Joint NCC & IIS Bull., Comp. Science, 4 (1996), 1-16
© 1996 NCC Publisher

Stability of stored patterns
in cellular-neural associative memory*

O.L. Bandman, S.G. Pudov

Associative neural memory of the Hopfield type, where each element (neuron)
has a restricted amount of connections is considered as a cellular-automaton-like
network. The goal of the investigation is to determine the degradation of memory
capacity and efficiency of pattern retrieval caused by the decrease of connection
number. As a result, conditions of individual stability and 1-attractivity of stored
patterns are obtained being expressed in terms of neighborhood configurations of
each neuron. Based on the above conditions a method of weight computation
which insures stored patterns stability is introduced. Some results of cellular-neural
associative memory simulation are presented.

1. Introduction

Among the scope of computation models exploring the idea of fine-grained
parallelism, the most extravagant and promising nowadays is the Artificial
Neural Network. It is an abstract network consisting of many bistable pro-
cessing units (neurons), interacting each with all others by means of weighted
connections. Data to be processed are represented by the neuron states, the
result being predetermined by connection weights. The computation process
is a free step-by-step transition from an initial state to the stable one. At any
step each neuron calculates the threshold function of a sum-of-product of
connection weights by neuron states of all neurons. Stable states determine -
the computation results and are characterized by the minimum of “energy
function”. Implicit and redundant form of storing information as connection
weight values makes it possible to obtain the correct result when incomplete
or distorted initial data are input. Herefrom the main application domains
of the model are: pattern retrieval and classification, combinatorial opti-
mization, image processing.

The most popular paradigm of artificial neural network is the Associative
Neural Memory by Hopfield [1}. There is a great flow of investigations related
both to the theory and to the technical implementation of Hopfield’s mem-
ory. The theoretical investigations are designated to study the dynamics
of computation process [2, 3], i.e., the stability and attractability of stored
patterns. Based on these results, methods for associated neural memory

*Supported by the Russian Foundation for Basic Research under Grant 96-01-00033.

2 " O.L Bandman, §.G. Pudov

synthesis (determining connection weights) are developed [4], which provide
much better efficiency ‘than the variants proposed by Hopfield. Search for
hardware implementation in the form of special-purpose computers, where
the advantages of natural parallelism of neural networks is to be best mani-
fested, lay mainly in the field of optical technology [1, 5], which is nowadays
at the stage of scientific investigation. As for VLSI implementation, the
‘main obstacle to it is the completeness of connection graph of the network,
which leads to the enormous amount of links on the chip. This obstacle may
be eliminated by restricting each neuron connections to certain local area in
the network. Naturally, connection restriction affects the storing capacity
and the restormg ability of associative neural memories.. The question is
how harmful is the effect of connection restriction and, as a result, what
- are the lower limits of the locahty within which the efficiency degradation is
acceptable. This question is not first stated here. There are some attempts
to get some partial answers. So, in [6] the class of diluted associative neural
memory is introduced, whose dynamic properties have been studied both
theoretically and by simulating [7). In [8] the previously proposed methods
for associative neural memory synthesis is extended to meet the additional
requirement of obtaining the network with given connection structure. In-
spite of the importance of the above studies, they are far from closing the
problem. Instead, they show its complexity and versatility.

In this paper we try to approach the problem from the position of cellular
automaton theory [9]. Cellular automaton and associative neural memory
have two fundamental features which show their similarity: 1) both are
~ representatives of fine-grained parallelism, and 2) both are autonomous dy-
namic systems. These features we supplement with a few ones identical to
those of cellular automaton (discrete time, synchronous mode of operation
‘and local interactions), and some others, identical to those of neural net-
works (threshold cell function and weighted connections). Such a hybrid has
been called Cellular-Neural Associative Memory (CNAM) [10]. To deal with
it we use some concepts. of cellular automaton generalization called Paral-
lel Substitution Algorithm, as well as computer tools developed for cellular
computations s1mula,tmg [11]. '

The paper is organized as follows. Section 2 introduces notations, defi-
nitions, and formal representation of CNAM. In Sections 3 and 4 sta.blhty
and l-attractability conditions expressed in the terms of cell neighborhood
properties, are obtained. Section 5 presents the results. of CNAM learning
and retrieval processes simulation. :

VS'tabilz'tylof stored.paﬂem’s- : -3

2. Formal representatlon of cellular-neural
assoc1at1ve memory

A CNAM to be mvestnga.ted is deﬁned by three notwns N = (C w tI’)
Here C is a set of recta.ngular arrays of gqual size consisting of m rows and n
columns of cells, represented as pairs (c'_,, (4,7)), where ¢;; € {l —1} arecell
states, (i, j) are the coordma.tes in the array; W= {W,;} is a set of weight
vectors of the form W;; = (wl, W), Wi being a real number assigned
to the connection between a cell Cij and its k-th ne1ghbor ® is: t.he rule
according to which CNAM acts.. : -
The set of coordinate pairs forms* a dlscrete spa.ce M = {(z, 3) ti o=
0,...,m; j = 0,...,n} referred to as a naming space.. In order to avoid.
troubles caused by border effect the naming space is augmented by a number
of margin rows and columns consnstmg of 1magma.ry cells. The expanded
naming space is M’—{(z ii=—v,...,-1,0,. . mm+1,. vy M+ U
j = -u, -1,0,...,n,n+1,...,n + zi} Cells in the added rows and
columns have zero states In the 1 nammg space M’ mappings called naming
functions ¢(i, j) : M = M' are defined. The set of nammg functmns

=il)

where ¢(7,7) # c,zb;(',j) for any (i,7) € M and for all k,I = 1,...,q is
called a connection template. The connection template T(z J) determmes
the set of cells (the nezghbarhood), the ceil (¢,7) commuricates. The set of

neighborhoods generated by a template for all (, J) G M ina cellular arra,y
C* is denoted as Q(T). ‘ . .
The mapping § : M = Q(T),

8@ =A{@n (i) Cnd i)l (@)

is called a neighborhood function (Figure 1). First entries in all bra,l:kets' of
(2) form a variable vector X (i, j) = (z1,...,2,). The value of .the function

S(1,7), when applied to a certain C* is obtamed by substltutmg Con(id) forzy
in (2). More often it is convenient to represent the value of §(¢, 7) in the form
of a state neighborhood vector Q(i,7) = (c1y...,¢q). whose components are
neighborhood states, arranged in the same order t,ha,t in (2) . :

P

. T1|T2 T3
EEN 0
|z fwe |25

T R s

Figure 1. Spatial representation of terﬁpla;tes T, and Ty
and a neighborhood function S(i, j), generated by T;

4 O.L. Bandman, S.G. Pudov

The rule of CNAM operating @ is described by a following iterative
procedure.

Procedure (Retrieval procedure). Let C(t) be the array after the t-th
iteration. Then

1) all cells in C(t) compute the following function:

. L, if X(i,7)+W; >0,
f(X‘("j)‘-W"j = { -1, othervfrisi) ’ (3)

where “*” denotes the scalar product of vectors, and the result is the
cell state c;; at (£ + 1);

2) if C(t+ 1) = C(t), then C(t) = ®(C(0)) is the result of the computa-
tion, which corresponds to a stable stdte of CNAM.

Operating in such a way CNAM performs storage and retrieval of a set
of patterns {P,..., P'}, given as cellular arrays, and called prototypes. A
pattern to be retrieved is input by setting the CNAM in the corresponding
initial state C(0). Application of the above iterative procedure to any C(0)

C(0) cQ) C(2)= P*

Figure 2. Py, P, - stored patterns, C(0),C(1),C(2) - initial, intermediate and
terminal patterns in the process of retrieval of P, W - weight vector set with a
neighborhood function generated by T} of Figure 1. The black color stands for 1,
the white — for —1. Imaginary cells of M’/M are drawn in dashed lines and have
zero states

Stability of stored patterns - 5

Table 1. Weight vectors of CNAM storing P, and P from Figure 2

~.7 0 1. 2 3

3
0 0, 2, 0 01(0 2-2 0][(0 2-2 20 o o 2
1 (0, 0, 2, 0] (-2 2-2 0/|(-2 0-2 0)|(2 o, 2 o0
2 (20,2, 00| (-2 2 2 0|(-2 0 2 2)|[(2 0 2 o0
3 (200 0](2 2 00]|(1 20 2| 0 o 0

should terminate in a stable state equal to a prototype which has the closest
resemblance to C(0). In Figure 2 the process of retrieval of one out of two
stored prototypes is shown, a distorted pattern being input. Weight vectors
of the CNAM are given in Table 1. '

The correspondence of each prototype to a stable state of the CNAM
should be provided by the proper determination of the weight vector values,
which constitutes the learning process of CNAM. The fundamental concept
of most learning methods are based on, is the stability condition, which
being reduced to the local case, is expressed by the minimum of the following

function
E = -3 c;j(W;; * Q(3, §)), (4)
M

referred to as Liapunov function.

The strategy for constructing learning procedure should be grounded on
the quest to provide the following dynamic properties:

(i) individual stability, i.e., each prototype should be a stable state;

(ii) k-attraction of stable states, i.e., given a number k, each input state

differing from ‘a prototype P’ not more than by k entries, must be
retrieved as P*;

(iii) minimum of spurious patterns, i.e., there should be as few as possible
stable states differing from the prototypes.

No method in the artificial neural network theory is yet known which
matches the three above requirements completely. Much less it is so for
cellular neural networks. The best results [4], modified later by the same
authors [8] to diluted network case, require extremely complex matrix ma-
nipulations, which are not consistent by nature with the discrete character
of cellular parallelism and therefore can not be performed in the same cellu-
lar processor, if any would exist. Hebb’s method [1] used by Hopfield, does
not guarantee even the first requirement and provides the capability to store
not more than 0.15|M| prototypes in the networks with full connections and,
consequently 0.15/Q| in CNAM. So, the method for perceptron learning by
Rosenblatt [12] is chosen here as a basis for studying the limits of CNAM
capabilities.

6 ' 'O.L. Bandman, S.G. Pudov
3. Stablllty condltlons .

Accordmg to requlrement (i) and the assumed cell fUnctlon () the cond‘itio.n'
of individual. sta.blhty is. deﬁned as follows. S : o

-Deﬁmtlon 1 A prototype P" is ca.lled stron_q stobie if the ﬁrst 1teratlon of
Procedure result in, 1tse1f ie, : '
(P"‘)—P" .forall k=1, G ‘.'.(5)',[
Followmg the Rosenblatt perceptron learmng method the prototypes are' :
regarded as vectors in |M]|- -dimensional linear space, and the concept of linear -

separa,bllrtv, snmla,r to that from [12] but reduced to the local connectlon -
case 1s mtroduced . .

Deﬁmtron 2. Prototypes P1 . ,'P‘ are sald to be linear separable (sep-
arable for short) at a cell (¢, _]) in a CNAM, if the following holds for all
Prk=1,..,0,
C Ij(Qk(z .7) * WlJ)u > 0) ’) (6) :

where the top index denotes ‘the prototype number.

TheQrem 1., Let {P1 P‘} be a set of prototypes, P* € C M) k= 7
L Then all prototypes are strong stable, :f they are separable at any
cell of N.’ '

Proof. If the prototypes are’ separable then by Deﬁmtlon 2 (5) holds for
any cell in each.P*, which means that the sign of c is equal to that of the
scalar product Q"(, _7) * W;;. So, according to (3), appllca.tron of retrieval -

procedure to any P* causes no changes of its states. Thus, the sta,blhty
condition’ (5) is fulfilled. Conversely, if all prototypes are strong stable, i.e.,

the retrieval procedure performs no changes in P*, then the condition (6) B
of Deﬁmtlon 2 holds whlch proves the lmea.r sepa.ra.brhty . R ,I:l .

Corollary 1. If Pk s a stmng stable state in N then so is P" where P zs -
the . array obtained by mvertmg cell states in P. : - ‘

Theorem 1 allows to. construct a learmng algorithm wlnch guarantees'.;
strong stabrllty of the set of prototypes to be stored :

: .'Algorlthm 1 (Modzﬁea’ -perceptron - Iearmng [12]). The - prototypes_‘ -
Pl,..., P!, which areto be stored-in CNAM are given. A set of weight
vectors w should be determined, such that for any P"c k. 1,...,1, condi-
tion (5) is met. '

Stability of stored patterns 7

Step 1. The sequence P!,..., P!, P!, .. P' P! ... which is the cyclic
repetition of a sequence of prototypes to be stored, is formed and then
relabeled resulting in an infinite sequence 0 = Py, Py,..., B,

Step 2. Initial values of all components of W;;(0) are chosen arbitrarily
for all (¢,7) € M.

Step 3. Weight vectors are updated according to the following iterative
procedure. At each t-th iteration for any (i,;) € M:

1) the value
ht(iyj)zQi(ivj)*vVij(t)a (7)
is computed, where Q; (3, j) is the state neighborhood vector of the cell

cij € Py

2) weight vectors W;;(t) are changed as follows:

g _ [Wi;(1), if ¢;h(t) >0,
Wit +1) = { Wij(t) + €ijQ:(%,7), otherwise, (8)

where ¢;; and Qq(3, j) are the state and the state neighborhood of P;;

3) the algorithm stops, when no change of weight vectors has been per-
formed during ! iterations;

4) if the algorithm enters in a process when at some cells an oscillatory
weight change is observed, then no vector matrix exists which guaran-
tees strong stability of the given prototypes.

In [12] equivalency of learning algorithm convergence to separability of
prototypes at all cells is proved. Naturally, the same is true for the case of
cell' local connections, because each cell within its neighborhood is in the
same condition that a neuron in a perceptron network.

Algorithm 1 has some useful properties which make it efficient when
implemented as a special-purpose array processor. They are as follows.

1. It may be transformed in a cellular highhly parallel version, where all
cells compute their next states simultaneously.

2. It may be performed by one and the same CNAM, which is to be
learned, only minimal modification being needed to make cells capable
both to compute the weights and to retrieve the patterns.

3. During the learning process the cells at which (6) does not hold may
be marked in order to change the corresponding prototype.

The above properties show that Algorith 1 provides the tool for testing
and diagnosing a given set of prototypes for separability, and, hence, for the
existence of CNAM, which provides their individual stability. However, it
would be extremely useful to test prototype set before or during the learning

8 O.L. Bandman, S.G. Pudov

process, which requires separability conditions to be expressed basing on the
prototypes properties. To determine some of them the following new concept -
is needed.

Definition 3. Let P9 and P" be two prototypes,

§9(i,j) = (chy..orcd) and S(i,5) = (ch,...,ch),

be the neighborhoods of cells (cc-'j and cf‘j in the prototyp.es P¢ and Ph,

1
respectively. Then the set of neighbor numbers

Idg"(i,j) ={n: cflcf1 = cfjcf‘J} (9)

is called an identification set, and the neighborhood cells with the names
from Id9(i, j) are referred to as identification cells (Figure 3).

()
O

Q'(ird) - Q*(54)

. Fiéure 3. A pziir of neighborhoods of identically named cells of two
prototypes and two identification cells (marked with circles)

The concept of identification cells allows to formulate separability con-
dition in the form of the following theorem.

Theorem 2. Two prototypes P9 and P* both from C are linear separable,
if at any cell named (i,) € M the identification set cardinality is not less
than 1, i.e., o :

[IdtG,)| >1 forall (i,j)eM. - "(10)

~ Proof. If P? and P" are separable, then for both of them condition (6).
holds at each cell. Let us partition the neighborhoods

Sg(z',j)z{(c{,nl),...,(cg,nq)} and Sh(i,-j)z{(cl,nl) %(cq’RQ)}

mto two parts: the first part, containing cells with equal states, i.e., such that
c¢fck =1, and the second one, containing those cells, for which oy rep = —1.
The neighbor numbers of the first part form a set Q’(i, j), and those of the
second one - a set Q" The left-hand sides of (6) may be then rewritten as
follows:

Stability of stored patterns o 9

(T dw+ T gue=) >0, (T chue- 3 chus) >0, ()

keq@’ - keQ" keQ’ keQ”

minus in the second mequa.hty resulting from the difference in state signs
in the neighbors of Q” The above inequalities show: that, if cg c:‘J, then
Q' > Q" and, if a ,J, then Q' < Q”, which may be posmble, if only
there is Q' > 1, whlch corresponds condition (6) and proves the necessity.
Conversely, the condmon of the theorem (10) determines the above inequal-
ities, which in its turn, is equivalent to the condition of separability, (6), -
which proves the sufficiency. m]
Corollary 2. Let P!, P2, P? from C, be the prototypes in which ¢ = C?J '
and Q' = Q% = Q3. Then tf P! and P? are sepamble at a cell €ij) then Pl
and P? are not.

o Theorem 2 gives the possibility to test any pair of prof,otypes for sepa-
rability. However, pairwise separability does not guarantee strong stability
for the whole set containing more than three prototypes.

Theorem 3. For any prototype. P° there exist thrée others P!, P%, P3,
such that all four are pairwise separable, but for the whole set the sepambtl:ty
condition (6) does not hold.

Proof Let us take a cell named (%,j) in PP, such that ¢;; = 1, and rep- :
resent Qﬂ(t Jj)=(c1y.:.,¢q) a8 a conca,tena.tlon of three vectors Qo(z =

(@1 V‘Qz" Q3), where
Q= (€1, - -1), .Qzl%(éb+l-1."'1cd)1 Q3= (Ca1y+ -+ Cq)-

Now let us construct three prototypes P!, P?, and: P? with the following
nexghborhoods of the cell named (z 7), assuming that its state is ¢;; = 1 in
all arrays.

.Ql(i,.?) = (@Q1-Qz- Qa)
Q*(4,7) = (Q1-Q2-Qa),
Q%(4,5) = (Q1-Q2-Qa),

where Q) is componentwise inverse of Q. It is clear, that for the above
-three state neighbor vectors.a weight vector W;; may be found, for which
(6) holds. It follows from the fact that (6) holds for any pair of subvectors
Qk and Wy, (k ='1,2,3), the latter being obtained by partitioning W;; in
the same manner that Q°. The separability condition (6) also holds for
Q°(3, 7), because Q°(3, 7) = Q! (s, _1) + Q%(4, _1) + Q3(i, §) is the convex sum.
So, the set of prototypes {P°, P!, P?, P3} is separable at the cell named

10 O.L. Bandman, S.G. Pudov

(¢,7), and consequently any pair of them is separable too. According to
Corollary 1 the same is true for their inverses P¥ k = 0,1,2,3. Now let us
consider the set of prototypes P!, P2, P3, P°, According to the supposition
that in the initially given prototypes ¢;; = 1, in their inverses the states

clj = ¢k = ¢}, = -1, whereas ; = 1. According to Corollary 1 the new
set is separable at c;; as well. However, since Q°(i,7) = — ¥5_, Q*(3, 5),

then according to Corollary 2, P is not separable at the cell named (i, §) to
any of P*, k =1,2,3. In consequence of this contradiction the set of proto-
types {P°, P!, P%, P3} being pairwise separable is not separable as a whole.
Since all above is true with the suggestion that ci; = —1, the theorem is
proved.]

4. Attractivity conditions

In order to provide capability to retrieve a prototype when a distorted pat-
tern has been input, learning procedure should rely upon the criterion of
maximalizing the degree of distortion which is admissible for the recognition
of a prototype. To formalize this criterion the Hamming distance H(C*, C?)
(the number of cells with different states), is used, and the following concepts
are introduced.

Definition 4. A set of cellular arrays C!,...,C" such that the application
of Procedure 1 to any one of them results in a stable state P*, is called a
-domain of attraction of P*.

Definition 5. A cellular array C is said to be a k-attractor, if the applica-
tion of Procedure 1 to any initial array C?, such that H(C,C?) < k results in
C. If the result is achieved after one iteration, then N is a strong k-attractor.

Remark. From Definition 4 it follows that if a cellular array is a k-attrac-
tor, then it is a (k — 1)-attractor as well, and any stable state is a strong
0-attractor.

In the ideal case each prototype P* € C to be stored should be a
ky-attractor, so that any C* € C belongs to a domain of attraction of one of
the prototypes. In that case all three requirements to the learning process
(see Section 2) would be fulfilled. Seeking the ways to approach this ideal
case, a method for providing the given prototypes to be strong 1-attractors,
was proposed in [13]. The idea of this method is in augmenting the set of
patterns to be stored, by adding to each prototype P* as much as |M| pat-
terns PJ;, (4,7) € M, differing from P* by a state c;;, called (i, §)-distortions.
The learning process should make these distortions to be retrieved as the
true prototypes, so the added patterns should meet the following condition:

~ Stability of stored patterns o1

oRh) =P)

7

forall (i,j) € M and forall h=1,...,1. ,

To follow the above idea when constructmg the similar algorithm for the
local connection case and, moreover, for taking advantage of the parallelism
induced by the connection locality, some new notions are to be introduced.
° Let us partition the cellular array N into u = m/a-n/p (« and 3 being
the dimensions of the template) rectangular subarrays referred to as macro-
cells. Each macrocell contains a central cell and its neighborhood, whose
- cells being numbered according to their order in the neighborhood function
Mg, N1y« . ., Mg, Where ng is the number of the central cell. Due to the local
character of interactions the prototype distortions in different macrocells in-
fluence the learning process independently. Hence, the iterative updating of
weight vectors by applying (8) sequentially to a prototype, say P", distorted
at cells belonging to different macrocells, has the same result that if a single
iteration were apphed to the array P,(n;), obtained by inverting the n‘-'th'
‘nelghbor states in all makrocells of P*, Py (n;) bemg referred to as ni-th

1-distortion of P.

Algorithm 2. The cellular arrays P!,..., P’ which are to be stored in -
CNAM are given. A weight matrix W should be determined,-such-that for -
~any Ph h=1,...,l and Ph(i), (i,§) € M, conditions (6) and. (12) are
met,,- respectwe]y : ' '
- Step 1. The sequence P!,..., P!, P!(m),.. P,(nq) P (n1), . P‘(nq)
P, ..., P, Pi(ny),. whlch is the cyclic repetltlon of a sequence of given
prototypes and thelr n,-th 1-distortions is formed, and then relabeled result-
ing in an infinite sequence o = P}, P?,..., P{,... , a top index indicating
the number of correspondmg prototype in the 1mtla.lly glven ‘set, a bottom
one — its number in the sequence.

Step 2. Initial values of all componerts of W;;(0) are chosen a.rbitra,rily'

Step 3. Weight vectors are updated according to the followmg lteratlve
procedure At each t-th iteration for any (3, j) € M:

1) the value : _ Coe .

) Cheid) = Qi) s W), . (19)
is computed, where Q;(%, j) is the state neighborhood vector of the cell
named (i, j) in Pf;

2) weight vectors W; ;(t) are changed as follows:

o W), O >0, '
- Wi5(0) ._{ Wi (t) + c; *Q-‘?(i,j),. other:)vise, - (14) -

where cf; and Q9(3, j) are the state and the neighborhood of the cell,
named (z J) in P9, respectively;

12 O.L. Bandman, S.G. Pudov

3) the algorithm stops, when no change of weight vectors has been per-
formed during lu iterations;

4) if the algorithm enters a process when at some cells an oscillatory
weight change is observed, then no vector matrix exists which guaran-
tees l-attraction of the given prototype set.

Like in the case of strong stability, it is preferable to have the conditions
of strong k-attraction expressed in terms of prototype properties. For that
the concept of identification cells (Definition 3) is also used.

Theorem 4. If all prototypes {P!,..., P'}, P, € C, are strong I-attractors,
then any pair of them (P9, P*) has the identification set cardinality not more
than 3 at any cell (i,5) € M, i.e.,

I, 5) >3 forall (i,5) € M. - @as)

Proof. If the prototypes are strong 1-attractors, then according to Defi-
nition 5, they are separable, and, hence, pairwise separable too. Thus, by
Theorem 2, for any pair P9, Ph, IIdgh(z J) =2 1atall (¢,j) € M. Since
1-distortions of P9 or P* may result in inverting the state of the identifica-
tion- cell, then there should be two more identification cells, which provide
the fulfillment of separability condition even if both distortions coincide with.
the identification cells. So, 3 identification cells should exist to assure the
separability of any 1l-distortion of PY to any one of P". Since all above
is. true for any (#,7) € M and any pair glven prototypes, the theorem is
proved. _ a

Corollary 3. If all prototypes {P!,. P }, Py € C, are strong k-attrac-
tors, then any pair of them (P9, Ph) has the zdenteﬁcatwn set cardinality
not more than (2k + 1) at any cell named (i,5) € M.

Remark. The condition of Theorem 4 is invariant of the size and the struc-
ture of the neighborhood function.

Extrapolating the result of simulation of the method [13] to the cellu-
lar case, it is possible to conclude that strong 1-attractability provides the

Figure 4. A pair of patterns with the |/d]| > 3 for
a neighborhood function S(¢, j) of Figure 1

Stability of stored patterns 13

retrieval of hardly distorted prototypes. This advantage is paid by a large
complexity of the learning process, which, moreover, frequently does not
converge. For example, if the neighborhood is limited by the size 3x3, then
it is very difficult to construct a pair of patterns, having not less than 3 iden-
tification cells at each cell (Figure 4). However, if the neighborhood contains
more than 20 cells, it is quite possible to store a few strong 1-attractor, which
provides hlgh retrieval capablhty

5. Some results in learning and simulating

Some computer experiments have been performed in order to obtain quanti-
tative assessment of learning and retrieval capability of CNAM. A computer
simulating system, called ALT (Animating Language Tools) [11], which is
oriented to cellular computations investigation was used. Thls system com-
bines textual and graphical tools for representing cellular algorithms and

displaying computation process. CNAM is presented in the system as in the-

form of a multiplanar array, so, that the naming set is M"' = {(k,%,7) : k =
0,1,...,¢;(i,5) € M'}, k being the number of the plane. The 0-th plane of
the array (pattern plane) is equal to the current cellular array, state values

being represented by cell colors (1 by black, —1 by white). Each k-th plane,

k =1,...,q, weight plane contains the Is:-th components of the weight vec-
“tor W,J, so that the subset of cells named {(wy, (1,4,5)),. (wq, (q, i,7))}
forms a register st,ormg the welght vector W(i,7) (Flgure 5)

a),- - . b) - c)

Figure 5. Examples of the templates of CNAMS, which were
investigated by simulating; a) 9= 24, b) ¢ = 20, c)g= 16

The algorithm (elther a learnmg one or a retrieval procedure) is written
in ALT-language (a modification of C) in'a program window. The program is

executed in a quasiparallel form, the results of each iteration bemg dlsplayed'

in the cellular array.
A CNAM of the size 20x20 ceils has been mvest1gated two templates

shown in Figure 1 determining the neighborhoods. - The protctype sets: con-
tained 1maged of symbols from Engllsh and Russian alphabets and a.rabla,n S

numbers. S :
Learning process has been performed a.ccordmg to Algorlthm las follows

14 0.L. Bandman, S.G. Pudov

A multiplanar cellular array representing the CNAM has been drawn
with the help of graphical tools of ALT, as well as the planar arrays repre-
senting the prototypes and the neighborhood functions. The learning ALT-
program has been written in a special window in ALT-language. The main
part of the program constitutes the block which contains two following in-
~structions: (a) inputting next prototype states into the pattern plane of
the CNAM array, (b) updating states of cells in weight planes according to
(8). Both instruction are parallel operations, i.e., they are executed by all
cells indicated in the instruction. Some additional instructions are intro-
duced into the program, which test the linear separability of the prototypes
at each cell, marking those of them, which do not meet the condition (6).
Such a test makes it possible to do some corrections of “bad” prototypes or,
perhaps, remove them out of the stored set.

The learning program, as well as the above modification, have been ap-
plied to a number of prototypes in order to assess storing capability and
learning time. The latter is measured.in iteration number needed for learn-
ing algorithm convergence. Some representative results are shown in Table 2.

Remark. It is worth to notice, that the CNAM with ¢ = 24 was the first
to be learned. During this learning process 7 corrections of the prototypes
have been done, which, none the less, have not altered the symbol semantic.
This fact explains the decrease of learning time for the case ¢ = 20 relative
to the case ¢ = 24. However, the separability for the whole set containing
50 prototypes was not obtained, one of them had to be removed, which is
marked by ”*”.

Table 2. Learning time of CNAMs with different neighborhood cardinality

I Number of stored prototypes | 15 | 26 I 40 I 50 I
q=24 12 14 19 25
q=20 12 17 25 38°
q=16 17 25 32 —

In the retrieval process the states of weight planes of a m.ultiplanar array
are weight values, obtained after the learning process. The retrieval program
is written in the ALT language according to Procedure 1. It contains two
parallel instructions: 1) the input of a pattern to be retrieved into the
pattern plane, and 2) the iterative operation of computing the cell function
(3). When no change of the states is observed during a prescribed number
of iterations, the algorithm stops. The retrieval process in CNAM, storing
50 prototypes with ¢ = 24 was simulated. Since learning process provided
strong stability, but not attractability, the retrieval of distorted patterns
are not guaranteed. So, the aim of simulation was to determine how many
distorted patterns may be, nevertheless, recognized. The parallelism induced

Stability of stored patterns 15

Figure 6. Examples of prototypes stored in CNAMs under investigation

by connection locality was explored, so the set of 1-distorted prototypes (one
per a macrocell) was input in the form of P(n;). 5 prototypes representing
the symbols of English and Russian alphabets in the form shown in Figure 6
have been stored. The results are given in Table 3.

Table 3. Number of 1-distorted prototypes P*(i, j), which have not been
recognized in CNAM with 400 cells and 24 cell template

Prototype A B C D F I
|P% (4, 5)] 145 148 125 116 145 128

Table 3 shows, that a CNAM being learned to store as many prototypes
as it can guarantee to be strong stable, is capable to recognize 30-40% of the
set of 1-distortions. For obtaining a better quality of retrieval Algorithm 2
should be used.

6. Conclusion

In this paper, the following results on CMAM investigation are presented.

1. Algorithms for CNAM learning and retrieval of distorted patterns are
proposed. All of them take most advantage of the fine-grained paral-
lelism induced both by cell operational independence and by connec-
tion locality. A very important property is also the fact that learning
and retrieval processes may be performed in the same cellular array.
This allows to consider such an array as the CNAM architecture for
VLSI implementation. ‘

I

- Some necessary and sufficient conditions of strong stability and k-at-
tractability are obtained, which are expressed in terms of cell neighbor-
hood relations of a pair of prototype. These conditions allow to assess

16 O.L. Bandman, S.G. Pudov

the compatibility of a pair of prototypes for being stored together in
a CNAM.

3. Simulation of learning and retrieval processes in a CMAM storing the
symbols drawn in thin lines (see Figure 6) showed the following; 1) for
this class of patterns it is possible to provide strong stability approx-
imately for 2|Q| prototypes, and 2) when learned according to Algo-
rithm 1, which provides strong stability, only 60-70%, of 1-distortions
can be restored.

References

[1] J.J. Hopfield, D.W. Tank, Computing with Neural Circuits: a Model, Science,
233, 1986.

[2] M. Cottrell, Stability and attractability in associative memory networks, Bio-
blogical Cybernetics, 58, 1988, 129-139.

[3] L. Perzonas, I. Guyon, G. Dreyfus, Collective computational properties of
neural networks: new learning mechanism, Physical Review, A, 34, November,
1986, 4217-4228.

[4] A.M. Michel, J.A. Farell, H. Sun, Analysis amd Synthesis Techniques for Hop-
field Type Synchronous Discrete Time Neural Networks with Application to
Associative Memory, IEEE Transactions, CS-37, No. 11,1990.

[5] J. Zhang, I. Zhang, D. Yan, A. He, L. Liu, Local interconnection neural network
and its optical implementation, Optics Communication, 102, 1993.

[6] B. Derrida, E. Gardner, A. Zippelius, A exactly solvable asymmetric Network
Model, Europhysics Letters, 4, No. 2, 1987, 167-173.

[7) J.J. Arenzon, N. Lemke, Simulating highly diluted neural networks, Journal
of Physics, A, Math. Gen., 27, 1994, 5161-5165.

(8] D. Liu, A. Michel, Sparsely interconnected artificial neuron networks for asso-
ciative memories, Lecture Notes in Comp. Sci., 606, p. 155.

[9] J. von-Neumann, Theory of Self-Reproducing Automata, ed. A W Burks, Uni-
versity of Illinois Press, Urbana and London, 1966.

[10] O.L. Bandman, Cellular-neural computations, formal model and possible ap-
plications, Lecture Notes in Computer Science, 964, 1995, 21-35.

[11] S. Acha.sova.,.O. Bandman, V. Markova, S. Piskunov, Parallel Substitution
Algorithm. Theory and Application, World Scientific, Singapore, 1995.

[12] F. Rosenblatt, Principles of Neurodynamics, Washington, Spartan, 1959.

[13] X. Zhuang, Y. Huang, F.A. Yu. Design of Hopfield content-addressable mem-
ories, IEEE Transactions on Signal Processing, 42, No. 2, 1834-1837.

