Bull. Nov. Comp. Center, Comp. Science, 3 (1995), 19-37
© 1995 NCC Publisher

On co_mpositional model _check_ing'in the
modal Mu-calculus and its extension
with multiple clocks*

S.A. Berezin

This paper includes several results concerning with compositional model check-
ing (CMC) for finite-state systems with multiple clocks. We describe a model of
time [6], and a method of reducing a timed (infinite)} model to a finite untimed
model. We also present a new Finite Process Algebra (FPA) and its extension by
multiple clocks. Further we give “Pure” Compositional Model Checking (PCMC)
for the V-free fragment of the modal p-calculus with its generalization for the full
p-calculus as a) tableau-based model checking proof system and b) direct decom-
position of a formula. The worst case complexity analysis is done for all variants.
In particular, we extend the result of H. Andersen in [2] on the complexity of model
checking to the FPA and u-calculus with more general simultaneous fixed points.
We show also that any finite Labeled Transition System (LTS) with 2" states can
be equivalently represented by a compositional system of processes with the sum of
all their states 2n. It means that for any logic with at least linear model checking
procedure on the size of a model, no efficient compositional proof system can be
built, that does not use any other special properties except hierarchy.

1. Introduction

Model Checking (MC) appeares to be a very useful and powerful tool for
checking correctness of big and complicated systems. One of the most ex-
pressive logics used to describe properties of such systems is the modal
p-calculus [23]. Hiittel in [22] proved that the expressiveness of the logic is
equivalent to the expressive power of SnS. Interesting that SnS is decidable
only in its canonical model, while the y-calculus is decidable in an arbitrary
model.

The model checking problem for p-calculus is in NPnco-NP [17, 8].
Algorithms with rather low complexity were developed, for example o(|T| -
1®|-(|S]- gd%)-d(ﬂ-l), where |T| = |S|+| — |+|I| is the size of a LTS , and
ad(®) is the alternation depth of nested fixed points y and v in the formula
@ [14]. H. Andersen obtained a close estimate: O(|®|* - |S|*-! . |T]) in [2],

*Partially supported by the International Association for the Promotion and Cooper-
ation with Scientists from the Independent States of the Former Soviet Union (INTAS)
Contract No. 1010-CT93-0048.

20 S.A. Berezin

where k = max{ad(®), 1}. In [24] this estimate was refined: the power of
an exponential decreases twice as much, i.e., for formulas with ad(®) > 2
the complexity became better approximately as a square root. For the
variety of more popular logics like CTL and PDL, polynomial and even
linear estimates are known [8]. Polynomial estimates were also obtained for
two special fragments of u-calculus [17], where restrictions are made on the
use of conjunction. From [14] polynomial estimates follow also for fragments
of p~calculus with ad(®) < const [6]. '

But the direct application of even linear algorithms is impossible, if a sys-
tem has more than 10% < 108 states. A number of methods were developed,
which indeed allow to verify properties of large systems with the number
of reachable states till 10'® and beyond. The most significant was the dis-
covery of Ordered Binary Decision Diagrams (OBDDs) and their efficient
implementation [10, 11]. But still for a wide class of systems and properties
this technique is not applicable because of the exponential growth of the size
of OBDDs. So, the use of additional properties of a model is very helpful.
For instance, in [30] the decrease of the number of reachable states is ob-
tained by identifying stuttering-equivalent states. Since the exact solution
of the problem is very computationally expensive, an approximation based
on the use of partial orders is offered. The use of symmetry [12, 18] also
benefits a lot, when a model clearly exhibits repeated fragments. Though
some difficulties appear, for example, with choosing a representative state
from the set of equivalent states. Very interesting works in my opinion are
[15, 16] and [4]. The set of states is split into classes of states indistinguish-
able by subformulas of a concrete formula being checked. Since for any CTL
formula of the size n there exist models of the size 2", in which all possible
evaluations of the formula are realized, hence it is natural to expect that
short formulas can be checked very efficiently even on very large models.

Incremental Model Checking [27] seems to be also interesting. When we
know the evaluation of a formula in the initial model M, we can compute the
evaluation of the same formula in a slightly changed model M’, which differs
from M only by the set of changes A. In some cases this recomputation
can be done with just a linear complexity on the size of A. It could be very
convenient in debugging of a system, when we make small corrections and
want to know the consequences quickly.

The model of periodic (but finite!) sets’ representation was introduced
in [9]. Authors offer to store the set of states as a system of equations
z = a(mod n) with restrictions M < z < N. This representation allows us
to perform set-theoretic operations for such sets symbolically. '

But presently the most promising method seems to be Compositional
Model Checking (CMC). One of the first works in this direction is (28],
where the compositional proof system for Hennessy-Milner logic and CCS
and SCCS was developed. The logical completion of the work, containing

On compositional model checking in the modal Mu-Calculus 21

a complete proof system for a generalized version of SCCS and the full -
calculus is [3]. An attempt of generalization of [28] without loss of efficiency
was [7]. But, as it is shown below, Pure CMCis a very limited approach. The
most promising, in the author’s opinion, are such topics as combining CMC
with other methods of fighting the state explosion problem, for example, the
reduction of a model in [4] and Theorem Proving [21, 19, 20]

Section 2 describes the syntax and semantics of the modal p-calculus for
an arbitrary Kripke structure. In Section 3 we introduce the notion of Finite
Process Algebra and its extension to FPA with multiple clocks. Section 4 is
concerned with the method of “Pure” CMC with complexity estimates, The
limits of the method will also be revealed for sufficiently expressive logics
(Subsection 4.5). In particular, we will consider two different approaches to
CMC (Subsections 4.1 and 4.3), the generalization of the first one to the full
p-calculus using Tableau-based Model Checking (Subsection 4.2), and will
build another general efficient MC algorithm for FPA and the full p-calculus
(Subsection 4.4).

2. p-calculus: syntax and semantics

Assume we have infinite and disjoint alphabets of propositional constants
{P,...}, propositional variables {X,Y,...} and action symbols o =
{a,d,...}. Then, formulas of the Modal p-Calculus are the following:

1) P, where P is a propositional constant;

2) X, where X is a propositional variable;

3) -, ®, v, A Dy

4) (a) @, [a] @, where a is an action symbol; _

5) pX.®, v X.®,if X occurs in & positively only;

6) there are no formulas other than those constructed by the rules 1-5.

Here ®, ®, and ®; are formulas of the u-calculus. A variable occurs in
a formula positively, if it is in the scope of even number of negations.

A Kripke structure is a triple M = (S, =, I), where S is a set of states,
— C 5 x2S is a transition relation, and I is an interpretation of propo-

sitional constants and variables by the sets of states: I(P) C S. We extend
I to the set of all formulas in the following way:

1) I(=®) = S\ 1(®);
I(®; v b)) = I(q)l) U I(@g);
I(‘bl /\(Dz) = I(@l) N I(Qg);
2) I((a)®) ={s € S|3s' € I(®): 53);
I{[a]®) ={s€ S|V €S: (s &)= ¢ € I(®)};

22 o S.A. Berezin:

3) I(uX.9(X)) = M{L C §| I@(X))[X « L) C L}
I(v X.8(X)) = U{L € S| L € I(®(X)) [X + L},

Let us note that in y-calculus De Morgan’s laws and the following iden-
tities hold: (a) ® = ~[a] 9, [a] ® = - (a) ~®, p X.B(X) = wX.~P(-X)
and vX.®(X) = ~pu X.~®(~X). Therefore, all negations always can be
moved to the atomic formulas. Note, that the variables bounded by fixed-
point constructors will occur in corresponding fixed-point subformulas with-
out negations. So we assume below that formulas no longer contain nega-
tions. ' ' : '

3. Finite process algebra

Definition 1. Let the triple G = (S,—,2) be the transition graph of a
finite process, where S is the finite set of states (the nodes of the graph G),
2 is the alphabet of action symbols with the special idling action * € 9,
and —C S X2 xS is the transition relation, which maps each symbol from
the alphabet of actions to the set.of edges of the graph G. For (s,4,5") € —
we will write s 5 &, and 3C S x.§ will denote an obvious binary relation -
for the action a. The graph G should contain the total unit relation > =
{(s,5)| s € S}. '

Definition 2. Let the pair p = (G, 5,) be an atomic process, where Gp=
- (Spy—p, Ap) is the transition graph of a process p, and s, € S, is the initial
state of this process.

We will write p 3 p'if G = Gy and s, > s,y
Definition 3. Processes are defined by the grammar (in the spirit of [3]):

P = palpoxp|p A|p{E},

where p4 is an atomic process. The operators are called product, restriction
and relabelling, respectively. The restricting set A must always contain *,
and Z: % — 2 must respect *: Z(x) = ».

The semantics of the transition relation p = ¢ is extended to arbitrary
p and ¢ as the least relation satisfying the rules in Figure 1.

The set of states of a compound process is a Cartesian product Spx, =
Sp XSq = {(81,82) | 31 € Sp, 83 € S;}. The sets of states of a restricted and
relabelled processes remain the same.

The set of actions of a compound process is a Cartesian product A,y =
Ap XA, = {ab|a € Ay, b € Ug}. The operators of the product of processes

On compositional model checking in the modal Mu-Calculus 23

“x” and actions “.” are neither commutative nor assotiative. The only rule
iB*x-%x==%, . .

Now we can formulate the problem of verification. The problem is
whether a formula @ is true for a process p. We will denote this by p EM, ®.
We say that a sequent p |=ps, ® is valid iff the corresponding problem deci-
sion is positive.

pSp p3radq
pxg¥pxe
p3p oo p3p A
WEy A " piasgia €t

Figure 1. Operational rules for FPA

3.1. Models with multiple clocks

In this section we introduce a model of discrete multiple clocks and a special
infinite Kripke structure representing this model of time. We refer to the
previous work [6] for its correctness and the decidability of the MC problem.

First we give an informal description of a transition system with multiple
clocks. This system is the generalization of the transition system with real
time described in [26, 5.

Consider a transition graph G = (S, —,%). To each action b € ® two
constant vectors I, 7 € (N U {oo})™ are assigned, where I < @ component-
wise. They are lower and upper time bounds of a duration interval for the
action. We will denote it by ,—b". The global vector variable { ranging over
N™ will keep global system’s time.

Informally, each component t; of £ can be considered as an independent
clock. The only relationship it has with the other clocks is the restriction
on its tact duration: it can “tick” (i.e., increase by 1) no earlier than l;; and
no later than u;; "ticks” of the clock t;, where {45, ui;} are constants from
(NU{oo})™. Less strict, it means that at any instant of time all clocks have
to meet the set of inequations:

Liit; <t < uii(t; + 1).

An action may fire, if it has been ready to fire in the corresponding untimed
graph for at least I and no more than @ time units component-wise.

To represent this model by a Kripke structure we need a more formal
description of our timed transition graph.

Definition 4. Let Gy = (S, -, %y, {Tu]a € %}, {lz|a € A}, {#.]a € A}, 8)
be a timed transition graph, where

24 S.A. Berezin

o A, = AU {ticky,..., tickm}, and m = |¢]; the actions tick; are reliable
for time ‘ticking’;

o G =(S5,—,) is an (untimed) transition graph;

e each T, is the individual timer of an action a;

. f; and i, are the lower and upper time bounds of the action a; for
a = tick; (Ia)i = 0 and (i,); = oo;

o i are the global multiple clocks.

An action b € 2 is enabled in a state s iff 3s'.s > &'. Let En(b) be the
set of all states, where the action b is enabled.

Definition 5. A configuration of a system is a pair (s, H), where s is a
state, and H is a matrix m X n, where m is the number of ticks, and n is
the number of different actions. H consists of the values of all individual
timers of the system:

T, hia .o him

Ta,-. hnl . hnm

- Definition 8. An extended configuration of a system is a triple of the form:
(s, H,t), where (s, H) is a configuration, and £ is a value of the time variable
t)

The semantics of the transition relation — is extended to the set of
extended configurations as follows:

o for a # tick; (s,Ty,...,Tuy..., T, &) 3 (¢, T%,...,0,..., T,) <
) i <7 = - ’-_l:b, s’ € En(b),
s— s and l; < T, < i, and for all b # a: T} 6, otherwise.

(* remains the same);

e for a = tick; (s,fl,...,fﬁch,...,fn,f) “ﬂ‘ (s,f{,...,(-}',...,T.,’,,f’)
<= lick, < Tiick, < ik, and £} = t; + 1 and for all a # tick;:

-

(To)i +1, s€ En(a);

(T;).- < ()i and (f‘;’); = _
0, otherwise,

(s remains the same).

In the 1-dimentional case (m = 1) we have a system with real time
presented by a single clock, described in [26] and [5]. Actions like ;a* in
this system occur with time delay, no less than ! and no greater than u

On compositional model checking in the modal Mu-Calculus 25

tacts. These tacts are counted out by the single time action gtick®™. In
the multi-dimentional case (m > 2) the notion of the tact as a time unit
disappears with the conventional notion of time itself. Instead, some inde-
pendent clocks, whose tact durations meet the following inequations appear:
lijt; < ti < u;jt; for all i # j. This model can describe, for example, com-
munication between some processes, which have their own clocks going with
different speed and finite precision.

It is easy to understand that actions like (s001.22) (%) will never oc-
cur, and hence, can be excluded from the system. For actions like
(...,I.-,...)“(""m"") the appropriate components of the individual timers suffice
to reach /; and then to maintain this value as long as the action is enabled,
because the action will never actually have to occur before the next tick;.
At last, for actions like (.__,h.,___)(l(""“‘""), where 0 < I; < u; < oo the i-th
components of the individual timers are limited by u;. Therefore, we may
redefine our system so that every timer has a finite range. So, we can say
that D, is finite, and D, is countable.

It is obvious that any situation which is possible for the transition graph
with multiple clocks can be fully described in terms of extended configura-
tions.

Definition 7. Let M; = (Dy, —,,1,) be a timed model, if D, is the set of
all extended configurations. We will say that M, is induced by the timed
transition graph if the transition relation —; corresponds to — in the graph.

We consider also an untimed model M, = (De, 1), where D, is a set of
all configurations, and —. and I, are projections of —, and I respectively
on D.. Formally, it means that two following conditions hold:

1) for any formula F, d € I.(F) iff there exists i € N™ such that
d; € Iy(F);

2) for any action b, d —P-}c d' iff there exist £, € A'™, that d;—b)g d;.,.

In [6] it is stated that assuming time-dependent predicates only t; < k,
t; 2 k and ¢; = k(mod p), we can reduce the problem M, = FtoM | F,
where the model M’ is finite.

To introduce a compositional model it is sufficient to insert in each atomic
process p its own copies of tick;(p) and redefine the process product as the
following: o

PXeq = (px q) I (Rpxq U (ticki(p) - ticki(g))),

where by 2,,, we assume all actions of the process except tick’s. In the
sequel we will always assume x; while using X, and all graphs of processes
should be derived from the corresponding models M’ mentioned above.

26 S.A. Berezin

4. The verification of compound processes

In general, any problem p |=ps, ® is decidable, but the computational com-
plexity of the direct algorithm depends on the size of a model n = |M,| as
O(n¥), where k depends on a specific formula, and |M| = |S| + |—|. For a
compound process p = r X g the number of states is the product of the num-
ber of states of r and ¢: n, = |S, x.S,| = n,n,, what considerably restricts
the practical application of the direct model checking procedure. So our
main task in this section is to develop the procedure of formula evaluation
in which it is sufficient to construct the validity sets of a formula only for
atomic processes. _ ' R - _

There are two approaches to the solution of a problem p x ¢ |=ps ®. The
principal idea of them is proposed in [28]. '

I. Given a formula & and processes p and g, construct the new formulas
®, and ®,, such that (p =pm, ®p and ¢ =M, D)) <= pxXqlEM
and then solve two problems p |=p, ®, and ¢ Ear, @,.

II. Given a formula ® and a process p, construct the new formula ®/p,
'such that ¢ =y, ®/p <= px g Em @ for any ¢, and then solve the
problem ¢ =p, ®/p.

4.1. CMC proof system

Let us discuss approach I, where the original problem for a compound process
is split in two problems for the subprocesses, but the size of the projection
of a formula does not exceed the size of the original formula. We begin
with the restriction on the semantics. Let fix some models M = (S, I),
M, = (8p, I;) and M, = (S,, I,) induced by the graphs of processes p X g,
p and g respectively. Assume that for all propositional constants and free
variables their interpretation I(P) is a Cartesian product I,(P) xI,(P) of
their interpretations in M, and M,.

Let in some model M = (S, I) induced by the graph of a process p x g,
the interpretation of all propositional constants and free variables I (P) be
a Cartesian product I,(P) xI;(P), where I,(P) C S, and I,(P) C S, are
interpretations in models M, and M, of subprocesses p and g respectively.

We will use the following notations:

 a(p) ={a €%, |3p' : p > p'}. Note that » € a(p) for any p.
e Foranybe®, b(p)= {lIlP—b’ q}-

‘First we introduce a new modal operator {a) ® in our logic, where ® is
a formula, and a is an action. The semantics of this operator is {a) ® =
(a) True A [a] D.

On compositional model checking in the modal Mu-Calculus 27

Let us assume that there are no fixed-point subformulas (beginning with
and v) in F, no disjunctions and negations, and no []-modalities (we leave
only () and @ modalities).

Then the algorithm (1) of constructing the projections F, and F, of the
formula F on processes p and ¢ for a problem p x ¢ }:M F will be the
following:

case F' of
P: (* prop. const. *) F, := P; F, := P;

| F' AF": F, =F’AF" Fy = Fy N F;
(* here a.ll F a.nd F, are computed recursively *)
| {ab) F': F, = {a) F}) A
i Fy := {b) F’
€enda.

The complete proof system of the fragment for all processes with the
only restriction on relabelling is shown in Figure 2. The restriction is that
=~1(a) should be unique for all a € 2,,. :

palEF (pa is an atomic process) pt F(False/ {a) F', False/ (a)] agAand D#£0

patFF pltARF
prF[E(a)/a] __, prFpqt F,
TP (& () is unique) ——F Rt

Figure 2. The proof system for FPA and the fragment of the V-free y-calculus
with the modality operator (a) F)

Statement 1. For the formulas F, and F,, constructed by the algorithm
(1) described above the following holds:

(M, Fpandql=p, Fy) <= pxqlumF.

The proof can be made by the induction on the structure of a formula.

Note, that the algorithm (1) does not change the structure of a formula,
it only replaces symbols of actions in (a = &) formulas.

Let us define the operation of projection on a subprocess for the con-
structors of fixed points as (uX.®), = uX.®, and (vX.9), = vX.®,. In [7]
it is proved that this definition is sound. Thus we have the followmg

'l'heorem 1. Let My = (Sp, Ip), My = (Sq, 1) and M = (S, I) be the models
mduced by the graphs of processes p, q and P X q respectively, and let the
interpretation I1(P) of all atomic formulas in M be the Cartesian product of
the interpretations I,(P) X I,(P) of the same atomic formula in the models

28 * S.A. Berezin

M, and M,. Then for any formula F of p-caleulus without disjunctions
and negations and a modal operator (a — ®) with ® # (O there ezxist such
formulas F,, and F, from the same fragment, that

px¢FEMF < (p M, Fp and g =u, Fy).

Moreover, the size of each formula F,, and F, does not ezceed the size of the
original formula F.

4.2. Tableau-based model.checking

The only serious restriction of the method described above is the absence of
disjunctions in formulas. Although for some formulas with disjunctions we
can apply this method (mainly by transforming those formulas into the sets
of formulas without disjunctions), in general it is impossible.

The most efficiently, in the author’s opinion, this method can be used in
‘implementation of tableau-based model checking, developed by R. Cleave-
land in [13]. It makes the algorithm (1) applicable to model checking for the
full p-calculus, and makes the result complete.

Definition 8. A sequent is an expression H Fp p € F, where p is a
(compound) process, F is a p-calculus formula, M is a Kripke structure,
and H is the set of hypotheses, i.e., pairs of the form (¢ : ¢ X. <I’) o € {u,v},
where ¢ is a process, c X.® is a ﬁxed point formula.

Definition 9. A sequent # ps p € F is called a leaf if one of the following
holds:

1) Fis a propositional constant;

2) Fis a formula from the fragment described in Theorem 1;

3) (p:F)eH;

4) F=(a)®or F=[a]® or F = (a) ®, and a(p) =4 {g|p = ¢} = 0.

A leaf H Fps p € F is successful if either:

® pl=pm F is valid (can be proved using the algorithm (1)); or
e F=vX.®and (p: F) € H; or
e F=(a—> %) and {g|popmq} =T =0.

A leaf is not successful otherwise.

On compositional model checking in the modal Mu-Calculus 29

Infererice rules:

HbiympeF HEmMpeEF HbpypeF”
Hbpm pe PPV F Hbpm pe FPAFY '
Hrm qu€F ... Hipy g € F
HFa pE[]Y ({a1, - an}=a()) ([.]),

Him i €F ... Hbp g €F
Hrw pe (@) ¥ (a1, an}=a(2)) ({.]),

HrEpmge F
H '__M pE (a) q,(qE“(P)) (())1
H' U{(p:0X.F)}Fprr p€ FloX.F/X]
Hbypm peoX.F !

where o € {u,v},H' = H\ {(p: ®) | 0 X.F < ®}.

Here F X ® means that F is a subformula of ®. In the third rule it is
allowed that ¢; = gj or ¢; = ¢; for some i # j, but it is important that
all next states and all formulas from ¥ appear among the assumptions. A
sequent is valid iff there exists a proof in this axiomatic system, ending with
successful leaves. Soundness, completeness and decidability are proved-in
[13]. The verification problem p j=ps F is equivalent to the validity problem
of the sequent @ -5 p € F.

In this work the fact is important that the proofs of the most formulas
significantly diminish due to the definition of leaves (Definition 91))- The
original proof system in [13] consists of similar rules (except that for the
modal operator: Cleaveland uses ordinary [.]- and (.)- modalities), but with
different definition of leaves. In his system one have to unfold all fixed points
and apply other rules until one gets either a propositional constant or the
empty set of assumptions or a formula from #. In our system one may stop
earlier and continue model checking for subprocesses.

Thus, we completed the construction of the first compositional model
checking algorithm for FPA and the modal p-calculus. In the next section
we consider another quite different approach to the same problem, and for
the extended version of the p-calculus.

4.3. Another approach to the verification of compound
processes

Let us consider another approach, in which the original problem p x ¢ |z F
15 reduced to an equivalent one ¢ = F/p. All we need is to construct the
formula F/p using the original formula F and the process p. We offer an
algorithm for an arbitrary process p and a formula F from the full modal
p-calculus. It is an improvement of the previous result [7] for the fragment
of p-calculus with alternation-free fixed points.

30 S.A. Berezin .

Assume that there are no fixed-point subformulas (beginning with x and
v) in F, and no negations. Then for the problem p x ¢ [=p F an algorithm
(2) for constructing the projection F/p of F on the process p is the following.

case F of
P: (* prop. const. *) F/p:= P/p;
| F' AF": Flp:=F'[pAF"[p,
(* here F'/p and F”/p are computed recursively *)
| F'v F": Fip:=F'[pVv F"[p,
| (ab) F': if a ¢ a(p) then F/p := False
else Ffp:=(b) \V F'/p end;
p'€a(p)
| [ab) F': if a a(p) then F/p := True
else F/fp:=[b) A F'/p end;
q p'€a(p)
end.

The semantics of P/p is defined as I,(P/p) = {s € S;|(sp,s) € I(P)}, where

8p is the initial state of the process p, and I and I, are interpretations in

the models induced by the graphs of processes p x ¢ and ¢ respectively.
The axiomatic system for all FPA is shown in Figure 3.

7 ‘:‘ I: F (pa is an atomic process) pk F[F plt(?\)mee/ [a] @] agA
PFF[Viez-s ® 2/ @) & Aczoro B2/12]) gy
p{E}+F pxgk F

Figure 3. The proof system for FPA and the whole p-calculus

Statement 2. For the formula F/p, constructed by the algorithm (2) de-
scribed above the following holds:

=M F/p &= pxqEMPF.

First, we extend our logic by vector expressions (4, ..., A,) and simul-
taneous fixed points
od".(X™ = P™),
o € {p,v} in the spirit of [1]. The last expression corresponds to the vector
of formulas (®,,...,®,), where all free occurrences of X are interpreted as
the least (resp. the greatest) solutions of the equation system X™ = P™,

The vector P™ in its turn can be either a simple vector of formulas, or a
simultaneous fixed point. We call this logic an eztended u-calculus. From

On compositional model checking in the modal Mu-Calculus 31

the Beki¢ theorem it follows that any simultaneous fixed point can be equally
represented by ordinary fixed point, though in general with an exponential
growth in size (see, e.g. [1]).

Assume we are given a problem p x ¢ = F, where F is a formula of
the extended u-calculus. We will construct the projection of F on p in two
steps. First we build a decision graph Gr(F, P), and then with the graph we
construct a formula F/p of the extended pu-calculus.

The graph Gr(F,p) = (V, E) is built as the following. The set of nodes
V = {(®,5)| ® is not a vector formula, < F, s € Sp} is the set of pairs of
all subformulas of F and all states of the transition graph of the process p.
The set of edges F is the least set satisfying the followimg conditions:

e from a node (P, s) there are no outcoming edges, where P is a predi-
cate; :

o from (X;,s) there is one edge to (F;,s), if X; is bounded by o®"
(X™=Pm);0 € {nv);

e from nodes (¥, v ®,, 8) and (®; A ®;, s) there are two edges to (¥, s)
and (‘Dh 3);'

o from nodes ((ab) 3, s) and ([ab] B, 5) there are edges to all nodes (®,4),
such that s = &', '

Assume given a Kripke structure Mpxq = (Spxq» —*pxqs Ipxq)- The func-
tion ¢ : V > 25 is called a decision graph’s marking, mapping each node
(®, 3) to the set of states of the process g by the rules:

(a) ¢(P,s) = RP)={reS,|(s,r) € Ipxq(P)}.

Let the node v be V-node, if v = (&, v &,, s) or v = ({a) ®, s), and A-node,
if v=(®1A®,,5) or v=([a] ®,s). Then

(b) for V-node ¢(v) = U; ¢(v;),
(c) for A-node ¢(v) = S, N(N); d(v;),

for all v;, such that (v, v;) € E. For the rest of nodes with only one out-
coming edge

(d) é(v) = ¢(v'), (v,v) € E.

The value of ¢(X,s) is determined as the least (the greatest) possible set
with respect to (d), if X is bounded by the constructor of the least (the
greatets) fixed point. Minima and maxima of such sets have priorities cor-
responding to the order of the nested fixed points.

The original problem p x ¢ |= F can be shown to be equivalent to s, €
o(F,sp). We will not try to find an algorithm of constructing ¢ directly.
Imstead, we will build a formula F/p from the extended yu-calculus by the
graph Gr(F, p), such that I, (F/p) = ¢(F, s,), where I, = I?*.

32 S.A. Berezin.

1. For every node (P,s) take a new proposltlona.l constant P/s:
L,(P/s) = I3(P).-
2. For every node (X, 5) take a new variable X/s.

3. Nodes (@, v @;,3) and (®; A ®2, 5) map to the formulas @1/3 v &,/s
and ®,/sAP,/s respectively, where ®;/s corresponds to a node (®;, s).

4. A node ({a) ®, s) maps to the formula {c) (FalseVV/,, &/s'), where ®/s’
corresponds to (®, &), to which edges are coming from ({a) &, s), and
a = be. Similarly ([a] ®, s) maps to the formula [] (True A A, ®/5).

5. Beginning with the deepest nested ﬁxed pomt a<I) (X = P) in the
original formula, build an expressxon o®. (X P) where the vector
A = (Ay/si,.. m/sn), a.nd nodes (A;,s;) appear in the demslon

graph. Indexes in X and P have the same order, so that X=P
corresponds to the right system of equations. It is possible, since all
nodes (P, s;) are produced in the graph only by nodes (Xj, s;), and
hence, there are the same number of them.

Finally, as a result we take the formula F/s,, corresponding to the orig-
inal F in the state s,, and denote it by F/p # F/s,. It is easy to show that
it is the formula for which px ¢ | F <= ¢ |= F/p. Obviously, the size
of the formula is |F/p| < (|G| - | F|).

l4.4. One more efficient MC algorithm

Approach II can be easily used in the description of another efficient MC
algorithm, which in some sence can be considered as the refinement of the
algorithm of Andersen [2].

-Assume given the problem p |= F. Applying the algorithm (2) to all
products in the process p consequently, we will finally obtain an equivalent
problem ¢ | F', where ¢ is an atomic process. Composing ¢ with 1 =
({®}, =1, {*}) — the process with only one state e and action %, we will have
an equivalent problem (1 x g){*-a — a} | F'. Now we again apply the
algorithm (2) to the relabelling and g. As a result, we will have the problem
1 = ® equivalent to the original one, and |®| < |G,| - |F|. All ()- and
[]-subformulas are of the form () G; and [x] G2, and hence, are equivalent
to G, and G, respectively. Therefore, we can consider ® as a ()- and [J-free
formula.

In [2] an algorithm of evaluating of such formula in the model M; is
presented with the complexity O(|®]) = O(|G,| - |F|) for ad(F) < 1, and
hence, for ad(F) > 1 the complexity is O(|Gy| - |F|(|Sy| - |F|)"fd(F)‘l) by
Theorem 5.1 from [2].

Thus, there exists an eﬁ‘icnent model checking algorithm for p-calculus
like in [2], but for a model given as a system of parallel processes and for

On compositional model checking in the modal Mu-Calculus 33

the variant of the logic with more concise fixed points. In general, the size
of formulas in u-calculus with the constructor (0 X.®); grows exponentially
on the size of equivalent formulas with the constructor 08.(X = P). Note
also, that our approach does not need to translate fixed points to simple
fixed points beforehand. It is done directly while checking the formula ®
and is a part of the algorithm [2].

4.5. Efficient PCMC is the unreachable dream of expressive
logics

In this section we will clarify some rather serious restrictions of pure compo-
sitional MC methods (PCMC) which do not use any additional information
about a model but hierarchy. The idea is the following. Assume we are given
an arbitrary atomic process p with the number of states N. Then we can
build a compositional process ¢ with the sum of the number of states of all
atomic subprocesses 2[log, N, which is strongly bisimilar to p. Further, if
we have a MC algorithm for some fragment of the p-calculus with the com-
plexity O((N - |F|)*) and a method of formula decomposition with no more
than polynomial growth and the complexity no greater than O(|F|™-log, N),
where n is a constant, then we immediately have a MC algorithm for the
logic with the complexity O(klog, N - |F|max{mk}). Since the problem of
MC for p-calculus is known to be at least PTIME-complete and there are
algorithms with the complexity O((N - [F|)*d(F)| — |), then there exists
no efficient decomposition procedure for it. All the same is concerned with
CTL. The MC problem for it is PTIME-complete, and the best existing al-
gorithm is linear. Therefore, we can not decrease the complexity to log, N.
Now we formulate this as a theorem.

Theorem 2. Given a fragment of n-calculus with at least linear MC proce-
dure on the size of a model. Then, if there ezists an algorithm of constructing
formulas F' and F" from p, q and F, such thatpx g F < pEF .
(and/or ¢ |= F"), then its complezity is at least exponential on the size of p
(and/or q).

Proof. It suffices to build a process with the sum of the number of states
of all its atomic subprocesses no greater than 2[log; N from the original
LTS with the number of states N.

Let the initial LTS be defined as an atomic process p. We introduce n =

2 V| new atomic processes P1,- .., Pn With two states and two transitions
& and b; (and of course, the idling actionx):
b.

Pie)
N

a;

34 S.A. Berezin:

Enumerate all states of the process p by bit vectors of the length n, such
that s; = (0, ..;0). The desired process will be p’ = (p1 X ... X pn) FA{E},
where ¢ ...~ ¢cn € A <> in p there exists an action a from the state
(31y++.y9n) to (J1,--.,Jn) and :

A, jk > iks
ck = bk, Jk <t
' ¥ 5, Jk = tky

and Z(c; + ... ¢n) = a for the @ and ¢ from the definition of A. Obviously,
¢’ will be strongly bisimilar to the process p. Note that the process p’ has
exactly 2n states of atomic subprocesses by the construction. o

The result has also a positive corollary. For instance, for the p-calculus
without negation and disjunction, with proper modalities and for a proper
class of models we have the algorithm (1) of decomposition with the complex-
ity O(|F]), not depending on the size of a model. Therefore, for the fragment
there exists a MC algorithm with the complexity O(|F|*(F).ad(F)-log; |S|).
The restriction on models can be, for instance, the requirement that all dif-
ferent transitions in the initial process be labeled by different action symbols.

5. Conclusion

We offered a universal Finite Process Algebra allowing to describe finite
parallel systems as conveniently asin CCS and SCCS. Moreover, this algebra
can be easily extended by multiple clocks, what significantly increases the
expressive power of the language, and one does not need to rebuild the
algorithms.

The semantics of a compound action firing is a semantics of ‘dynamic
boundaries’, when whether an action ab may occur is determined by the
simultaneous possibility of firing of @ and b in their subprocesses. This
semantics properly reflects the real situation, when a user defines different
processes with their internal clocks and delays, and does not care about the
delays of compound actions. ' : '

Another important result is the theorem on the minimal complexity for
the worst case of a decomposition algorithm for rather expressive logics like
CTL. As a corollary, the MC algorithm with the logarithmic complexity
on the number of states was found for a restricted fragment of the modal
p-calculus.

Acknowledgements. 1 would like to thank Dr. Shilov N.V. and Dr. Nepom-
nyaschy V.A. from the Institute of Informatics Systems for many fruitful
discussions and helpful advices about the results presented in the paper. I

On compositional model checking in the modal Mu-Calculus 35

am also very grateful to Dilian Gurov from the University of Victoria for
his discussions on the earlier versions of the paper, and to Dr. Henrik R.
Andersen from Danish Technical University for careful reading and looking
for subtle errors.

References

(1] H.R. Andersen, Verification of Temporal Properties of Concurrent Systems,
Ph.D. thesis, Dept. of Comp. Sci., Aarhus University, Denmark, June 1993.

[2] H.R. Andersen, Model checking and boolean graphs, Theoretical Computer
Science 126(1), 1994, 3-30.

[3] H.R. Andersen, C. Stirling, G. Winskel, A Compositional Proof System for
the Modal u-Calculus, To appear in: Proceedings of LICS94, IEEE Computer.
Society Press. ‘

[4] Adnan Aziz, Thomas R. Shiple, Vigyan Singhal, Alberto L. Sangiovanni-
Vincentelli, Formula-Dependent Equivalence for Compositional CTL Model
Checking, Proceedings of CAV’94, July 1994, in LNCS, Vol. 818, 324-337.

[5] S.A. Berezin, N.V. Shilov, P.V. Shneider, An effective model checking for Mu-
calculus: from finite systems towards systems with real time, Bulletin of the
Novosibirsk Computing Center, Series: Computer Science, issue 1, 1993.

[6] S.A. Berezin, N.V. Shilov, An Approach to Effective Model-Checking of Real-
Time Finite-State Machines in Mu-Calculus, Proceedings of LFCS’94, in
LNCS, St. Petersburg, Russia, July, 1994. Vol. 813, 47-55,

[7] S.A. Berezine, Model checking in p-calculus for distributed systems, To ap-
pear in: Specification, Verification, and Net Models of Concurrent Systems,
Institute of Informatics Systems, Novosibirsk, Russia, 1994.

[8] Orna Bernholtz, Moshe Y. Vardi and Pierre Wolper, An Automata-Theoretic
Approach to Branching-Time Model Checking, Proceedings of CAV'94, in -
LNCS, July 1994, Vol. 818, 142-155.

(9] B. Boiglot and P. Wolper, Symbolic Verification with Periodic Sets, Proceed-
ings of CAV’94, in LNCS, July 1994, Vol. 818, 55-67.

{10] V.S. Brace, R.L. Rudell and R.E. Bryant, Efficient Implementation of a BDD
Package, Proc. of 27th ACM/IEEE Design Automation Conf., June, 1990.

11} J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill and J. Hwag, Simbolic
model checking: 10* states and beyond, In: Proc. 5th Ann. Symp. on Logic
in Computer Science, IEEE Comp. Sci. Press, June, 1990.

{12] E. Clarke, T. Filkorn, S. Jha, Exploiting Symmetry in Temporal Logic Model
Checking, Proceedings of CAV’93. June/July 1993, in LNCS, Vol. 697, 450
462.

36 S.A. Berezin

[13] R. Cleaveland, Tableau-based model checking in the Propositional Mu-
Calculus, Acta Informatica, Vol. 27, No. 8, 1990, 725-748.

(14] R. Cleaveland, M. Klein, B. Steffen, Faster Model Checking for the Modal Mu-
Calculus, Proc. of CAV-92, Montreal, Canada, in LNCS, Vol. 663, 410-422.

'[15] D. Dams, O. Grumberg, R. Gerth, Generation of Reduced Models for Checking
Fragments of CTL, Proceedings of CAV’93, June/July 1993, in LNCS, Vol. 697,
479-490.

(16] D. Dams, R. Gerth, G. Dohmen, R. Herrmann, P. Kelb and H. Paragmann,
Model Checking Using Adaptive State and Data Abstraction, Proceedings of
CAV’94, July 1994, in LNCS, Vol. 818, 455-467.

[17] E.A. Emerson, C.S. Julta, A.P. Sistla, On model-checking for f'ragments of Mu-
calculus, Proceedings of CAV’93, June/July 1993, in LNCS, Vol. 697, 385-396.

[18] E. Emerson and A. Sistla, Symmetry and Model Checking, Proceedings of
CAV’93, June/July 1993, in LNCS, Vol. 697, 463-478.

[19] Scott Hazelhurst and Carl-Johan H. Seger, Composing Symbolic Trajectory
Evaluation Results, Proceedings of CAV’94, July 1994, in LNCS, Vol. 818,
273-285.

[20] Scott Hazelhurst and Carl-Johan H. Seger, A Simple Theorem Prover Based
on Symbolic Trajectory Evaluation and BDDs, (to appear).

[21] H. Hungar, Combining model checking and theorem proving to verify parallel
processes, Proceedings of CAV’93, June/July 1993, in LNCS, Vol. 697, 154-
165.

[22] H. Hiittel, SnS can be modally characterized, Theoretical Computer Science,
Vol. 74, No. 2, August, 1990, 239-248.

[23] D. Kozen, Results on the propositional p-calculus, Theoretical Computer Sci-
ence, Vol. 27, No. 3, December, 1983, 333-354.

(24] David E. Long, Anca Browne, Edmund M. Clarke, Somesh Jha, Wilfredo R.
Marrero, An Improved Algorithm for the Evaluation of Fixpoint Expressions,
Proceedings of CAV’94, July 1994, in LNCS, Vol. 818, 338-350.

[25] R. Milner, Calculi for synchrony and asynchrony, Theoretical Computer Sci-
ence, Vol. 25, No. 3, 1983, 267-310.

[26] J.S. Ostroff, Automated verification of timed transition models, Lect. Notes
in Qomput. Sci., Vol. 407, 247-256.:

[27] Oleg V. Sokolsky, Scott A. Smolka, Incremental model checking in the modal
Mu-Calculus, Proceedings of CAV’94, July 1994, in LNCS, Vol. 818, 351-363.

[28] C. Stirling, Modal logics fof'commum'cating systems, Theoretical Computer
Science, 49, July, 1987, 311-348.

On compositional model checking in the modal Mu-Calculus 37

[29] Igor Walukiewicz, Completeness of Kozen’s axiomatization of the propositional
p-calculus, Manuscript, November, 1994.

(30] T. Yoneda and A. Shibayama, B.-H. Schlingloff and E. Clarke, Efficient verifi-

cation of parallel real-time systems, Proceedings of CAV’93, June/July 1993,
in LNCS, Vol. 697, 321-332.

