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Nets of active resources for distributed systems
modeling

V. A. Bashkin∗

Abstract. Nets of active resources (AR-nets) are presented. This formalism has
the same expressive power as Petri nets but a different syntax: the model is not a
bipartite oriented graph, but an oriented graph with two types of arcs (consumption
and production). Direction of the arc denotes active and passive participants of the
corresponding interaction. The same token may be considered as a passive resource
(produced or consumed by agents) and an active agent (producing or consuming
resources) at the same time. This model may be useful for systems with dynamic
structure of actions.

Several natural modifications of basic syntax are presented, their expressive
power is investigated. It is shown that the basic AR-nets and AR-nets with simple
firing are equivalent to Petri Nets; AR-nets with simultaneous firing and AR-nets
with empty firing (“channels”) are Turing-powerful; AR-nets with reset firing are
equivalent to Reset Petri Nets.

1. Introduction

Petri nets [8, 7] are one of the most popular formalisms for distributed sys-
tems modeling. This is a quite expressive model of parallelism, allowing us
to formalize all the basic constructs: sequential composition, nondetermin-
istic choice, parallel composition and synchronization. However, Petri nets
are less powerful than Turing machines, so many algorithmic problems are
still decidable for them: reachability, safety, liveness etc.

Ordinary Petri nets represent a low-level formalism with a very simple
set of basic elements: place, transition, arc and token. It gives no convenient
tools for high-level constructs, such as module and hierarchy.

Nowadays there exist a number of Petri net modifications introducing
a different high-level syntax, such as Coloured Petri Nets (CPN) [2], Ob-
ject Nets [10], Nested Petri Nets [6] and many others. Most of them have
the same modeling power as ordinary Petri nets (CPN), others are more
expressive (Nested Nets).

It is difficult to model with a Petri net a multiagent system with a non-
fixed number of agents. The structure of the net is explicitly divided into
two classes of elements: places and transitions. The places correspond to the
passive component of the system (a state or resources of the system), the
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transitions correspond to its active component (actions or events or agents).
The actual state of the system is defined by a multiset of tokens residing
in all places of the net. This multiset can be modified by transition firings.
So we can directly model the dynamic change of the passive component
of the system (the state transformations). However, it is not possible to
model directly the dynamic change of the actions structure, since the set of
transitions is fixed and cannot be modified at runtime.

This problem can be easily solved by more sofisticated event modeling:
we model an action not by a single transition but by a subnet, containing
special service places representing the internal state of an agent (and in
particular the number of accessible agents of this type). Obviously, this
may be too complex and not convenient, so the task of constructing a more
simple syntax for systems with dynamic actions is important.

A natural way to define such a syntax is to use the duality of the Petri
net graph. Already in [9] K.-A.Petri noted that

“In general I would like to say that the exploitation of dualities is
a main source of deep insight in any theory of dynamic systems
as it is in mathematics; net theory abounds in dualities and this
is not by chance.”

In [5] K.Lautenbach introduced a notion of dual place/transition nets.
In this formalism the transitions are also marked by special tokens called “t-
tokens”. The meaning of t-tokens is that they prevent transitions from being
enabled. A transition carrying a t-token cannot be enabled by any marking
of p-tokens. A place in the net can be enabled and fired in a dual way. A
place firing transforms the marking of t-tokens, arcs for the place firing are
inverted. So the net can be dualized in the obvious way. K.Lautenbach in
his work proposed dual P/T nets as a model of a system fault propagation.

In [4] M.Köhler and H.Rölke introduced super-dual nets for modeling
with dynamic refinement of events. In this formalism transitions are also
marked by special tokens called “pokens”, but these pokens enable transition
firings. Places can also fire, but their firing use a special separate set of arcs
called “glow relation” in contrast to common “flow relation”. A super-dual
net can be dualized by interchanging places and transitions, tokens and
pokens, flow arcs and glow arcs. In [4] it is proven that super-dual nets have
the same expressive power as ordinary Petri nets.

In both dual P/T nets and Super-Dual nets duality is based on two types
of elements of the system — resources and actions (places and transitions).
These elements are represented in the net by vertices of a bipartite oriented
graph. However, there is another (implicitly) divided set in every Petri net
(and in every other bipartite oriented graph) — the set of arcs. It contains
arcs of two crucially different types — input arcs from places to transitions
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remove tokens, output arcs from transitions to places produce tokens. The
explicit separation of this notions allows us to define an interesting “orthog-
onal” syntax for Petri nets.

We dualize the definition of a Petri net. The set of arcs is explicitly
transformed into two separate sets of input arcs and output arcs. The sets
of transitions and places are united into a single set of nodes. Each node
may contain tokens. A token in the node may fire, consuming some tokens
through input arcs and producing some other tokens through output arcs.
So a token simulates behaviour of both an active component (an agent) and
a passive component (a resource) at the same time. Therefore the formalism
is called “nets of active resources”.

The paper is organized as follows. In Section 2 we recall the basic def-
initions and notations on Petri nets. In Section 3 the basic AR-nets are
formally defined and studied. It is shown that AR-nets have the same ex-
pressive power as Petri nets. In Section 4 we define several natural extensions
of the basic syntax. It is shown that AR-nets with a simple firing are also
equivalent to Petri nets; AR-nets with an empty firing (nets with “chan-
nels”) and AR-nets with a simultaneous firing are Turing-powerful; AR-nets
with a reset firing are equivalent to Reset Petri Nets.

2. Preliminaries

Let S be a finite set. A multiset m over a set S is a mapping m : S → Nat,
where Nat is the set of natural numbers (including zero), i.e. a multiset may
contain several copies of the same element.

For two multisets m,m′ we write m ⊆ m′ iff ∀s ∈ S : m(s) ≤ m′(s)
(the inclusion relation). The sum and the union of two multisets m and m′

are defined as usual: ∀s ∈ S : m + m′(s) = m(s) + m′(s), m ∪ m′(s) =
max(m(s),m′(s)).

By M(S) we denote the set of all finite multisets over S.

A Petri net is a tuple N = (P, T, F ), where

• P is a finite set of places;

• T is a finite set of transitions, P ∩ T = ∅;
• F : (P × T ) ∪ (T × P ) → Nat is a flow relation (a finite set of arcs).

A marking in a Petri net is a function M : P → Nat, mapping each place
to some natural number (possibly zero). Thus a marking may be considered
as a multiset over the set of places.

A marked Petri net is a pair (N, M0), where N is a Petri net and M0 is
its initial marking.

Graphically P -elements are represented by circles, T -elements by boxes,
and the flow relation F by arrows. Places may carry tokens represented by



46 V.A. Bashkin

n-s -- ns

ns¾¾
?

6

p1 p2t1

t2 p3

-
t1

n n- -s s- -- -n ns

n ns¾ ¾¾ ¾
? ?

6 6

p1 p1p2 p2t1 t1

t2 t2p3 p3

-
t2

s

s

sss

Figure 1. Transition firings in a Petri net

filled circles. A current marking M is designated by putting M(p) tokens
into each place p ∈ P .

A transition t ∈ T is enabled in a marking M iff ∀p ∈ P M(p) ≥ F (p, t).
An enabled transition t may fire yielding a new marking M ′ s.t. ∀p ∈ P

M ′(p) =def M(p)− F (p, t) + F (t, p) (denoted by M
t→ M ′).

An example of transition firings is given in Figure 1.

A marking M is reachable in (N, M0) iff there exists a finite transition
sequence σ ∈ T ∗ s.t. σ = t1.t2 . . . tn and M0

t1→ M1
t2→ · · · tn→ Mn = M. The

set of all reachable in (N,M0) markings (the reachability set) is denoted by
R(N, M0).

A place p ∈ P is bounded in (N, M0) iff ∃n ∈ Nat ∀M ∈ R(N, M0)
M(p) ≤ n. A place p ∈ P is safe in (N, M0) iff ∀M ∈ R(N, M0) M(p) ≤ 1.

Petri nets with only bounded places are equivalent to finite automata.
Ordinary Petri nets are strictly more powerful than finite automata and
strictly less powerful than Turing machines.

An inhibitor arc is a special arc from a place to a transition. A transition
may be enabled only if there are no tokens in its inhibitor precondition. By
an inhibitor arc a transition may “observe” the total marking of (possibly
unbounded) place, so this allows us to model a non-local memory testing.
A Turing machine can be simulated by a net with two inhibitor arcs [3].

A reset arc is also a special arc from a place to a transition. It doesn’t
enable or disable a transition. The transition t firing removes all tokens
from all places linked with t by reset arcs. This is not a non-local memory
testing but a non-local memory modification (it is possible to reset a non-
fixed number of tokens by a single transition). Reset Petri Nets are strictly
more powerful than ordinary Petri nets and strictly less powerful than Tur-
ing machines [1] (the boundedness is undecidable but the coverability is
decidable).

Pictorially an inhibitor arc is denoted by an arrow with a rounded head
(Figure 5), and a reset arc by a crossed arrow (Figure 6).
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Figure 2. Agent firings in a net of active resources

3. Basic nets of active resources

Definition 1. A net of active resources is a tuple AR = (V, I, O), where

• V is a finite set of resource nodes (vertices);

• I : V × V → Nat is a consumption relation (input arcs);

• O : V × V → Nat is a production relation (output arcs).

In a graphic form, the nodes are represented by circles, the consump-
tion relation by dotted arrows and the production relation by solid arrows
(Figure 2).

A marked net of active resources is a pair (AR, M0) where AR is an
AR-net and M0 : V → Nat is its initial marking.

As usual, pictorially the marking is denoted by filled circles.

Definition 2. A resource node v ∈ V is active in a marking M iff

• M(v) > 0 (the node v is not empty);

• ∀w ∈ V M(w) ≥ I(w, v) (there are enough tokens in all its input
nodes).

An active node v may fire yielding a new marking M ′ s.t.

∀w ∈ V M ′(w) =def M(w)− I(w, v) + O(v, w).

Some natural notions:
Let i ∈ I and i = (v1, v2). Then the arc i is called an input arc for the

node v2 and a consuming arc for the node v1. A token in the node v1 may
be consumed through the arc i, a token in the node v2 can consume through
the arc i.

Let o ∈ O and o = (v1, v2). Then the arc o is called an output arc for the
node v1 and a producing arc for the node v2. A token in the node v1 can
produce through the arc o, a token in the node v2 may be produced through
the arc o.

It is impossible to define consuming output and producing input. The
token may be producing, consuming, produced and consumed at the same



48 V.A. Bashkin

n-s -- ns

ns¾¾
?

6

p1 p2t1

t2 p3

ns -- ns

ns?
6

vp1 vp2vt1

vt2 vp3

ns

ns

-

¾¾

PN → AR

Figure 3. Simulation of a Petri net by an AR-net

time (through different incident arcs). It can even be self-produced or self-
consumed.

The syntax of AR-nets differs from the syntax of Petri nets. However,
they define the same class of systems:

Theorem 1. Nets of active resources are equivalent to Petri nets.1

Proof. (⊇) It is possible to convert a Petri net into an AR-net, converting
places and transitions into nodes, arcs from places to transitions into con-
suming arcs, arcs from transitions to places into producing arcs. The initial
marking is extended by putting a single token into every “transition” node.
An example of such a transformation is given in Figure 3.

The reachability set of the AR-net is the same as the reachability set of
the given Petri net (we do not take into account the marking of a “transition”
node, it is a constant).

(⊆) Consider a transformation of an AR-net into a Petri net. We will
use a method, proposed in [4] for Super Dual nets.

Each node v of AR-net is converted into a place pv and a transition tv,
linked by arcs (pv, tv) and (tv, pv). Each consuming arc (v, w) is converted
into the arc (pv, tw), each producing arc (v, w) — into the arc (tv, pw). Tokens
from v are transfered into the place pv.

An example is given on Figure 4.

4. Extended syntax

In this section we define several natural extensions of the basic AR-nets
syntax and investigate their expressive power modulo reachability sets.

4.1. Extended activity

Definition 3. A simple node v ∈ V is active in a marking M iff

• ∀w ∈ V M(w) ≥ I(w, v).

1For each AR-net there exists a Petri net with the same reachability set and vice versa.
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Figure 4. Simulation of an AR-net by a Petri net

The definition of firing for simple nodes is the same as for basic nodes.

Theorem 2.

1. AR-nets with basic and simple nodes are equivalent to Petri nets.

2. AR-nets with only simple nodes are equivalent to Petri nets.

Proof. (⊇) A Petri net can be converted into an AR-net with (only) simple
nodes by a transformation, similar to the transformation in the first part
of the proof of Theorem 1, the only difference is that we may not put the
initial token into the simple “transition node”.

(⊆) An AR-net with basic and simple nodes can be converted into a
Petri net by a modified version of the transformation from AR-nets to Petri
nets (the second part of the proof of Theorem 1): for a basic node v we
do not add arcs (pv, tv) and (tv, pv). Obviously, this transformation can be
applied both to AR-nets with simple nodes and to AR-nets with basic and
simple nodes.

Activity of a simple node does not depend on its marking. A simple node
is more similar to a Petri net transition and a Petri net place (at the same
time) than to a basic AR-node. Tokens in a simple node are resources, not
agents. This syntax extension doesn’t actually change the expressive power
of the model. So, we can simplify the syntax without loss of expressiveness.
However, such a simplification removes the notion of an agent from the
model, just like in the case of the classic Petri net syntax.

Definition 4. A channel v ∈ V is active in a marking M iff

• M(v) = 0;

• ∀w ∈ V M(w) ≥ I(w, v).



50 V.A. Bashkin

n?

? n?

n

?r n

n

n

n

n

j

s

s

^

^

À

À

Figure 5. Modeling of an inhibitor arc by a channel

The definition of firing for channels is the same as for basic nodes.
Pictorially we denote channels by double-bordered circles.
Activity of a channel takes into account its complete marking. A channel

can “redirect” tokens only being empty itself. This is a non-local memory
testing, so the model can be extended up to a Turing machine.

Theorem 3.

1. AR-nets with basic nodes and at least two channels can simulate Turing
machines.

2. AR-nets with only channels can simulate Turing machines.

Proof. Since Petri nets with two inhibitor arcs (linked to different places
and transitions) are Turing powerful, it is sufficient to prove that a channel
can simulate a separate inhibitor arc.

Consider a transformation of a given Petri net with inhibitor arcs. It is
a slightly modified version of the transformation described in the first part
of the proof of Theorem 1.

A graphical description of this transformation is given in Figure 5. To
illustrate the method, we put to the left a schematic net, containing all
possible links of a modeling element to other possible elements of the net.
In this specific case we want to define a transformation of a place and a
transition, connected by an inhibitor arc. So we also consider the complete
set of all possible linked elements. The place is linked with two (types
of) transitions — producer and consumer, the transition is linked with two
(types of) places — input and output.

The resulting (transformed) net is put to the right. Nodes without labels
correspond to the similarly located places and transitions of the original net.
A triple “place — inhibitor arc — transition” is replaced by a single channel.

An AR-net with only channels can be constructed by the same scheme of
transformation. The only difference is that we replace all nodes by channels
and remove initial single tokens from “transition nodes”.
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Figure 6. Modeling of a reset arc by a reset node

The immediate corollary of the theorem is the undecidability of all inte-
resting algorithmic problems for nets with channels.

It is easy to see that bounded channels doesn’t extend the expressivness
of AR-nets since any bounded node can be simulated by a set of basic safe
nodes (a separate safe node for every single state of a source node). However,
boundedness is undecidable for Turing-powerful Petri net extensions, so we
cannot in general check whether a channel is bounded or not.

4.2. Extended firing

Definition 5. A reset node v ∈ V is active in a marking M iff

• M(v) > 0;

• ∀w ∈ V M(w) ≥ I(w, v).

An active reset node v may fire yielding a new marking M ′ s.t.

∀w ∈ V \{v} M ′(w) =def M(w)− I(w, v)+O(v, w); M ′(v) = O(v, v).

We denote the reset nodes by crossed circles.
The firing of a single reset token destroys this token itself and all its

neighbours. This is a non-local memory modification, so we can extend
the expressive power of the model by this syntax modification, but not up
to Turing machines (more exactly, to Reset Petri nets [1] with undecidable
boundedness and decidable coverability).

Theorem 4.

1. AR-nets with basic and reset nodes are equivalent to Reset Petri nets.

2. AR-nets with reset nodes are equivalent to Reset Petri nets.

Proof. (⊇) The scheme in Figure 6 describes the transformation of a reset
arc into a reset node.

A net with only reset nodes can be obtained by further replacing of every
basic node by a reset node and assigning to every “transition node” v a new
additional producing arc (v, v).
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Figure 8. Modeling of an inhibitor arc by a simultaneous node

(⊆) The scheme in Figure 7 describes the backward transformation (a
modified version of the first part of the proof of Theorem 1).

Definition 6. A simultaneous node v ∈ V is active in a marking M iff

• M(v) > 0;

• ∀w ∈ V M(w) ≥ M(v) ∗ I(w, v).

An active simultaneous node v may fire yielding a new marking M ′ s.t.

∀w ∈ V M ′(w) =def M(w)−M(v) ∗ I(w, v) + M(v) ∗O(v, w).

We denote simultaneous nodes by squares inside circles.
Simultaneous firing takes into account the total marking of the node.

Like a channel, this construct allows us to simulate a Turing machine.

Theorem 5.

1. AR-nets with basic nodes and at least two simultaneous nodes can sim-
ulate Turing machines.

2. AR-nets with simultaneous nodes can simulate Turing machines.

Proof. The scheme in Figure 8 describes the transformation of an inhibitor
arc of a Petri net into a simultaneous node.

The simultaneous node always contains one token more than the original
inhibitor place. So zero marking of the original place is equivalent to a single
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token in the simultaneous node. On the other hand, the new resource node
“unit” always contains a single token. So the simultaneous node may be
active only if it also contains a single token (is “empty”).

An AR-net with only simultaneous nodes can be constructed by the same
scheme of transformation. The only difference is that we replace all basic
nodes by simultaneous ones.

5. Conclusion

We presented a new syntax of Petri nets called nets of active resources. This
model is quite simple and compact and allows us to formalize a number of
interesting semantic properties, such as dynamic reproduction and dynamic
destruction of an agent (including self-reproduction and self-destruction).
The basic formalism of AR-nets is just an orthogonal method of a Petri net
Representation, so the model can be analyzed by all standard methods of
the Petri nets theory.

The AR-models may be useful for distributed systems with non-fixed sets
of actors: nets of services, dynamic workflows, business processes. However,
this syntax may be less convenient than classical Petri nets in the areas with
a strict separation of agents and resources.

We investigated the modeling power of several natural syntax extensions,
based on the new concept of active resource. It is shown that the resource-
agent representation allows us to increase the expressiveness (even up to
Turing machines) without extending the set of node interconnection rules.
It is sufficient to use the same fixed set of dependencies — local production
and local consumption of a resource.
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