its
initial global state Ω(0);

2. Obtaining the resulting data by running the CA program; and

3. Interpreting the results by transferring the model parameters to ha-
bitual physical values.

The first and the third stages require the scaling coefficients to be known.
The problem is solved differently for different types of CA models, but the
techniques rely on the same above-mentioned principles and the same for-
malism.

3. The scaling coefficients in Lattice–Gas models of viscous
flows

The Lattice–Gas CA models comprise a special class of CA intended to sim-
ulate processes in gas and liquids. A medium is represented by abstract par-
ticles, moving and colliding in a discrete hexagonal space. The most known
and well studied models comprise a series of probabilistic Lattice–Gas CA
called FHP-models according to the names of the authors [3]. Formally, they
are synchronous CA ℵ = 〈A,X,Θ, σ〉, where X = {xk : k = 1, 2, . . . , N}
enumerates hexagons on a 2D plane. A cell neighborhood includes the cell
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names of 6 adjacent cells. Accordingly, 6 moving and a number of the rest
particles may be located in a cell. To represent the cell states with 6 mov-
ing and one particle at rest (FHP–1), the alphabet A = {s = (s0, . . . , s6)},
|A| = 27 comprises Boolean vectors 7 bit long. A component of the state
vector si = 1 indicates that the cell (s, x) has a particle moving towards
the ith neighbor (i = 1, . . . , 6) with the velocity vi = 1, or if the cell has a
particle at rest, then s0 = 1 having the velocity v0 = 0. The particle mass
is equal to 1.

Two local operators determine the functioning of a CA. The first θ1

makes all particles in all cells simultaneously propagate: one cell towards
the neighbor pointed by its velocity vector. It is convenient to represent θ1

as a set of six substitutions θ
(i)
1 , i = 1, . . . , 6, each being applied to the ith

component si of the state vector

θ
(i)
1 : {(si, x)} → {(si, φ(i+3) mod 6(x)}, i = 1, 2 . . . , 6. (5)

The second contextless local operator simulates the collision of particles:

θ2(x) : {(s, x)} → {(s′, x))}. (6)

The transition function s′ = f(s) is given in the form of a table, some
arguments having two equiprobable outcomes. The collision rules principles
are shown in Figure 1.

The mode of operation of Lattice–Gas CA is two-stage synchronous, i.e.
each iteration consists of the two stages: at the first stage, six propagation

Figure 1. Graphical representation of collision operators in FHP-1 Lattice–Gas
model. Deterministic rules are given on the left, the probabilistic ones –– on the
right
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operators (5) act simultaneously, at the second stage the collision opera-
tor (6) completes the transition to the next global state.

In [3], FHP-model is proved to be identical to the Navier–Stokes equa-
tion in describing the viscous flow velocity. A 3D version of the FHP-model
called RD-1 is also known [4]. Its naming set is a discrete space with cells
having the form of rhombododecahedra. The neighborhood of RD-1 has
12 cells. The model allows the simulation of flows in a large enough space,
as compared to the FCHC model proposed and investigated in [3]. Although
the model approximately meets the isotropic conditions, its experimental
tests have shown an acceptable plausibility to the phenomenon being simu-
lated [4].

The Lattice–Gas CA models dimensionless parameters can be divided
into three groups:

1. Basic parameters associated with all types of CA models: ∆l = 1,
i.e. the distance between the adjacent cells centers (spatial step), and
∆t = 1, i.e. the duration of an iteration (temporal step).

2. Parameters inherent to a concrete Lattice–Gas model: the sound speed
vs, the mean particle density per cell at equilibrium ρ0, the mean
particle density per the velocity direction d, and the viscosity ν(d).1

For the model FHP-1, that is further used in Example 1, the above
parameters have the following values [3]:

vs =
1√
2
, ρ0 ∈ [1, 3], d =

ρ0

6
, ν(d) =

1

12d(1− d)3
− 1

8
. (7)

3. Parameters, characterizing the process under simulation: the velocity
field V = {(vx, t) : x ∈ X, t = 0, 1, . . . , t̂}, the pressure field P =
{(px, t) : x ∈ X, t = 0, 1, . . . , t̂}.

The task of simulation fluid flow through a reservoir is usually stated as
follows.

Given are the following values in physical units:

• the size and geometry of the reservoir X ′ [m] including a subset of
input cells X ′in and a subset of output cells X ′out.

• the fluid density ρ′ [kg/m3],

• the fluid viscosity ν ′ [m2/s], and

• the pressure drop ∆p′ [kg/(m · s2)].

To be obtained are the following data also in physical units:

1As distinct from [3], we use the term mean particle density per cell for denoting mean
value of

∑6
i=1 si, while in [3] this term is used for denoting d.
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• the field of velocity vectors V ′ = {(u′x, x) : ∀x ∈ X ′}, u′x [m/s];

• the field of pressure values P ′ = {(p′x, x) : ∀x ∈ X} , p′x [kg/(m · s2)];

• any additional characteristic of the flow, (i.e. the flow output per sec-
ond, the time of transferring a given volume of liquid) may be calcu-
lated provided the above two fields are obtained.

In-between the above parameter transformations, the simulation proce-
dure is performed, that consists of constructing the CA, programming and
running a CA program, and scaling the results obtained.

• CA construction. Since the alphabet, local operators and operation
mode are defined by Lattice–Gas model, the construction of the CA
consists of the two procedures:

1) Transform the given X ′ [m] into the hexagonal naming set X, and
provide cells of X with initial states to obtain Ω(0). This requires
∆l to be known, which may be chosen according to required spatial
precision of the simulation results. It is important to remark that only
one basic parameter scale is allowed to be chosen, the other is related
to it through a fluid viscosity value.

2) Provide cells of Xin with initial states to obtain Ω(0). It is done by
choosing the mean density per cell ρ0 according to (7) and calculating
the mean particle density p = ρ0v

2
s .

• Running the program. The CA model should be programmed and run
until the stationary process is attained, resulting in the velocity and
pressure fields:

V (X) = {(〈vx〉, x) : ∀x ∈ X}, P (X) = {(〈px〉, x) : ∀x ∈ X}, (8)

where 〈vx〉 and x〈px〉 are averaged over a given vicinity of the values
x of v and p, respectively.

• Scaling results. Resulting values from (8) should be expressed in KMS
physical units as

V ′(X) = {(v′x, x) : ∀x ∈ X}, P ′(X) = {(p′x, x) : ∀x ∈ X},

where v′x = µv · 〈vx〉, p′x = µp · 〈px〉, the scaling coefficients being
calculated according to the following scaling expressions:

µν =
ν ′

gν
[m2/s], µv =

muν
∆

[m/s], µρ =
ρ′

ρ0
[kg/m3],

µp =
p′

p
[kg ·m/s2], ∆t =

µl
µv

[s]. (9)
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The simulation results together with the scaling coefficients comprise a
complete set of data for determining any additional value about the simu-
lated process, such as the fluid flow per second, the time required to transfer
Q kg through the reservoir, the Reinolds number.

Example 1. The Lattice–Gas FHP-1 CA model is used for simulating the
flow of heavy oil through a tube. The following data are given:

• A tube with diameter 0.7 m and length 7 m. On one end of the tube
the pressure p′in = 3 atm is imposed, the other end is opened to be
left, i.e. p′out = 1 atm. So, the pressure drop ∆p′ = 20000 kg/(m · s2).

• Heavy oil properties: kinematic viscosity ν ′ = 1.4 · 10−3 m2/s and
density ρ′ = 880 kg/m3.

Simulation aims to obtain velocity and pressure fields.

To construct the Lattice–Gas CA, the model constants ρ0 = 2.4 and d =
0.4 are chosen, and the dimensionless viscosity and the correcting coefficient
ν(d) = 0.839, g(d) = 0.166 are computed.

The basic scaling coefficient ∆l = 0.01 m is chosen. The cellular array
size and the naming set is designed: |Xi| = 700, |Xj | = 70, Xin = {(0, j) :
j = 0, . . . 69}, Xout = {(699, j) : j = 0, . . . 69},

The initial state Ω(0) = {(sin, x) : x ∈ Xin, (0, x) : x ∈ X \Xin}, where
(sin are the state vectors with |sin| = ρ0/vs = 1.2, chosen with equal proba-
bilities to be the states of x ∈ Xin.

The model ℵ is programmed and run until the global stable state is
reached, and, hence, fields of averaged velocities V (x, t) and the pressure
values P (x, t) are obtained.

The scaling coefficients are calculated according to (9):

µν =
1.4 · 10−4

0.839
= 1.66 · 10−4 m2/s, µρ =

880

2.4
= 336.7 kg/m3,

µv =
µν
∆l

= 0.0167 m/s, µp =
20000

1.2
= 16667 kg/(m · s2).

The obtained values 〈vx〉 and 〈px〉 are expressed in KMS units by mul-
tiplying them by the corresponding scaling coefficients. The resulting mean
velocity vector length is 0.8, which yields v′m = 0.8 · 0.0167 = 0.0133 m/s.

The Reinold number of the process is as follows:

Re′ =
l′0v
′
m

ν ′
=

0.7 · 0.0133

1.4 · 10−4
= 83.5, Re =

|Xi| · vm
ν

=
70 · 0.8
0.839

= 83.5,

where Re′ is computed in physical terms, Re–– in the Lattice–Gas CA terms.



Relationships between cellular automata model parameters . . . 9

4. The scaling coefficients in stochastic reaction-diffusion
CA models

Mathematical modeling and computer-aided simulation are now primarily
focused on nonlinear dissipative phenomena in chemistry and biology [1],
rather than on conventional physics. Formally, RD CA model is character-
ized by Boolean, symbolic or integer alphabet, the Cartesian lattice-like cell
naming set X, a set of substitutions Θ = {θ1, . . . , θn} corresponding to a
set of elementary actions. In a simple case, Θ contains the two substitu-
tions: θd is the modeling diffusion, and θr is the modeling reaction. In a
general case, there may be any number of both. The mode of operation is
asynchronous (ρ = α).

The scaling problem solution for RD CA model may be correctly stated
if all properties of the species, involved in the process under simulation, are
known, and hence, for all components of scaling coefficients can be obtained.

There are a number of diffusion CA models, described in [12] in detail.
All of them are characterized by a dimensionless parameter, called diffu-
sivity. This parameter is obtained analytically or experimentally and may
be tuned by a varying probability of the corresponding substitution. It is
considered to be an invariant, like the Reinold number for fluid flows, being
equal in physical terms to

D =
c∆t

(∆l)2
, (10)

where c [m2/s] is the diffusion coefficient of the substance, ∆l and ∆t are
the scaling coefficients for length and time.

Since in any certain simulation task c is known, it is sufficient to choose
one of the basic parameter scales for finding the other. Usually, the CA size
is determined based on the required resolution of a resulting spatial function
and available computing resources. Herefrom (10), the time scaling coeffi-
cient is direct. The concept of reaction in RD phenomena is assumed to
include in addition to chemical reactions all kinds of particle transforma-
tions, such as adsorption, desorption, phase transition, mostly inherent to
micro and nano kinetic processes. The displacements of particles are repre-
sented as the diffusion or the convection steps, obeying conservation laws,
while transformations simulate the phase transitions, or chemical reactions,
or some biological transmutations, being dissipative by nature. All reac-
tions are simulated by probabilistic substitutions θi ∈ Θ, probabilities being
computed depending on the reaction rates.

Accordingly, the mode of the CA model operation is stochastic [13],
which is an extension of the asynchronous mode, operating as follows:

• a cell x ∈ X is chosen with probability px = 1/|X|;
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• a substitution θi ∈ Θ, i = 1, . . . , n, is chosen with probability pi, and
immediately applied to x;

• an iteration consists of repeating the two above-mentioned time steps
|X| · |Θ| times.

The stochastic CA model parameter set contains the three groups:

• the two basic parameters ∆l and ∆t,

• dimensionless properties of the species, involved in the process (e.g.
density, viscosity, diffusivity), and

• substitution probabilities reflecting the rates of corresponding elemen-
tary actions involved in the process.

The above parameters are obtained when a CA model is constructed
using the following given data:

• the size of an area under simulation in meters,

• properties of the species involved in the process, expressed in physical
units,

• the rates of elementary actions, usually given as rate constants k [s−1].

In the first group, ∆l is chosen according to a required spatial resolution
of simulation process, ∆t is then calculated according to (10). The scaling
coefficients of the second group is calculated as the ratio µw = w′/w, where
w and w′ are characteristics of any property of a species involved in the
process under simulation.

The computation of substitutions probabilities in the stochastic CA mod-
els is the most complicated part of the CA synthesis. There are the following
three reasons for it.

1. The rates of many elementary actions are not known exactly, espe-
cially, the rates of complex chemical reactions, the rates of nano par-
ticles sticking or agglomeration.

2. The rate of diffusion is some orders lower than that of reactions. In
order to simulate a process, where they act in common, the two time
scales are used: the diffusion time scale ∆td, and the reaction time
scale ∆tr, such that ∆tr = κ∆td, where κ is an integer usually that is
usually equal to some tens hundreds.

3. The reaction rate constants are usually given as real numbers k1, . . . ,
km [s−1], m being the number of reactions. Probability values are
computed according to the stochastic CA methodology [14] as follows:
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pi =
ki∑m
j=1 kj

, ∆tr = k−1
min. (11)

In order to pack both time scales into a common iterative process, the
iteration should include κ applications of θd and an applications of θi ∈ Θ
with

∆t = ∆tr + κ∆td. (12)

The substitution is determined as follows: a random number in the interval
[0, 1] is got, if its value is between pi−1 and pi, then θi is applied.

The simulation procedure aimed at obtaining:

• the fields of averaged densities

Ri = {(〈ρi〉, x), ∀x ∈ X}, i = 1, . . . ,m, 〈ρi〉 [kg/m3],

• the time per iteration ∆t [s].

This is done by executing the following computations:

1. Choose ∆l according to the required resolution, which is associated
with the smallest size of a particle and determine the size and geometry
of X.

2. Define the state alphabet as a set of symbols corresponding to the set
of species in the process, and calculate the scaling coefficients of their
properties.

3. Compute probabilities pi, i = 1, . . . , n, according to (11), and write
down the substitutions θi ∈ Θ.

4. Write the program and run the CA model until the required resulting
fields Ri(X) for all i = 1 . . .m are obtained.

5. Transform the obtained dimensionless values 〈ui(x)〉 into the physical
terms: u′ = u/µu, where u being any dimensionless parameter.

Example 2. A simplified model of epitaxial growth of a silicon (Si) crys-
tal. The process [15] comprises the two following actions: 1) adsorption
of Si-atoms from an external gas flow; 2) the diffusion of absorbed atoms
(adatoms) over the crystal surface. Being deposited on the surface layer-
by-layer adatoms form pillars and islands of different height and size. The
top atom on a pillar may diffuse to the adjacent site allocated higher than
its neighbor. The process is simulated by a stochastic CA= 〈A,X,Θ, σ〉,
where A = {0, 1, . . .}, X = {(i, j) : i, j = 0, . . . , N}, N = 200× 200. A cell
(u, (i, j)) corresponds to a site on a Si crystal surface, the thickness of the
adsorbed layer being equal to u atoms. The cell size is equal to ∆l × ∆l,
these values being equal to the size of a conditional atom, the set of substi-
tutions Θ = {θads, θdiff}, θads being responsible for absorption and θdiff –– for
diffusion:
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θads : {(v, (i, j))} pads−→ {(v + 1, (i, j))},

θ
(l)
diff : {(v, (i, j)), (vl, φl(i, j))}

pdiff−→ {(v − 1, (i, j)), (vl + 1, φl(i, j)},
l = 1, 2, 3, 4.

Here φl(i, j) is a lth neighbor of the cell (i, j) such that v > vl.
The simulation process is performed as follows:

The adsorption rate constant kads is obtained according to the given
partial pressure Pads in the gas over the crystal surface and the sticking
coefficients. The simulation is carried out for kads = 0.4 s−1.

The diffusion rate constant kdiff depends on the bond strength between
the adjacent adatoms B = 0.08 in the following way. If a cell has n adjacent
cells occupied by adatoms, then kdiff(n) = 0.08n s−1. According to (11) the
probabilities

pads =
kads

kads + kdiff(n)
, pdiff =

kdiff

kads + kdiff(n)
.

Since pdiff depends on n, its value varies from cell to cell, being equal
to 8 · 10−2, 64 · 10−4, 512 · 10−6, for n = 1, 2, 3, respectively. The ratio
between the reaction and the diffusion time scales may be chosen as κ = 102.
Hence, according to (12), each iteration includes an application of θi and
100 applications of θdiff .

Program output contains the CA evolution Ω(t), the total islands perime-
ter Per(t), the average expectancy Hav(t), and the dispersion of island height
Hmax(t), Hmin(t).

To express all the results obtained in the physical terms ∆l should be
chosen as a Si molecule size, let ∆l = 10 Å, then Per′(t) = ∆l · Per(t),
H ′av(t) = ∆l ·Hav and the dispersion of H are computed in the same way.

Figure 2. Simulation results of the epitaxial growth process: (a) cellular array
after t = 100,000 iterations; intensity of the gray color corresponds to the height of
the island; (b) dependence of total islands perimeter P (t) during the process
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A snapshot of the CA evolution is shown in Figure 2a, where the formed
islands on the crystal surface are seen. In Figure 2b it is seen that Per(t)
oscillates.

5. Conclusion

The problem of finding the adequate relations between a physical phe-
nomenon and its CA model is discussed. Some general principles are for-
mulated and, based on them, the scaling coefficients are derived apart for
the two different types of CA models: lattice–gas CA for the simulation of a
viscous flow, and the stochastic CA for the simulation of reaction–diffusion
processes. It is clear from the presented examples that the construction
of a CA model as well as transformation dimensionless values obtained by
running the programmed CA model, are significant parts of the CA simu-
lation procedure. A method proposed for finding the relations between the
CA model parameters and their physical counterparts is based on the theory
of similitude and requires a profound knowledge of physical fundamentals of
a phenomenon under simulation.
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