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Discrete cellular neural networks
for image processing

O. Bandman, S. Pudov, and A. Selikhov

A discrete time version of Cellular-Neural Network (DCNN) is a paradigm of
neural networks that has the realistic perspective to be implemented in VLSI. An
investigation of DCNN capabilities for image processing is attempted. It is done
through detailed study of two typical concrete problems: 1) associative storing,
retrieving and restoring written literals, 2) image differentiation and integration
(constructing contours, isolines, shadows). A general theoretical background is
given in brief, and computer simulations results are presented.

Introduction

Cellular-Neural Network (CNN) was introduced in [1] as an analog comput-
ing system. It is believed to be best suited for solving tasks, characterized
by the locality of information needed by a certain cell to determine its future
state. Most of the efforts have been directed to apply CNN for modeling
gas and hydro dynamic which is usually represented by partial differential
equations. A discrete version of CNN has also appeared [2], and, naturally,
it was intended to solve tasks which traditionally belong to discrete domain.
Nevertheless, the state of the art is at such a level that there is no complete
answer on the questions: what are the capabilities of discrete cellular-neural
networks in image processing, what is the dependence of solution quality
of time and space complexity of DCNN, what may be the cost of hard-
ware implementation? In this paper a partial answer to above questions is
attempted through detailed study of two image processing problems:

1) associative retrieval of stored patterns (cellular version of the Hopfield
neural network [3]) and

2) differentiation and integration of images [4] (contour extraction, iso-
lines construction). :

The above problems represent typical versions of DCNN. The first version
is a discrete Hopfield’s neural network with regular connection structure.
Connection weight values depend on patterns to be stored and are deter-
mined by special learning procedure. The second CNN version is closer to
the cellular automaton. It is completely homogeneous, since all cells have
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not only identical connection structure, but also identical set of weight val-
ues, depending on the processing algorithm.

The paper contains five sections. In the second one main definitions and
theoretical propositions are given. The third section is devoted to cellular-
neural associative memory (CNAM), in it learning and retrieving algorithms
are proposed and simulation results of recognizing distorted literal are pre-
sented. The fourth section contains an approach to the design of image
processing algorithms and shows pictures obtained by simulation. The pa-
per terminates with a Conclusion and References.

1. Formal representation of DCNN

A DCNN is a model of computation, which is performed over an array of
cells, (sometimes referred to as pizels), each cell being characterized by a
state and a name. States are from a finite set of numbers (representing
colors), names are cell positions in the array. The array may be thought of
as a network of cells, each cell being connected with a restricted amount of
neighboring ones. Each connection is assigned by a real number (connection
weight), whose value reflects the strength of two cells interaction. The image
to be processed is given as an initial array. Computation is a synchronous
iterative procedure. At each step every cell computes a threshold function
of its neighbor cell states and changes (or does not change) its state accord-
ing to function value. The computation stops, when all cell states remain
unchanged, indicating that the system is in a stable state and the result
of the problem is obtained. The main difficulty in DCNN synthesis is to
provide the equivalence between stable states and solution results for any
initial array state. It is achieved by determining proper connection weights
which is done by synthesis or learning techniques.

Formally, a DCNN is defined by three notions: (C.W.®). Here C is a
rectangular array of m rows and n columns of cells, represented by pairs
(a, (7)), where a is from an alphabet, (ij) is a cell name. W = {W;;)} is
a set of weight vectors of the form W;; = (wy, ..., wy). wi being the weight
of the connection of the cell named (ij) with its k-th neighbor. @ is the
set of instructions according to which DCNN operates. Cell neighborhood
is defined by a template

T(zJ) = {Qol(ij)?"W"PQ(ij)}' (1)

where ¢k (if) is a naming function, identifying the name of the k-th neighbor
of the cell (e, (ij)) (Figure 1). An array, whose names are from T (ij) and
states are variables (see Figure 1), is called a floating subarray

S(t) = {(21,01(25))s - - - (Zq: (85} (2)
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Figure 1. Spatial representation of templates T} and T,
and a floating subarray generated by T,

The value of S(ij) when applied to a certain array C' is a subarray of
C', obtained by substituting the state and the name of (ak, pr(ig)) € C!
for zx and ¢i(3j) in (2). In what follows it is more convenient to de-
fine cell neighborhood notions in vectorial form, X;; = (2y,...,2,) and
Qij = (ay,..., a,) being referred to as variable neighborhood and state neigh-
borhood vectors, respectively. DCNN operates according to the following
procedure.

DCNN operating procedure. Let C (t) be the array at t-th step. Then:

¢ All cells in C(t) compute the function

b if X,‘j(t) * VV;'J' (t) >0,
¢ otherwise,

F(Xi5(t), Wi;(8)) = { (3)

and change their states as follows

ai;(t + 1) = f(Xi;(t), Wij(2)). ()

In (3) “#” denotes scalar multiplication, b, ¢ belong to state alphabet.

e I C(t+1) = C(t), then C(t) = ®(C(0)) is the result of the computa-
tion.

Determination of connection weights (DCNN synthesis procedure) pro-
ceeds from the requirement for wanted result to meet a network stability

condition, which is expressed by the minimum of the Liapunov function [3],

E=- Z ai;(Wi; * Qij), (5)
7

Moreover, the strategy for constructing synthesis procedure should be

grounded on the quest to provide two following dynamic properties of
DCNN:

1) starting from any C(0) the computing procedure should reach a stable
state in a finite number of steps termination property, '
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2) the number of unwanted stable states should be minimal (minimum of
spurious states).

Naturally, synthesis procedure strongly depends on the task DCNN
should perform, what is shown in the following sections.

2. Storing and retrieving patterns of literals

Though the cellular algorithm for storing and retrieving distorted patterns,
referred to as CNAM, is a cellular version of the well-known Hopfield’s as-
sociative memory [3], no learning method elaborated for it, may be used for
CNAM. There are two reasons. Firstly, they are based on solving matrix
equations which is not efficient when the weight matrix is sparce. Secondly,
the cellular learning algorithm is preferable, since it may be realized in a
CNAM to be learned. Reasoning from this we have proposed a learning
algorithm [5], based on Rosenblatt’s concept of linear separability. The al-
gorithm is as follows.

CNAM learning algorithm. Let P = P°,..., PL~1 be a sequence formed
of patterns to be stored in CNAM.

Step 1. A sequence P’ = P!, P, .., is formed by repeating P many times
and introducing a unique top indexing t = 1,...,(L - 1),L,L +
1,...,L — 1 iterations dealing with all P* from P being called a
macroiteration.

Step 2. Initial values of vector W;; components are chosen arbitrarily, a

learning parameter a?j and a macroiteration counter 7 are set to

the given number U.

Step 3. ‘A macroiteration starts. The value u;(t) is set to oo, then Step 4
is executed for the whole macroiteration.

Step 4. Weight vectors W;; for each (i5) are updated as follows:

i Wt-tj, if “Ej( i Wntj) > O’ﬁj’ (6)
ij VV:; + qu fj otherwise,
uf; (¢ + 1) = min{ (T (1), 0f;(Q%; « Wi)}- )

Step 5. If 7 = 0 and no W;; has been changed during the macroiteration,
then the computation stops. Otherwise, if any W;; is changed, then
go to Step 3,if 7 > 0, then

a;-rj_l = max(dj;, pij (). (8)
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Figure 2. The process of retrieving the stored figure “2”
when a distorted pattern is an input

In the above algorithm it is assumed that selfconnection weights w;; = 0
for all cells. Nevertheless, theoretical analysis and simulation results show
that selfconnection influence is essential. Proceeding from the requirements
of minimizing a number of unwanted stable states the following expression
for optimal selfconnection values is obtained:

wi = m}én (W;j + a,-ng), (9)

The above learning and retrieving algorithms were applied to design and
study a number of CNAMs, storing latin and russian literals and figures
(Figure 2). The computations were simulated with the help of a special
program package, called Animated Language Tools (ALT) [6], which makes
run cellular algorithms in quasiparallel mode and provides facilities for ob-
serving and controlling computation process in any detail length level. Here
are some results of experimental simulations, which allow to assess CNAM
capabilities. The array with 20 x 20 bistable cells and ¢ = 5 x5 template size
has been learned to store up to 50 literals. Such an array restored 60-70 %
of 1-distortions in input patterns (k-distortion of a pattern differs from it
in k cell states). Introducing selfconnections according to (9) increased this
figure up to 90 %. When storing 10 literals, restoration of all 1-distortions
are surely guaranteed.

3. Image differentiation

A wide class of image processing tasks are based on marking the borders
of areas, characterized by certain parameters, or, inversely, on coloring over
the domains of cells having given properties. Such problems are referred
to as differentiation and integration of images. These tasks are local by
nature and, hence, all cells should perform one and the same operation,
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i.e., for all cell weight vectors W = (wo, ..., w,) are identical, (wo being a
selfconnection weight).

The image Im to be processed is represented in discrete form as a cellular
array, cell states representing colors (coded by natural numbers). A set of
cells with identical states forms a pattern, so, that Im = {Py,..., P,}.
A pattern which is considered to be a background is formed by cells in
the state denoted as ag. The operation of discrete differentiation is the
determination of difference in states of neighboring cells.

One of the most simple task in this class is the extraction of pattern
contours. Two types of contours are of interest. The first is called a dense
contour. It is defined as a subset K; C P, of cells having in their neighbor-
hoods formed by a template T} (ij) (Figure 1) at least one cell with a state
ar # a;, a; being the state of cells in . The second type of contours referred
to as a minimal one and is denoted as K| C P, is defined in the same way,
but with the neighborhood generated by T,(ij). The extraction algorithm
is based on changing states a; into agp in those cells of the patterns P;, which
do not belong to K; (Kj). This is done in all cells synchronously accord-
ing to procedure given in Section 2, where floating subarrays are generated
by T1 (T:), the weight vectors are W; = (8,-1,-1,-1,-1,-1,-1,-1),
W; = (4,-1,~1,-1) and the constants in (3) are b = a;, ¢ = ap. It is
easy to show that for any initial image the computation terminates in one
iteration.

In real world problems images to be processed are accessible in bitmap
format. So, the first stage of processing is to transform this information
into cellular array representation. Then, to apply a DCNN algorithm to
an array, it, sometimes, should be preliminary processed. And, the most
difficult task is to determine template size and weight vectors. There are
no formal synthesis methods for that. Usually, this is done by specifying
the problem and trying to compose a system of inequalities with weights as
arguments, or apply neural networks learning procedure. Hence, the use of

Figure 3. Image of a surface in bitmap format and the result
of isolines constriiction
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simulation tools when designing DCNN algorithm is absolutely necessary.
For our investigations we elaborated our own program package called ALT
(Animating Language Tools), which combines graphical and textual forms
of cellular algorithm representation and allows to watch and control the
computation process at any level of detail length. ALT has a wide range
of facilities to perform all preliminary processing, as well as the algorithm
itself in a quasiparallel mode. .

As an example, the result of simulation isoline construction is shown
in Figure 3. The algorithm consists of three procedures: 1) transforming
the image from bitmap to ALT representation, 2} performing a preliminary
discretisation of the image reducing the state alphabet to the set isolines
labels, 3) executing contour extraction algorithm.

4. Conclusion

A wide class of image processing algorithms may be represented and solved
based on DCNN model. In the paper a formalism is presented to describe
image processing algorithms, and two typical algorithms (pattern retriev-
ing and contour extraction) are investigated. It is shown theoretically and
by simulation that DCNN is a very comprehensive and efficient model to
design cellular image processing algorithms and special purpose processor
architecture.

References

i1] L.O. Chua and L. Yang, Cellular neural networks: theory and application, IEEE
Trans. Circuits and Systems, CAS-35, 1988, 1257-1290.

[2] H. Harrer and J.A. Nossek, Discrete-time cellular neural networks, International
Journal of Circuit Theory Applications, 20, 1993, 453-460.

f3] J.J. Hopfield and D.W. Tank, Computing with neural circuits, A Model. Science,
233, 1986, 625-640.

{4] A.V. Selikhov, Cellular algorithm for isoline extraction from a 2D Image, Joint
Bulletin of the Novosibirsk Computer Center and the Institute of Informatics
Systems, series: Computer Science, Issue 6, 1997, 91-104.

3] S. Pudov, Learning of cellular neural associative memory, Avtomteriya, 1997,
No. 2, 107-120.

6] Yu. Pogudin, Simulation of fine-grained parallel algorithms with the ALT sys-
tem, Proceedings of First International Workshop on Distributed Interactive
Simulation and Real Time Applications, 9-10 Jan., 1997, Eilat. IEEE Com-
puter Society, 1997, 22-27. .



