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Numerical experiments for solving Maxwell’s
equations in thin domains with a new

implicit scheme∗

M.A. Boronina

Abstract. Conditional stability of explicit schemes in finite differences compli-
cates the choice of a time step. The increase in the number of the grid nodes for
more precise computations and the corresponding space step decrease leads to the
increase in computer costs due to the decreasing of the time step. We present a new
implicit scheme for computing Maxwell’s equations in three-dimensional domains,
where the smallest size is one tenth or less than any other size. The main advantage
of the new scheme is possibility of performing the computations with bigger time
steps, the disadvantage is a possible high level of errors for short-wave solutions.
The first numerical results of the scheme behavior are presented.

1. Introduction

One of the widespread schemes in plasma physics for the computation of
Maxwell’s equations is the scheme by A. Langdon and B. Lasinsky [1]. With
a supplement of the Boris scheme it represents a standard efficient method
for the non-stationary plasma modeling with the particle-in-cell method.
The schemes use staggered grids and provide second order of accuracy with
respect to space and time, based only on the first derivatives. The al-
gorithms allowed performing the numerical modeling for many problems,
for example, those associated with electrons in nuclear fusion, wake-field
acceleration by proton (electron) bunch driven plasma, self-modulation of
ultra-relativistic lepton bunches in high density plasmas, generation of pow-
erful bursts of high-energy radiation (X-ray–– microwave range), relativistic
bunches in pulsar magnetosphere, protoplanetary disk dynamics, beam dy-
namics in colliders [2–5].

However, the Langdon–Lasinsky scheme becomes inapplicable for the
modeling of the thin electron/positron ultrarelativistic beams in modern
colliders due to the conditional scheme stability. The beam sizes ratio in
the transversal direction can reach the value of 100, and problems of the
time step size arise from the minimum spatial step size. The increase in
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the number of the grid nodes for more precise computations results in the
increase of computer costs due to the decreasing of the time step. For the
three dimensional case, there is a basic need in developing new algorithms
and in the extension of the already existing algorithms to supercomputers,
with allowance of the specifics features of the beams [6].

We present a new scheme, based on the Langdon–Lasinsky scheme, which
is implicit in the direction of the smallest beam size and thus allows per-
forming computations with a bigger time step. The results of the scheme
analysis and the numerical experiments are demonstrated.

2. Schemes

The Langdon–Lasinski scheme for Maxwell’s equations
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The scheme for any field component of the system without charges may
be reduced to the following scheme for the wave equation:
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Assuming the direction of the smallest beam size as x, we are trying
to use the properties of implicit schemes. On the basis of the scheme the
weighted scheme may be written [7]:
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(4)
This scheme has also the second order of accuracy. However, the stability
condition does not depend on x direction, and allows using a bigger time
step. The important question is: how correct is the description of the wave
propagation? The analysis of both schemes has shown that both schemes
describe the wave velocity with second order of accuracy [8]:
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for the initial scheme and
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for the new scheme, where α, β, γ are the angles between the propagation
vector and the corresponding axis. We may observe the difference in the
factor for k2, and it depends on the time step and may give much bigger
errors when k is high. The errors in the wave propagation velocity depend
on the wave vector for both schemes, thus the short-wave solutions must be
described with a correspondingly small space and time steps.

The scheme for Maxwell’s equations based on the Langdon–Lasinsky
scheme has the following form:
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According to the scheme presented we may write down the final new
scheme for Maxwell’s equations:
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As is seen, the computation of the magnetic field and the field along the
direction x of the minimum domain size repeats the one of the Langdon–
Lasinsky scheme. The changes are made in two components of electric fields
which are orthogonal to the axis x. The implicitness of the scheme allows
using high values of the time step, which are impossible to be used in the
Langdon–Lasinsky scheme. The “payment” for this advantage is a higher
level of errors for short-wave solutions.

3. Numerical results

The code for schemes (3), (4) and (7), (8) was developed, and numerical
experiments were performed for the case of the absence of particles. The
boundary conditions were set to be periodic. For the second scheme the
cyclic tridiagonal matrix algorithm was applied. The wave velocity was
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computed using the ordinary least squares method. The characteristic ve-
locity is the light speed, thus in dimensionless units there is no c in Maxwell’s
equations.

For the one-dimensional case, the solution Ez = sin(kx − ωt) was used
in the domain [0, L], L = 0.01 cm,

Em
z,i = sin

(2π

L
k(i− 1.5)h− ωmτ

)
(7)

due to the shifted grids. The numerical experiments have proved that the
errors decrease with decreasing the spatial and time steps, and the square-
law convergence is held. The biggest errors are observed at the beginning
of the process, and then the level of the errors corresponds to the analytical
expressions (5), (6). The increase in the wave number k leads to the square-
law increase of errors, and the error level does not correspond to expressions
(5), (6). The differences between two schemes (7), (8) are insignificant. The
conclusions are demonstrated in Figure 1 with the errors of the wave velocity
for 50, 100, 200, 400, 800 nodes in each direction, and τ/h = 0.4, k = 10.

The initial scheme The new scheme

Figure 1. Errors in the wave velocity computation for k = 10

The numerical experiments for the two-dimensional case of the field Ez =
sin(kxx+ kyy − ωt), |k| = 1, in the domain [0, L]× [0, L], where L = 1 cm,
with 50 nodes in each direction, have shown similar results (Figures 2, 3).
Two cases were considered: in the first one the boundary conditions were
set as periodic, in the second –– with explicit expression (9) (and a usual
tridiagonal matrix algorithm was applied). When the boundary conditions
are periodic, the errors oscillate near the analytic values (5), (6), the explicit
boundary contagion brings about lower errors, thus correcting the solution
phase and its speed. The initial scheme (7) does not bring any difference
into the directions x and y, the new scheme (8) leading to a higher level of
errors for the component kx of the wave number k.

Figure 4 demonstrates the results of wave velocity errors for the new
scheme in the domain with Lx = 0.25, Ly = 1 for kx = 1, ky = 1 and kx = 1,
ky = 4. In this case, τ/hx = 2, τ/hy = 0.5, and the initial scheme (7) does
not allow carrying out the computations with these parameters.
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Periodic boundary conditions Explicit boundary conditions

Figure 2. Errors in the wave velocity computation for different kx, ky with
the initial scheme

Periodic boundary conditions Explicit boundary conditions

Figure 3. Errors in the wave velocity computation for different kx, ky with
the new scheme

Figure 4. Errors in the wave velocity computation for Lx = 0.25, Ly = 1

In the 3D case the errors ε1 = h2x cos4 α + h2y cos4 β + h2z cos4 γ − τ2 for

the initial scheme and ε1 = h2x cos4 α+h2y cos4 β+h2z cos4 γ−τ2(1−3 cos2 α)
for the new scheme (8) in the thin domain were considered. The selected
domain sizes Lx = 10−4 cm, Ly = 10−2 cm, Lz = 1 cm are close to the
parameters of the computational domain for the numerical modeling of thin
ultrarelativistic beams in supercolliders. The analysis is an extension of one-
and two-dimensional cases: the biggest spatial step hz leads to the biggest
errors, the errors are higher for smaller values of kx/k and ky/k, the time
step does not significantly affect in comparison with the spacial step hz.
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a) ∆y errors b) Velocity propagation errors

Figure 5. Errors for different schemes

The flat wave solutions ~E = ~E0 sin(~k~r − ωt), ~H = ~H0 sin(~k~r − ωt),
~k ~E0 = 0, ~k ~H0 = 0, ~E0

~H0 = 0 were considered to test the description
of each field components and the propagation velocity with both schemes.
In Figure 5, a) the results for ∆y = max(Enum

y −Ean
y ) for k = (1, 0, 0), E0 =

(0, 1, 0), H0 = (0, 0, 1) are presented. Graph 1 corresponds to the initial
scheme (7) with explicit boundary conditions, graph 2–– to the new scheme
(8) with explicit boundary conditions, graph 3 –– to the initial scheme (7)
with periodic boundary conditions, graph 4 –– to the new scheme (8) with
periodic boundary conditions, 5–– to the Langdon–Lasinsky scheme (1), (2)
with explicit boundary conditions on four sides of the domain (the other two
can be taken from shifted grid nodes using the scheme), graph 6 –– to the
Langdon–Lasinsky scheme (1), (2) with explicit boundary conditions in the
whole domain. From the graphs we can observe that the difference between
numerical and analytic solutions for both schemes with periodic boundary
conditions increases with time. This difference is the result of accumulation
of constant errors in the wave velocity calculation. The lowest level of errors
is provided by schemes (7), (8) with explicit boundary conditions. The error
of the Langdon–Lasinsky schemes (1), (2) are low only in the beginning, but
schemes (7), (8) provide better results for longer times. The same results
can be observed in Figure 5, b) for the wave velocity errors.

Conclusion

The new scheme for Maxwell’s equations in thin three-dimensional domains
has been numerically analyzed. The second order of accuracy in space and
time, the square-law dependence of the errors on the wave vector were cor-
roborated. The dependence of the wave vector value plays a significant role
for short-wave solutions and, respectively, small steps must be taken to de-
scribe the solutions correctly. The periodic boundary conditions lead to
oscillations in the propagation velocity around the analytically calculated
values, the explicitly set boundary conditions decrease the errors, and the
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errors are smaller than errors of the Langdon–Lasinsky scheme. The main
advantage of the new scheme is the possibility of performing the computa-
tions with bigger time steps, the disadvantage is a possible high level of errors
for short-wave solutions. The first numerical results have demonstrated the
prospects of the new scheme.
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