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On one numerical algorithm
of seismic networks planning

V.N. Beloborodov, O.K. Omelchenko

This paper is dealt with a brief statement of a basis of the theory of optimal
planning of seismic networks. Some concepts of such a planning of seismic networks
are given. Some specific formulations of problems of planning of seismic networks
are presented. A numerical algorithm of constructing discrete optimal plans as
applied to problems of planning seismic networks is stated.

Introduction

A source of the primarily observed seismic data in seismology is an obser-
vation system (OS), i.e., a network of spatially distributed seismic stations
equipped with instruments for recording seismic waves.

The basic OS parameters in seismology are as follows [7]:

e the number of seismic stations, the geometric configuration of a net-
work, and individual station sites;

e the frequency responses of the recording instruments, their dynamic
range and amplification.

Definition 1. We shall call a given number of seismic stations deployed at
fixed sites a seismograph network (SN).

Definition 2. Seismograph networks are usually divided into several cate-
gories by their spatial dimensions:

e local networks ranging in size from a few hundred meters to a few tens
of kilometers; 7
e zonal networks, from a few tens to a few hundreds of kilometers;

e regional networks, from a few hundreds to a few thousands of kilome-
ters;

® global networks, which are deployed all over the world or a large part
of it.

For the purpose of economy the number of stations in a network should
be kept to a minimum without affecting the quality of records; this naturally
calls for an optimum network design.
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The modem worldwide tendency to optimize seismic networks is to min-
imize errors in determining basic kinematic hypocenter parameters. This
problem known as planning of experiment [1, 3, 9, 10, 12, 16-19], and prob-
lem of the SN optimization can be termed the planning of a seismic network.
The mathematical planning of experiment uses methods of mathematical
statistics and optimization techniques.

The problem of designing a SN has arisen from the parameter estimation
problem Hypocenters of earthquakes, setting and methods of solution by
which one reduce here briefly.

1. The hypocenter location problem

The basic data for this problem are the coordinates of existing seismic sta-
tions and those of possible sites for the new stations to be added to the
network, the velocity structure of the region under study, and the positions
of the seismic-prone zones which are to be studied using the network in
question. This information related to arrival times of the waves excited by
an earthquake, is obtained by means of nonlinear equations of condition
[3, 8-10]:

T = i(X,0) +¢, (1)

where

T = (T1,T3,...,Tn)T is the arrival time vector,

7(X,6) is the N-dimensional vector of theoretical arrival times or the re-
gression function,

€= (€1,...,en)T is the vector of residuals,

6 = (o, \, A, t)T is the vector of estimated parameters,

X = (#,&2,...,Zn) is the matrix of stations’ coordinates,
N is the number of recorded arrival times,

n is the number of stations.

The estimation of 4 is treated by the regression analysis: the solutions
are the least squares (LS) estimates

o7 }(T; — n(%;,6))°. (2)

M=

6 = arg min Q(6), Q(6) =
fen

1=

[

The functional Q(g) has usually been minimized in seismology since
Geiger’s times using the iterative Gauss-Newton method based on a linear
fit to the regression function around the point g*:
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J(X,0%)AG* + 7(X,6%) - T +&=0, (3)
where
- m(Z;,0) on(z;, 0 on(;, 0
J(X,9)=( "gg‘l ). "5992 ) . "‘gem )), i=1,2,...,n. (4)

Multiplying both parts of the linearized equations (3), (4) by JT(X, 6%)
from the left, one obtains the following normal equations:

JT(X,6%)J(X,6%)A6% = JT(X,6%)§(X,0%), - (5)

where #(X,0) = (T - n(X,6))T.
The estimates of 8 are found by iteration (8 = limy_, o, 6%):

G+ = G4+ [J7(X,84)T(X, 6] IT(X, 699X, 6%), k=0,1,2,..., (6)

where the starting fit 6° should be chosen as close to the true values.
The matrix . . .
M(X,0) = J¥(X,0)J(X,6) (7)
is a Fisher data matrix or the design (planning) data matrix. The related
matrix

D(X,0) = M~*(X,6) (8)

known as a covariance matrix (of the parameter space) contains estimates
of the unknown parameters @ errors.

The matrix M(X,8) is not inverted during the iterative process (6) or
its modifications [11]; each step involves transition from (3), (4) to (5), the
latter equations being solved by a standard method. For this reason process
(6) can be written down as follows:

O =%+ AG*,  M(X,6%)A8 = JT(X,8%)g(X,6"), (9)

k=0,1,2,....

The above computational sequence of normal equations scheme has the
advantage that many satisfactory techniques exist to solve (3), (4); also,
the covariance matrix (8) is easily to be found. Its disadvantage in the fact
that M (X, 5) is poorly conditioned for certain cases of hypocenter position
and network geometry. Such cases can be handled by various regularization
techniques [4, 14].

Another approach to solving (1)-(4) is to abstain from using normal
equations, but solve the iterative process for (3), (4) directly at each step.
The most popular recent method to do this is singular value decomposition
(SVD) or the generalized inversion [13, 14]. A standard FORTRAN-IV
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procedure is available [13]. The computational scheme of the Gauss—-Newton
singular value decomposition is to decompose (4) into a product of three
matrices at each step of the iterative process:

J(X,0%) = U VT, (10)

where Uy is an orthogonal n x n matrix, Vj is an orthogonal m x m ma-
trix, Xy is a diagonal n x m matrix having the structure X; = (SO"), where
Sk = diag(p1,p2,...,pm) is a diagonal matrix of singular values arranged in
nonincreasing order p; > p;11.

The method also provides a so-called singular value analysis, which con-
sists in the elimination of zero singular values and the respective columns in
U and V. The iterative process then becomes

O+ = 6% + VS, k=0,1,2,..., (11)

where d* is a vector which consists of the first m components of UT (X, 6*).

It can be shown that, at each step of the iterative process (11), the vector
AG* = V871 d* minimizes not only the functional Q(6), in which the vector
7(X,6) has been replaced by its linear part as given by (4), but also the
norm of the parameter vector, which ensures the uniqueness of the solution.
The advantage of this process, as compared with (6), (9), is that one easily
obtains as a side result not only the covariance matrix of the parameter
space but also the matrix of the data space [18]."

2. The necessity of planning SN, a concept
of plan, and network design

To sum up, using any of the above methods based on the Jacoby matrix (4) of
the linearized equations of condition (3), (4), one can estimate earthquake
hypocenter parameters and the associated uncertainties. The solution of
this problem is discussed, for example, in [8-10, 19]. Note that the elements
of the Jacoby matrix are functions of the hypocenter parameters, velocity
structure, and station locations, but are independent of the arrival times
at the stations. It will be shown below that this allows one to construct
theoretical covariance matrices of the parameter and data space, and, hence,
estimate possible errors in hypocenter parameters at various points of the
region and the contribution of each station into the network performance
9, 10, 15-18]. _

However good the iterative techniques (6), (11) for hypocenter location
may be, they are unsatisfactory for a poorly conditioned matrix (4). The
regularization techniques recommended for such cases often fail to give the
desired effect in practice. The cause of matrix (4) being poorly conditioned
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lies in poor observational arrangements, namely, in poor network geometries
with respect to seismic source zones. The necessary conclusion is that obser-
vations should be planned beforehand; that is, network geometries should
be chosen so that matrix (4) should be as well conditioned as possible to
improve in parameter estimation. The design of seismograph networks is
thus to remove the cause why matrix (4) is poorly conditioned, rather than
trying to mend the matters by using various regularizations.

The founder of the science of the design of experiments, R. Fisher, was
the first to see that, whereas the most effective parameter estimation tech-
niques can yield accuracy gains of a few tens of percent at most, the gain from
more sensible experimental designs (efficient observation arrangements) may
be a few times. It is now generally recognized in the theory of experimental
design that well-advised preliminary planning is required for costly exper-
iments (e.g., explosions) or experiments that cannot be reproduced (e.g.,
natural phenomena such as earthquakes).

All this shows once more that observational arrangements should be
planned beforehand. This also concerns seismic networks.

A design in the theory of experiment planning is the set of quantities

— — — n
T1,L2y++.,&p
§n={ e ) Zr‘i=N:
i=1

T1,7T2y...,3Tn

where r; is the number of measurements at the point &; € R, N is the total
number of measurements, and R is a region of Z;. The points &; are the
reference points of the design, their set being the spectrum of the design ¢,.

The processing of seismic data is concerned with a spectrum belonging
to a wide region R in which the assumption of homogeneous experimental
conditions is often inadmissible. In such cases an efficiency function A\(Z)
should be constructed that would make it possible to compare error variances
at the points of the spectrum A\(£) = o~2(%).

Definition 3. -A design of an optimum seismic network is defined here as
a network having a fired constant list of wave types recorded at each site.

For example, L
ﬁﬂ:{flsEZ:-'-:in;P)S}' (12)

Definition 4. The SN design problem is to find an optimum design that
satisfies one of the criteria of optimal planning [9)].

The quality of a design is determined by applying certain criteria to it.
These can be classified into statistical and nonstatistical criteria. The former
generally incorporate the random errors of the measurements and the model;
the latter deal with systematic errors, although there are some statistical



18 V.N. Beloborodov, O.K. Omelchenko

criteria that can incorporate systematic model errors as well. The statistical
criteria are usually related to the properties of the covariance matrix D(¢, §)
of unknown parameter estimates. Some of them can be reworded in terms of
the data matrix M (£,@) by virtue of (8). In [9, 10], three statistical criteria
(A-, D-, and E-) and one more nonstatistical C-criterion of an optimum
design are described. They are used in seismology [15-17, 19].

In [9, 10], the above criteria are related in one way or another to the
matrix of the linearized equations of condition J(¢,6) (4). It would then be
reasonable to carry out a theoretical search for designs that minimize a given
function ¥ of matrix (4). As has been mentioned above, this optimization
problem is the problem of optimal planning of seismic networks, the results
of its solution being optimum designs (optimum seismic networks), and the
function ¥ being the optimality criterion.

3. Peculiarities and specific formulations
of seismic network design problems

As has been mentioned, the estimation of hypocenter parameters and the de-
signing of seismic networks have difficulties resulting from the fact that the
relevant regression function is nonlinear in the parameters to be estimated.
In this case [12], optimum designs are functions of estimated hypocenter
parameters and can consequently be called locally optimal, e.g., locally
D-optimal. They can be much easier arrived at, when the region of un-
known parameters can be fixed beforehand. This can be done in most of the
seismological problems. These cases can be treated by Bayes or minimax
optimum designs [12]. Suppose the estimated parameters 6 are known to
belong to some set ). Then

¢ = argint sup L[J (¢, 6)] (13)
€ fen
is called a minimax optimum design. If we also know the distribution func?

tion for the earthquake parameters F'(8), then we can consider the so-called
Bayes optimum design

¢ = arginf | 9[J(¢,))dF (D) (14)
2

Because of a number of factors, such as geological, geographic, and eco-
nomic, the SN design problem is also essentially discrete, the economic factor
operating to reduce the number of stations (points in the design spectrum)
to a minimum. It is known from the theory of experiment designs that it
becomes necessary in such cases to find exact optimum designs, i.e., designs
that are optimal for a fized number of network stations n. A search for exact
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optimum (discrete) designs is more difficult than a search for so-called con-
tinuous optimum designs. The problem is further complicated by the fact
that a solution is to be sought for each n [12].

The design of seismic networks in many seismological problems can be
stated in either of the following formulations [9, 10]:

1. A region has a network of k > m, where m is the number of unknown
hypocenter parameters. It is required to select an optimum subnetwork
of k1 < k stations for recording the earthquakes occurring in a given
source zone (or zones).

2. A region has a network of k > m stations, equipment being available
(expected or planned) for k; stations more. There are [ > ks sites in
the region chosen from geological and geographical considerations for
the deployment of this equipment. It is required to supplement the
existing network in an optimum manner to have k + k, stations for
recording the earthquakes occurring in a given source zone (zones).

3. A region has no seismic network. It is required to plan (design) an
optimum network consisting of a fixed number k > m of stations for
recordmg the earthquakes occurring in a fixed source zone (zones).
The néw network can be designed both using the sites that have been
chosen beforehand from geological and geographical considerations and
the sites that cover the region uniformly.

Each of the above problems divides in its turn into several subproblems,
depending on what set of parameters is planned to be determined using the
future network.

4. Numerical algorithm construction of exact
optimum designs

In the above discussion of special features inherent in the design of SN we
pointed out that:

(a) optimum designs are locally optimal;

(b) when the distribution of hypocenter parameters is known, the Bayes
optimum designs are to be considered (14), otherwise minimax opti-
mum designs are used (13);

(c) the design of SN is the construction of exact optimum designs in the
first place.

The construction of an exact optimum design consists in finding the least
value (global minima) of the function
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sup ¥[J (¢, 0)] (15)
fen
or
[ w.8)4r@) (16)

in a discrete region of a design spectrum modification for a fixed number of
spectrum points.

Various techniques are available for the optimization of functions of sev-
eral variables. They can be classified into two large sets, those based on
the use of derivatives and those without derivatives. Only some of them
are designed to find the global minimum, the others are intended for find-
ing local minima. The techniques without derivatives are a straightforward
direct and random search, a simplex method, etc. The techniques that use
derivatives include various modifications of Newton’s method, gradient tech-
niques, etc. Techniques for finding local minima are used to find all of them
and then select one global minimum. Although there are many satisfactory
general-purpose techniques, the theory and practice of optimization suggest
that it is better to use specially designed techniques when dealing with a
specific problem rather than to have recourse to good general ones.

In the present paper, the authors propose an algorithm of constructing
the precise optimum designs, whose idea belongs to Fedorov [12].

Let a design &,(60) = {1, s, ..., &, .- ., &n; P} be selected as the initial
approx:matlon Let us substitute mstead of one of basic pomts Z; a point

& € R, then we shall obtain the design ¢%(6) = {&y, %, .. . &n; P}.
Thus, the function ¥[J(¢, )] varies by a certain value

A(i"nf) = ‘P[J(Ezsg)] - W[J(gn:é‘)]’

If at such a substitution the function ¥ is diminished, i.e., A(F;, %) < 0, it is
reasonable to change the design &, for the design £;;. The diminution ¥ can
be made even larger at the expense of the choice of such a point Z for which
|A(Z;, Z)| becomes maximum (at A < 0). An additional maximization of
|A(Z;, €)| with respect to Z; at A < 0 will diminish ¥ even greater.

Let us now formulate the algorithm:

0) we select an arbitrary design {,(; {"(") 5:'(2’), n’); P} as the initial
approximation;

1) we discover a pair of points 55 ),a:( &

for which max max |A(Z;, £)| is
reached at A(Z;, &) < 0; v
2) a new design ,f( ) s distinguished from Eif) by changing the point

A() ~(s+1) .

to the point m( ) indicated as &; in future.
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Procedure 1), 2) multiply répea.ted, generates a monotonically decreasing

sequence ¥[J (f,(f), 8)], whose convergence follows from the existence of the
lower boundary. In this case, an indication to attaining a minimum point is
the fulfillment of the condition A(%;, %) = 0.

A minute shortage of the proposed algorithm is the fact that it does

. hot always converge to the optimum design, i.e., the sequence ¥[J (E,(,,"),é')]
does not always converge to a global minimum. In this connection, it is
recommended to iterate the above described process several times, starting

with various designs 61(;0)- If in all the cases, the value of the criterion for the
obtained designs coincide, the latter with high probability are the desired
precise optimum designs (they can be various or coincide). If repetitions of
the described process result in the various designs with different values of
the criterion, it is recommended to continue attempts of searching for the
optimum designs until a group of the designs is not formed, for which the
values of the criterion are equal to one another and than all the rest (designs
of a group can be various or coincide).

An important part of the considered algorithm is the calculation of values
of the criterion of optimality ¥[J (5,(;'), 8)], which is in application of singular
expansion (10) of the matrix J (5,(13),67). It enables us to easily and simply
calculate values of any of D-, A-, E-, or C-criteria of optimality, and also
of any of their combination. A possibility to incidentally calculate, without
essential additional time computer costs any combination of the enumerated
criteria of optimality will enable us, if necessary, to build the multicriteria
optimum designs.

5. Conclusion

The proposed numerical algorithm of designing seismic networks has been
realized by the authors as program in the Fortran language. This allows one
by the given criterion of optimality to discover optimum networks in any
of the three, above described settings. In this case, networks are optimized
with respect to an arbitrary 3D hypocenter area concerning arbitrary three-
dimensional hypocenter area or several areas at an arbitrary number n of
stations in the network.

The program favorably differs in the operation speed from the similar
ones, based on Monte Carlo method. The gained experience of the usage of
the program demonstrates that in most cases, with various initial designs,
the iterations rapidly converge to one of two—three (more often two) different
minima of the function ¥, from which the user selects a global one.

'The program has been tested on designing a large number of real and
virtual networks, some of which are described in [9, 10]. The authors have
carried out the works on the design of seismic networks in the majority of
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Siberian and the Far East seismic-prone regions, and also of Global networks
of the USSR and Russia.
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