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Correct visualization of solution spaces in the
UniCalc system

E. Yu. Botoeva, E. S. Petrov

Abstract. The paper describes an approach to visualization of solution spaces in
computer modeling problems. The advantage of the approach is that it is applica-
ble to visualization of solution spaces of arbitrary spatial structure (e.g. consisting
of multiple components, containing cuts, accumulation points, etc.) An implemen-
tation of the approach is built into the UniCalc system.

1. Introduction

Computer modeling problems often arise in knowledge-intensive areas of
industry and design. The purpose of those problems is to imitate real ob-
jects and processes which are too expensive, laborious or dangerous to carry
out or construct in reality. Such are explosions, natural phenomena, large
engineering structures and many other things.

In computer modeling, spatial structure of solution spaces is the key to
understanding critical behavior, critical states, etc. in the modeled processes
and objects. Since modeling problems usually involve many parameters
and constraints (equations and inequalities), convenient tools for visualiza-
tion of solution spaces of computer modeling problems are indispensable in
knowledge-intensive areas of industry and design.

Different visualization methods may produce different images for the
same solution space; even images of some 2-dimensional solution spaces may
be incorrect. Incorrect visualization is usually caused by discontinuities and
uncontrolled accumulation of rounding errors.

Correct visualization is a process that creates 2d “visually explicit” im-
ages of solution spaces in such a way that each point of the solution space is
represented by some point of the 2d image. The price of correctness is the
fact that the 2d image usually contains extra points which do not represent
any point from the true solution space. Visual explicitness of the 2d image
is achieved by assigning appropriate visual characteristics (color, brightness,
etc.) to its points.

The UniCalc system is positioned as a convenient tool for reliable solution
of computer modeling problems. The above considerations inspired devel-
opment of the graphic module for correct visualization of solution spaces in
the UniCalc system.

Let us consider an example that explains operation of the UniCalc system
and illustrates the need in a tool for correct visualization of solution spaces.
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Assume that the constraints are y 6 x; y > x
2 ; y 6 3 − x. The corre-

sponding solution space is shown by the dark triangle in Figure 1. Without
a visualization tool, the best the users of the UniCalc system can get is the
interval solution y = [0, 1.5], x = [0, 2.00000000000000045]. This interval
solution is shown by the light rectangle in Figure 1. It is a correct (contains
all solutions), but rough (contains many additional points), representation
of the solution space.

Figure 1. The interval solution and the solution space

To understand the structure of solution spaces, we can enumerate in-
dividual interval solutions of a preset width. Thus we get a set of small
rectangles covering the solution space. Such representation of the solution
space is correct and more exact than the interval solution but still is not
visually explicit. To make it visually explicit and suitable for qualitative
analysis of spatial structure of solution spaces, we need a specialized visual-
ization tool.

The paper is structured as follows. Section 2 contains a short overview
of the visualization methods in scientific computing. Section 3 gives an
overview of visualization of solution spaces in the UniCalc system. Sections
4, 5, and 6 cover the major issues of visualization in the UniCalc system.
Section 7 gives concluding remarks.

2. Related work

Plotting graphs of real valued functions of 1 or 2 parameters is an example of
visualization of solution spaces for constraint systems of the form y = f(x)
or y = f(x, z). This kind of visualization is most commonly performed with
the help of so called mesh methods. The plotted function is evaluated at
the points of some mesh. This operation produces a set of 2d or 3d points
({x, y = f (x)} or {x, z, y = f (x, z)}). These points are connected by line
segments (or spanned by simple surfaces and projected onto a 2d space) to
form the image that visualizes the graph of the function.

The mesh methods are built into many systems of computer algebra
such as MathCad, Mathematica, MathLab, etc. [5, 6, 7, 8]. The mesh
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methods may visualize solution spaces (plot graphs) incorrectly even for
simple univariate functions. Figure 2 shows plots of the graph of the function
g(y) = y × y−1.5−0.000001

y−1.5 constructed for different meshes in the MathCad
system. All the plots are incorrect near the discontinuity at y = 1.5.

a) step 0.001 b) step 0.007

c) step 0.01

Figure 2. Incorrect plots of the graph of the function g(y) constructed for regular
meshes with steps 0.001, 0.007 and 0.01 in the interval [1.4, 1.6]

The root cause for incorrectness of the mesh methods is that these meth-
ods assume that the plotted functions are continuous.

Authors of [2, 3, 4] handle this drawback with the help of interval analy-
sis. Consider, for example, the method proposed in [2] to visualize solution
spaces for inequalities of the form f(x, y) 6 0 specified by mathematical
formulas containing variables x and y.

The plotting algorithm is a loop that processes a list of rectangles. Ini-
tially, the list of rectangles contains the entire plotting area. The loop
terminates, if there are no more rectangles or all the rectangles are smaller
than the resolution required.
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For each rectangle in this list, the range of f(x, y) is evaluated by means
of interval analysis (which handles both continuous and discontinuous func-
tions). If this range is located to the left of 0, the corresponding rectangle
is a part of the solution space and is plotted with black. If this range is
located to the right of 0 and does not contain 0, the corresponding rectangle
is not a part of the solution space and is plotted with white. If this range
contains 0 in its interiority, the corresponding rectangle is plotted with red.
It is then divided into smaller rectangles and these rectangles are inserted
into the list of rectangles.

In the following sections we generalize this approach for the case of ar-
bitrary sets of relations specified by mathematical formulas containing an
arbitrary number of variables.

3. Overview of visualization in the UniCalc system

Visualization of a solution space in the UniCalc system is divided into two
steps:

1. Constructing a set of rectangles or parallelepipeds which together cover
the solution space;

2. Plotting these rectangles or parallelepipeds with the help of external
graphics tools.

If the solution space has more than 3 dimensions, it is projected onto 2 or 3
coordinate axes chosen by the user and it is this projection that is actually
visualized. Thus we assume that (1) the dimension of the solution space
is at most 3 and that (2) the axes of the user’s choice correspond to the
parameters x, y, and z.

Rectangles and parallelepipeds whose sides (edges) are parallel to the
coordinate axes are a special case of boxes. Rectangles are 2-dimensional
boxes; parallelepipeds are 3-dimensional boxes.

The sets of 2d or 3d boxes which together cover the solution space are
called coverings of the solution space.

Coverings of the solution space are constructed with the help of a so-
called method of subdefinite calculations [1]. Given a computer modeling
problem, that is a set of constraints, subdefinite calculations produce a
bounding box for its solution space. A box I × J (respectively, I × J ×
K) is subdefinitely consistent with a modeling problem C, if subdefinite
calculations produce a non-empty bounding box for the solution space of
C ∪ {x ∈ I, y ∈ J} (respectively, C ∪ {x ∈ I, y ∈ J, z ∈ K}).

Now let us consider in detail construction of coverings for solution spaces
in the UniCalc system.
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4. Construction of coverings of solution spaces

Coverings of a solution space are constructed repeatedly until all the boxes
are smaller than the resolution required. The initial covering consists of the
bounding box obtained by subdefinite calculations for the solution space.
Subsequent coverings are obtained one from another by a series of refine-
ments.

Refinement of a covering of the solution space consists of the following
steps:

1. Each box is replaced with 2n smaller boxes of equal size (n is 2 for
rectangles and 3 for parallelepipeds);

2. Those smaller boxes that are not subdefinitely consistent with the
modeling problem are deleted from the covering.

Figure 3 shows the first 4 coverings of the solution space of the modeling
problem {x2 + y2 = 1}.

Figure 3. The first 4 coverings for the equation x2 + y2 = 1

The main advantage of this covering algorithm is that there is no need
to analyze the spatial structure of the solution space (search for isolated
components, cuts, accumulation points, etc.)

A correct visualization of any covering generated by the covering algo-
rithm is a correct visualization of the solution space because all coverings
indeed cover the solution space. Consider in detail visualization of coverings
in the UniCalc system.
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5. Visualization of 2d coverings

Coverings of 2d solution spaces are 2d objects and can be directly plotted
on the screen. To this end, the UniCalc system uses the standard Windows
Graphics API. The covering is scaled to fit into the window opened by the
UniCalc system for plotting. In addition, the coordinate grid and coordinate
axes are plotted.

Figure 4 shows two examples of visualization of 2d solution spaces of
different structure.

a) x2 + y2 = 1; 100xy > 1; b) y = (x+3.5)(x−4)
(x+2.5)(x−3) ;

Figure 4. Visualization of 2d solution spaces of different structure

6. Visualization of 3d coverings

Coverings of 3d solution spaces are 3d objects. To plot 3d objects on the 2d
screen the UniCalc system uses the Open Graphics Library (OpenGL) [9].
The coverings are transformed into OpenGL data and passed to OpenGL.
Then OpenGL removes all invisible lines and faces and plots the resulting
2d images on the screen.

The UniCalc plots coverings of 3d solution spaces in two modes: “stepped”
and “smoothed”.

The stepped mode is the simplest. All the boxes from the covering are
passed to OpenGL individually. The plot consists of the plots of individual
boxes and looks like a set of small steps. To make the image more explicit
visually, the faces of the boxes can be colored in 3 slightly different col-
ors depending on their orientation with respect to coordinate axes or their
distance from the center of the covering.

Figure 5 shows two examples of visualization of solution spaces of differ-
ent spatial structure in the stepped mode.

In the smoothed mode, the UniCalc system tries to produce a “visually
smooth” image of the solution space without guaranteeing the correctness
of visualization. We continue implementation of this mode and report our
preliminary results here.
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a) x2 + y2 + z2 = 1; y = [−0.9, 0.9] ; b) y = 1
x+z ;

Figure 5. Visualization of 3d solution spaces of different spatial structure in the
stepped mode

The UniCalc system passes to OpenGL the data which describe a set
of Bezier surfaces. These surfaces span the exterior (with respect to the
solution space) vertexes of the boxes which form the top view and the bottom
view of the covering. The plot consists of a set of small smooth “patches”.
Such an approach works well for “thin” solution spaces like the one shown
in Figure 6b and not so well for “voluminous” solution spaces like the one
in Figure 6a.

a) x2 + y2 + z2 = 1; y = [−0.9, 0.9] ; b) y = 1
x+z ;

Figure 6. Visualization of 3d solution spaces of different spatial structure in the
smoothed mode

7. Conclusion

In this paper the authors describe an approach to visualization of solution
spaces of computer modeling problems. The advantage of the approach is
that it is applicable to visualization of solution spaces of arbitrary spatial
structure (e.g. consisting of multiple components, containing cuts, accumu-
lation points, etc.) Moreover, this approach is correct in the natural sense.

An implementation of the approach is built into the UniCalc system.
Also see Section 8 for the GUI of the graphics module of the UniCalc system.



72 E. Yu. Botoeva, E. S. Petrov

In this paper the authors were able to solve the problem of smooth and
correct visualization only partially. In the future they will continue to work
on a solution to this problem.
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8. Appendix

Figure 7 and Figure 5 show the GUI of the graphics module of the UniCalc
system in the 2d and 3d cases.
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Figure 7. The GUI of the graphics module of the UniCalc system in the 2d case

Figure 8. The GUI of the graphics module of the UniCalc system in the 3d case



74


