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Application of Monte Carlo method
to determination of telegraph equation
coefficients

Irina Belinskaya

In this paper, a probabilistic approach to solving some inverse and direct prob-
lems to the telegraph equation is presented. The multidimensional cases and specific
features of the inverse problems, where it is commonly required to determine only
the functional of solution, make the application of Monte Carlo method reasonable.

1. Introduction. The statistical simulation methods are developed to
solve different problems of mathematical physics. It should be noted in
this connection that by now the main attention was paid to the developing
of Monte Carlo algorithms for the direct problems of mathematical physics
while a number of complicated inverse problems remained unsolved.

The Monte Carlo method has a number of advantages over deterministic
methods, namely, we can estimate certain functional without determination
of the general solution which is essential while solving the inverse problems;
to estimate error during the calculation; the insignificant dependence upon
the dimension of a problem.

2. Posing the inverse problem to telegraph equation. First, let us
describe the type of physical problems we are going to solve, giving an
example arising in signal processing. The relationship between the shape
of the vocal tract and its acoustical properties is of importance to speech
research.

We apply Monte Carlo based on reducing the original problem to the
integral Volterra equations of the second kind.

As the example of the 1D inverse problem let us consider the determining
the shape of the vocal tract according to the acoustical measurements. As
we know, this problem is ill-posed.

Let us consider the system of equations

pz(z,t) = —L(z)w(z,t), (1)
uz(mlt) = —'C(z)pt(m:t)' (2)

Here p(z,t) is pressure and u(z,t) is volume velocity in a lossless vocal
tract. If pressure is identified with voltage and volume velocity with current,
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then (1), (2) are telegraph equations for a lossless transmission line whose
inductance and capacitance are such that L{z) = 1/C(z) = A(z). This
system can be readily written down as the equation of second order

0 Op(z,t) %p(x,t)
-EEA(:.L')——n(,jm —A(m)—————atz .

We consider the problem of determining the function A(z) from the above
relations and the given impulse response function h(t) to be inverse. In work
[4], the solution of this inverse problem is presented by deriving an integral
equation in relation of the area function to the impulse response A(z):

f@0+3 [ bt -sf@nds=1, Ji<a 3)

There is unique dependence between the solution to the integral equation
(3) and the function A(z):

f(a,a) = 1/ A(a).

Also, sufficient and necessary conditions hold.

In this problem, we assume f (a,t) = u(0,t). Suppose the vocal tract be
quit at ¢ = £y, and the input of the volume velocity be applied at lips. At
t = ty + a the tract is undisturbed for all z > 0, because we assumed the
velocity of sound to be equal to 1.

We propose to apply the Monte Carlo approach to solution of the integral
equation (3). In this connection, we have to check the conditions of Monte
Carlo Applicability, i.e., convergence of the Neumann series to the solution of
this equation. Here we have the required conditions because of the Volterra
type of the integral equation (3).

According to Monte Carlo theory [3], let us seek the solution to (3) in
the space L, with appropriate norms.

As h(|t — s]) is an even function, then its Fourier series can be written
down with the cosines

[»] !
h(z') = % + g:lak cos %}, t€(-a,a), z'=|t—g4|
Here we take N; first members of the Fourier transform with the accuracy
required which can be estimated with the help of Bernstain’s lemma.

To find the local solution to (3) let us present this equation in the form
f = (ks,f) +1, where k. (t,s) = h'(Jt — s])/2 is the kernel of (3).

We construct the unbiased collision estimator ¢ such that

N
M¢=f(a)=M Y Quk(zn,a)+1, f(a)= f(a,a).
n=0
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This means that we construct the Markov chain 9, Z1,...,2N with random
weights Qo,...,Qx given by the formulas

_ _1_ - k(zn—-lg 2:")
P e s )

Here N is a random number of the final statement before breaking the chain,
k(Zp-1,%n) is the kernel of (3), g(z,) is the probability of breaking the
Markov chain in the statement z,, () is the initial distribution density
of the first statement 2o = —a of the Markov chain, P(Zn-1,,) is the density
of transition between any two neighbouring statements:

kr(zn_1,2,)

Ccos oT

Ny
P(zn-1,2n) = Y _ |bi(a)| -

=1

¥

or

N; :
kn(zn_1,z
p(a:ﬂ_l, 3ﬂ) = E |b‘lg (cos _Tr(.%:rl’_ﬁ) s
i=1

where b; are chosen according to [°, p(t,s)ds = 1.

Due to the Volterra type of integral equation (3) we have fulfilled the
condition || K} || < 1 which is sufficient for the convergence of Monte Carlo al-
gorithm. Here K| is the integral operator with the kernel k; (t, ) = |k(t, )|.

Note that with these Markov chain characteristics we obtain the unbiased
estimation (3] as well as finiteness of the mean number of the statements
M(N). This means our Markov chain will break after the finite number of
transitions with probability 1.

As we may present the function p(t, s) in the form

Ny

b= ZP-;
i=1

then we apply the well-known [3] superposition method to construct ¢ from
the formula ffa p(t,8)ds = n. Here n € Ulo,1) is the uniformly distributed
in the interval (0,1) random value.

It is known (3], that if Neuman series converges to the variance equation

) pi 20, zpi =1,

co§ —————

km()t — s|)
2T

_[® K?(t, 8)x(s) 1 1
nﬂ~ﬁfjﬁﬁ—a+ama=&ﬁd+mﬂa

the variance of the main estimation is finite. We also have this condition
fulfilled because of the Volterra type of the above equation. The numerical
results for the functions f() = (1+5t)~! and £(t) = 3 — cos?(bt), b = const
are presented in Figures 1 and 2.
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3. Numerical comparison. To prove the effectiveness of the method, it
is important to compare it with other methods solving the same task. So,
the numerical trials were made with the help of the finite element method
and the inversion of the difference scheme method.

4. Finite element method. According to [7], we seek the solution to
equation (3) in the space Ly(—a,a) with some basis {y;} in the form

N
o= uip;.
i=0

If an integral operator of (3) is positive definite, then we may approxi-
mate the solution to this equation by a linear combination of the piecewise
linear functions of order O(h?).

5. The difference scheme inversion method was proposed and proved
in [1]. The original difference problem is reduced to the appropriate finite
difference problem. For this problem, a difference scheme of the nonlinear
algebraic equations of order O(h) is constructed. Its solution is considered
to be an approximate solution to the original problem. This scheme has
weak stability.

We have studied several model problems by the three above mentioned
methods. In each case, a single test was used for comparison. Dividing
the interval (~T,T) into 2000 points, we obtain satisfactory (about 5-10
percent) accuracy for a relatively small = (here z is dimensionless variable
named “depth” characterizing the method) by using finite element method.
As z further increases, satisfactory accuracy is not attained. There is also
a considerable growth of storage with the sampling.

In order to obtain the accuracy of 0.01-10% by Monte Carlo method,
the averaging over 200,000 trajectories was used. The algorithm variance
linearly increases as z increases, the average number of steps per trajectory
increasing similarly. With z increasing, the estimate accuracy decreases
slowly and remains satisfactory for relatively large = (100-150). The storage
size for the Monte Carlo algorithm is comparatively small.

To attain the appropriate accuracy by the difference scheme inversion
method a grid of 200 x 200 size is needed. In this case, the solution is
accurately estimated only for small « from the interval (0,1).

There is a comparatively slow growth of variance, and the average num-
ber M(N) of Markov chain statements in the Monte Carlo algorithm. In
addition Monte Carlo method turns to be the most speedy among the three
methods. The illustration of the comparative numerical results are shown in
Figure 3. Tests for the function f(t) = b+ sinct, b,c = const are presented.
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Figure 3

6. The 2D inverse problem to telegraph equation. The main object
of investigation is the problem of determination of the coefficient g(z,¥)
from the equation

Lyu=vy+ Agyv +qu = 0. (4)

Here we know the solution of an infinite set of the Cauchy problems

in z = 0. Note that ¢ may depend on two or more variables. The case
considered here, ¢ = g(z,y) may be extended to n-dimensional case without
any serious changes. Let us do the exact formulations. Consider the set of
the Cauchy problems for equation (4) depending on ¥o with the initial data

v)emo =0, wth=o = (x)é(y — vo)- (5)

Here & is the Dirac §-function, R is a set of real numbers, Ry = (teR:
¢t > 0). Assume Vy € R, Vyo € R the trace of the generalized solution
#(z,y,t,90) of the Cauchy problem (1), (2) is given:

vl:l::ﬂ = g(y:t:yﬂ): Y, t)yD € R. (6)

We assume that g(z,y) and v(z,,t,y0) are respectively even with respect
to z, and therefore,

Uz|z=0 =0, =,%%€E R. (7)
The inverse problem is to determine the function g(z,y) from relations

(4)-(7).
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With the appropriate renaming [6] there is constructed N -approzimation
of inverse problem in the form of the following matrix system of the 1D
inverse problems

Uy = Ugz + B(2)U, z€R, teRT, (8)
Uli=o =0, Utli=o = Ed(x), (9)
Usz|z=0 = 0, Ulz=0 = F(t), teR™, (10)

where

B=-K+A, ij = mzdmj, Emj = ij, ij(t) = ffn(t),
Amj(m) ZG(N_!m_jl)aﬂE—j(a:)! O‘mJ =0, m,j=—N,,,+1,...,N.

This differential system is reduced to the equivalent matrix system of the
integral equation in the form

W(:a:,:t)+f_m W(z,s)F'(t—s)ds = —%[F'(t+x)+F'(t-—:r)], It <z (11)

Here F'(t) is the derivation of the even continuation of F(t) on ¢ < 0.

There is unique dependence between W (z, t) and matrix-coefficient A(z)
of the system (8)~(10): A(z) = —K + 4W,(z, ). It is sufficient to define
only one column of A(z) because it is of the Toeplitz type.

Equation (11) is the Volterra equation system of the second kind, de-
pending on parameter z. In addition, we are interested only in obtaining
the local estimation of the solution (11) at the point ¢ = z. In this connec-
tion, it is convenient to use Monte Carlo method.

The theory of weight Monte Carlo methods (8] has been developed for
estimating the system of Fredholm’s equations of the second kind. We con-
sider the solution to (11) in the space L, of the matrix-valued functions
with the norm ||®|| = vraisup, ; 3; |®;;(z)|. Let us rewrite equation (11) in
a more convenient form, omitting the dependence W (z,t) on , as in this
case  is a parameter:

T
W(t)=H(2t)+ | W(s)F'(t —s)ds. (12)

~z
Here £ F(t) is the derivation of the odd extension on ¢ < 0 of the function
F(t) at the points of its continuity. In the operator form, equation (12) is

written as W = H + KW, where K is a matrix integral operator with the
components

(= 9)p(e) = =3 [ 3" 14.0) (¢ — s)ole)ds.
T k=1
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Because fj;(t) are even functions, on the interval [0,2T) we may present
them in the form of the “cos”-segments of Fourier series, taking only several
first terms of them with the required accuracy.

To obtain the local estimation of solution of equation (12) we construct
the following Markov chain {z,},n = 0,...,N, with the transitional func-
tion, i.e., the density p(t, ). In this connection, the value 1— [*_p(t,s)ds >
0 is assumed to be the probability of breaking the Markov chain at the point
zn, N is the number of the final state.

The matrix estimator of Monte Carlo method for W(z, z) is constructed
on a basis of relations:

N
W(mrm) =M, E=H+ Z QnK(z,zn)

n=1

K(zpn, Tnt1
Qo=E, Qnu= Qn—""‘m L )‘1
P(:‘"m mn+l)
all functions in the relations are matrices.
From the point of view of smallness of variance, let us take the transi-
tional density in the form
) .
]

where a; are the Fourier series coefficients of the functions f;; are the com-
ponents of the matrix K.

The next point z, in Markov's chain {z,} we simulate according to the
superposition method (8].

We solve the inverse problem in two steps: (a) solution of the direct
problem by obtaining additional information ulz=o = F(t) for the solution
of the inverse problem; (b) solution of the inverse problem.

To solve the direct problem (8), (9), we reduce it to the corresponding
equivalent Gursat problem:

kmt

(a0l | <
p(t,m)w( 5 +;§1lak| cos =

Uk = Uk + B(e)U*,  Ub|pp = 05(0,...1,...0)7,

here 1 is at the k-place, and U* = (U* 5, U*y.,,...,UK)T. To solve this
problem, we use the explicit stable difference scheme “cross” of order O(h?),
where h is the step with respect to time and space. When solving it we obtain
the discrete analog of Ulz=0 = F(t).

7. Solution of the Cauchy problem to telegraph equation. Those
who solve the inverse problems as a rule faces the problem of the solving the
corresponding direct problem, which requires a lot of storage, especially in
the multidimensional cases or when large matrices appear.
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Let us present the numerical Monte Carlo realization of the probabilistic
approach to the solution of the Cauchy problem for telegraph equation.

There are well-known presentations of the parabolic and elliptic equa-
tions solutions in the form of continual integrals in some probabilistic mea-
sure in the space of the diffusion process paths.

Note, that numerical algorithms, based on direct calculating of this in-
tegrals, are very cumbersome and time-consuming.

As for hyperbolic equations, then for the solving the Cauchy problem to
the telegraph equation there also exists the probabilistic presentation in the
form of integral in the Poisson measure [5].

We propose the algorithm based on the calculation of this integral as
mean value in the path space of the Poisson process.

Consider the Cauchy problem for the telegraph equation

Uu(z,t) = AU(z,t) — 2aUy(z,t), z€ R, t>0, (13)
U(z,0) = f(z), Uil=,0) = g(z) (14)
and the wave equation
Vit(z,t) = AV(2,t) zeR% t>0, (15)
V(e,0) = f(z),  Vi(e,0) = g(=). (16)

Assume that the functions f and g satisfy the conditions of the unique solv-
ability of problems (13), (14), and (15), (16). For example, let us consider

“f”C’(R") <, “chz(Rn) <0, (4,03 = const < oo.

There is a probabilistic Cauchy problems solution [5}:

Ulz,t) = M[V (;r, /0 ‘(1N ds)], (17)

provided its right-hand side exists. In (17), N(s) is the Poisson process
with a parameter a > 0, and V(z,-) is the solution to problem (15), (16);
mathematical expectation here is the mean in the Poisson paths space N ().

In the 3D space, the solution to problem (15), (16) is defined with the
Kirhgoff formula

1 1 071
Viz,t) = — + ——= [— f ]
0= gt fe 9O gy [ s@
It is not difficult to construct the unbiased estimation for problem (13), (14),
using this formula, presentation (17) as well as the double randomization
principle. Thus, consider the random estimation
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¢(z,t) = n(t)g(w) + f(w) +n(t) fi(w),

where 7(t) is a random value defined with equality: n(t) = J3(=1)N@)gs.
Here w = z + an, « is a unit isotropic vector.

We obtain the following algorithm. Construct the random variables ac-
cording to the formula

1k
Tp = —— Z ]-nBi;
a i=1
where 7, are the Poisson process jumps, §; are independent, uniformly dis-
tributed in (0,1) random variables. Then

(3! k
n(t) = ]‘; (=1)%ds + ...+ f;(—l)"d3=(—1)kt+22(~1)‘“17.;, (18)

i=1

where k = N(t) are the numbers of the Poisson process jumps in the interval
(0,t). Because N(t) in the (0,¢) has the Poisson distribution, namely

(at)™ exp(—at)

P{N(t) =m} = =

, m=0,1,...,
the mean number of the Poisson jumps at the time ¢ is equal to M N(t) =
at. The random value 7(t), as can be seen from (18), is the sum of the
independent random values. So, taking into account Theory of Renewal
we may asymptotically estimate its mathematical expectation as Mn(t) <
¢(t — M7;) and variance as Dn(t) = %;t + oft).

For each obtained 7(t) we construct the random value w = z +amn, which
is uniformly distributed on the surface of the unit sphere with the radius n
and center at the point z.

Simple estimations show that the complexity of the algorithm has the
order O(t*) with ¢t — oo, because Dn(t) = O(t), and the functions f, g are
limited.
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