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Supercomputer simulation of plasma electron
dynamics in a magnetic trap with inverse

magnetic mirrors and multipole magnetic walls∗

E.A. Berendeev, G.G. Lazareva

Abstract. The problem of simulation of plasma electron dynamics in the magnetic
trap with inverse magnetic mirrors and multipole magnetic walls is considered.
The model is built on the basis of Particle-In-Cell method. The complexity of
processes under study and the necessary in a high precision of results required the
development of a highly-scalable computational algorithm. Such an algorithm must
be capable of computing billions of particle trajectories in a reasonable time. In
order to achieve uniform and complete workload of the computational nodes of a
supercomputer, the mixed Eulerian–Lagrangian decomposition is used. A dynamic
time step is taken into account. This approach results in a high scalability and a
significant decrease in the computational time.

1. Introduction

Powerful neutral beams for controlled fusion installations are obtained in
the best way by neutralizing the negative ion beams in a target plasma
trap. In the Budker Institute of Nuclear Physics SB RAS for solving this
problem, a linear axially symmetric trap with inverse magnetic mirrors was
proposed [1]. A target plasma trap 130 cm long with 10 cm aperture was
created for carrying out experimental research. The objective of this project
is to minimize plasma losses in the trap. The main source of plasma losses
is wide aperture holes in the end faces of the trap. These holes contain
inverse magnetic mirrors. One more source of plasma losses is the exit
of plasma particles to the trap vacuum chamber through the cylindrical
multipole magnetic walls of the trap.

A full-scale investigation of physical processes in plasma may be per-
formed only by means of an integrated approach, i.e., the approach combin-
ing experimental research and numerical simulation. The simulation tech-
niques involved must describe the physical processes correctly. In order to
avoid simplifications and to obtain a qualitatively correct physical pattern
it is necessary to develop a mathematical model as complete as possible.
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It is generally accepted that a good basical model is a system of equations
that consists of the Boltzmann equation for the distribution functions for
electrons and ions [2]:
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Here the subscript α stands for the sort of particles (either electrons or
ions); fα(~r,~v, t) is the distribution function for the particles of the sort α;

qα is the particle charge; ~j is the current density, ρ is the charge density; ~E
is the electric field; ~H is the magnetic field; ~H0 is the trap magnetic field;
St{fα} is the collision term that describes the following physical processes:

• hydrogen atom ionization,

• ionization and dissociation of H2 molecule,

• dissociation excitation and dissociation recombination of H2+,

• dissociation recombination of D2+,

• charge exchange between protons and hydrogens atoms.

The PIC method is the multi-purpose and most widely used method for
solving these equations [3]. This method can be briefly described in the
following way. Plasma is represented by a sufficient large number of model
particles, that are moving according to the classical mechanics laws. The
motion of particles is determined by the self-consistent electromagnetic field.
Each model particle represents the motion of a large number of real particles.
Thus, a model particle has also a number of attributes of real particles such
as mass, charge, impulse, kinetic energy, etc. In order to obtain a correct
description of processes within the whole trap it is necessary to use up to
109–1013 model particles and 106–109 grid nodes in the 2D case. The PIC
method is an essentially parallel method since the trajectories of particles
may be evaluated independently. Nevertheless, the development of a scalable



Supercomputer simulation of plasma electron dynamics in a magnetic trap 9

Figure 1. The geometry of the target plasma trap and contours of
the magnetic field

parallel implementation of the PIC method is a complex task depending on
peculiarities of the physical processes under study [4].

One of such peculiarities is the complex pattern of the magnetic field
within the trap. Figure 1 shows the geometry of the ringed magnets with
iron screens. The magnetic field pattern forms the target plasma trap. The
magnetic field of the trap in some regions varies from 50 Gs to 7 kGs.

Such a considerable difference (two orders of magnitude) in the value of
the magnetic field greatly affects the Larmor radius. It results in a decrease
of a time step at the stage of the particle trajectory computation. In this
paper, the problem of an adaptive time step for particles in various parts of
the trap is also considered.

2. Solving the main equations

In an axially symmetric trap with a ring magnetic field, the azimuthal field
component is absent as well as the stationary azimuthal electric field. Thus,
in such a trap the wall-normal plasma drift is impossible. Due to this rea-
son the 2D statement of the problem in the cylindrical R–Z coordinates is
optimal. All the three components of particle velocities and impulses are
taken into account.

2.1. Solving the Boltzmann equations. The Boltzmann equation so-
lution is reduced by means of the splitting technique to solving the Vlasov
equation
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and to the correction of particle trajectories to provide St{fα} = 0 consid-
ering ionization and dissipation processes by means of Monte Carlo meth-
ods [5].

Solving the Vlasov equation is performed in the Lagrangian coordinates.
The characteristic equations for the Vlasov equation, yield the equations of
motion for model particles:
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Here ~H includes the self-consistent magnetic field for particles and the ex-
ternal field created by the trap. In order to avoid the numerical errors at the
symmetry axis, in the present paper, the Boris correction scheme is used [6].
The scheme involves solving the equations of motion for a particle in the
Cartesian coordinates and further local conversion of the result to cylindri-
cal coordinates. In this case, the following scheme could be used for the
particle trajectory evaluation:
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Here τ is the time step; superscript shows the moment of time to which the
value corresponds. The subscript i shows the number of the model particle
under consideration.

2.2. Solving the Maxwell’s equations. Maxwell’s equations are solved
in the Eulerian coordinates. The necessary current and charge densities are
evaluated with the velocities and coordinates of model particles:

ρ(~r, t) =
∑
j

qjR(~r, ~rj(t)), ~j(~r, t) =
∑
j

qj~vj(t)R(~r, ~rj(t)).

Here qj is the charge of a particle with number j; the function R(~r, ~rj(t)) (the
kernel function) gives the form and size of the particle as well as the charge
distribution within the particle. In the case under consideration, the charge
and current densities are evaluated by means of the formulas similar to those
in [7]. The formulas from [7] were modified to satisfy a finite difference
analog of equation (4) in the cylindrical coordinate system. This enables
significantly to speed up computations. The electric and magnetic fields are
evaluated by means of the scheme proposed by Langdon and Lasinsky [8].
According to this scheme, the fields are defined from the finite difference
analog of Faradey and Ampere laws:
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In such a way, solving the problem consists of the three stages. At the
first (Lagrangian) stage, particle velocities and coordinates are evaluated
according to scheme (6). At the same time, components of the current
density ~jm+1/2 and the charge density ρm+1 are defined. At the second
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stage, particle trajectories are corrected, particles are added and removed
with allowance for ionization and dissipation. These processes are treated
with Monte Carlo methods. The particles that have escaped the trap are
also removed. At the third (Eulerian) stage, Maxwell’s equations are solved

according to scheme (7)–(8). Thus, the values ~Hm+1/2 and ~Em+1 are deter-
mined in the grid nodes. The values of electric and magnetic fields at the
position of each particle are evaluated by means of the bilinear interpolation.

2.3. Adaptive mass alteration. Particles can appear and disappear (due
to ionization and recombination) and, also, escape from the trap at each time
step. Thus, it appears necessary to inspect the local density alteration in
each cell at each time step. The problem is in that the number of real
physical recombining particles could be much lesser than the number of real
particles corresponding to one model particle. In this case, removing one
model particle in order to simulate recombination may result in a dramatic
non-physical density alteration. In order to avoid such non-physical effects,
the PIC method with adaptive mass alteration was proposed [9]. For each
sort of particles, a constant s =

q

m
is introduced, which is the charge to mass

ratio. The model particle stores the charge value that is proportional to the
density in the cell. New particles are created according to the following
algorithm [9]:

• the total mass in the cell is computed,

• the average velocity is computed,

• the new mode particles are added with a necessary velocity distribution
(the average velocity of the added super-particles is 0),

• the new mass of a model particle in this cell is computed (the total
mass is divided into the new number of super-particles). This mass is
assigned to each super-particle in this cell,

• the average velocity is added to the velocities of the new model parti-
cles.

Removing the model particles is done in the same way.

3. Parallel implementation of the algorithm

At every time step, the algorithm performs the following actions:

• evaluation of electric and magnetic fields,

• evaluation of the motion of particles,

• evaluation of the new charge and current densities, collision term eval-
uation,

• particle mass alteration.
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Figure 2. The working time distribution (%) for 128× 128 grid
with 200 particles per cell

The working time for all these procedures was measured by gprof profiler.
The results are given in Figure 2.

From Figure 2 one can see that the main time to run the code is spent on
the operations with particles, namely, on the calculation of the particle mo-
tion and the current density for each particle. Consequently, there are a few

Figure 3. The Euler–Lagrange
domain decomposition

schemes for parallelization: the uni-
form particle distribution by pro-
cessors, the Euler domain decom-
position and distribution of parti-
cles among processors depending on
their position, distribution of parti-
cles depending on each time step for
a single processor. The advantage of
the Euler–Lagrange domain decom-
position for a constant time step is
shown in [4] (Figure 3).

The solution domain is divided into a few sectors along the axis Y .
The particles of each subdomain are distributed among the processors of
each type, uniformly and independent of the coordinate. Different symbols
denoting particles such as a circle, a square, a triangle, a diamond refer to
particles of a different processor type. Here 16 processors were used.

4. Numerical experiment

The calculation of the trajectories of model particles has been carried out
using the following physical and model parameters: the plasma tempera-
ture is 5 eV, the domain size is 61 × 12 cm2, the electron (ion) density
2 · 1013 cm−3, the grid has 4096 × 128 nodes, the total number of model
particles is 5,242,880,000. The calculations were performed on the super-
computer “Lomonosov” using up to 8192 processor cores. The average time
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Figure 4. The electron motion trajectories of the plasma target electrons
under the influence of the magnetic field

of one step calculation is 0.326 s, the average time for running the code is 24
hours. There are shown trajectories of some plasma electrons in Figure 4.
Here the influence of ionization and dissipation was not taken into account.

From Figure 4, it can be seen that inverse magnetic plugs on the ends
keep plasma in the trap sufficiently well. At the same time, there is a loss
of plasma on the trap walls and the inverse plug boundaries. In the future,
for the combined description of the plasma loss, the influence of the electron
dispersion will be taken into account in the future.

5. Conclusion

In this paper, it has been shown that the use of modern supercomputers
permits us to successfully solve a physical problem. The developed parallel
algorithm is well scalable, i.e., very good up to tens of thousands processor
cores and takes into account a capacity balance on the processors. In spite
of the fact that even in a two-dimensional case a vast computational burden
is necessary to calculate trajectories of the billions of model particles, we
succeeded to estimate the plasma loss on the trap walls and inverse plug
boundaries. In the computational experiment, a reduced model of the ex-
perimental trap, with the side ratio 1 : 5 was considered. In the future, we
are planning to consider a real size of the trap in our calculations by in-
creasing the number of processor cores up to 100 000 and by using graphical
accelerators.
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