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Model of dynamics of the atmosphefe
with monotone numerical schemes*

E.A. Boyarshinova

On the base of integral identity numerical schemes, monotonic and conditional
monotonic schemes, for the solution of a three-dimensional problem of thermody-
namics of the atmosphere have been constructed. The models have been realized
with respect to these two schemes, as well the numerical research of qualities of
schemes has been made. The numerical experiments showed that the schemes
worked satisfactorily in the main.

One of the most productive ideas, used at the construction of algorithms
for the realization of three-dimensional problems of thermodynamics, is the
method of splitting. In works [1-3), a series of finite difference schemes of nu-
merical realization is developed on the base of this method in a combination
with a variational approach for the problems of mesometeorology.

In the work by V.V. Penenko [4], a method of construction of monotonic
finite difference schemes is offered for advective-diffusion equations on the
base of the variation difference approach in a combination with the method
of weighed discrepancies.

By this method finite difference approximations were constructed for
advective—diffusive operators at the stage of convection-diffusion and in the
problem of dynamic adjustment of meteofields, where on the basis of the
continuity equation a second-order equation for pressure is obtained.

A three-dimensional nonhydrostatic model of local atmospheric motions
above a complicated relief numerically was considered. The model was given
by the system of equations [2, 3):
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Here t is time, z, y, z are the Cartesian coordinates, «, v, w are the com-
ponents of the wind velocity vector in the directions z, y, z, respectively,
% = (u,v,w), 7 is the Exner function, 6, I, S, A are the potential tempera-
ture, the Coriolis parameter, the parameter of stratification, the parameter
of buoyancy, respectively.

The letters with primes denote deviations from basic fields as in [2].

The operator
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where g, p,y, v are coefficients of turbulent diffusion in the direction of the
coordinates z, y, z respectively. The equations are integrated in the area
Dy =Dx[0,T),where D={0<z< X,0<y<Y, §(z,y) <2< H}is
the range of space variables and 0 <t < T is the interval of time, é(z,y) is
the function of the relief.

Boundary conditions are specified by the following formulas:
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w=v=uw' =0, ¢ =0, z=H,
u=v=w=0, ¢’ = y(z,y,1t), z = 6(z,y).

Equations (1) together with boundary conditions (2) describe the mo-
tion of air mass above the relief. In this case, this set of equations can
be considered as a separate model of the atmosphere above a geometrically
complicated area. At the same time, this model is also one of the blocks of
a more complicated model.

Methods of construction of effective algorithms of realization of numer-
ical models of dynamics of the atmosphere on the base of methods of de-
composition in a combination with variational principle are developed by
V.V. Penenko in works (1, 2]. For the solution of problem (1), (2) a method-
ological approach explained in the papers was used.

We chose the following method of construction of schemes of splitting [1].
At first the initial system of differential equations is reduced to a series of
more simple problems. Then for each of these problems an integral identity
is created and is approximated.

At the first stage of splitting the set of equations is

Lp=dp-igradp= 22, o= (v, 0). 3)
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For construction of discrete approximations an integral identity is applied
to system (3). The identity is obtained by the integration of the equations
which are multiplied by rather smooth functions u*, v*, w*, 6*.
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The ideas of the method of fictitious areas [2, 3, 5] were used in the
construction of numerical models. Let us introduce a grid area D" as the
direct product of the one-dimensional grids along each of the coordinates z,
y, z, t: D" = D x [0,T)h, Db = w, x wy X w,. The grid D* covers the
complement D of the area D up to the parallelepiped

D={(z,4,2):0<z< X,0<y<Y,0< z< H}.
The one-dimensional grids are defined as follows:

we={zi: 10=0, ziyy =2, + Az;, i=0,...,N -1, zxy = X},
wyz{ym: Yo =0, Ym+1 = Ym + AYm, m=0,...,. M =1, ypy =Y},
wy={zk: 20=0, 21 =2+ Az, k=0,..., K -1, zx = H},
0,T1F={t;: to=0, tjy1=t;+At, j=0,...,J -1, t;=T}.

The intersections of coordinate lines of the grid D* (i.e., of the straight
lines 2 = z;, ¥y = Ym, 1 = 0,...,N, m = 0,..., M) with the surface
z = §(z,y) are assumed to coincide with the nodes of the grid w,. In
other words, the points (;,ym,2im) belong to the grid area D", where
Zim = 6(Ziyym), 1 =0,...,N, m = 0,..., M. More general cases will not
“be considered. For the vector functions ¢, ¢* and parameters of the model
the following statement is true [6]: for the components of these vector func-
tions there are finitary extensions with the same class of a smoothness in
D as the components have. Thus, we can formally determine the integrand
expressions in the volumetric integrals on the whole parallelepiped D. The
integrand without the term %‘f is multiplied by the indicatrix yx of the area
D. Now the integral is considered on the area D x [0,T]. In other words,
we have determined the problem by the expression %f = 0 in the area
D\ D. Thus, the obtained integral identity still corresponds to the initial
problem. At the same time, the modified integral identity allows practi-
cally completely to reproduce the scheme of construction of finite difference
approximations which is applied in the case of a rectangular area.
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The space approximation of equations (2) was carried out by a method
which is described in work [4]. Specifically, solutions of local adjoint prob-
lems are used as weight functions. For equations with variable coefficients
an appropriate approximation in each mesh of grid area is chosen. This ap-
proach allows the building of monotonic difference schemes of second order
of space approximation. As a result, the differential-difference equations of
the following form were obtained:
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[—(uA1B1)£+1/2(<Pi+1mk — @imk) + (A1)i—1/2(Pimk — sai-lmk)] Oymdzx +
[—(vAsz)mH/z(tPimHk — @imk) + (VA2)m-1/2(Pimk — (Pim—lk)_]fsxifszk +

[—(WAsBs)k+1/2($0£mk+1 ~ @imk) + (WA3)k—1/2(Pimk — tPimk-l)]tSmitsym
=0, (5)

(usAsBs) > 0, (uaAs) >0, Rimi > 0, Us = U, v, W,
Orp = (g1 = ™m-1)/2, r=2,¥, 2, n=1t m, k.

The properties of coefficients in (5) ensure monotonicity and stability
of the difference scheme. Therefore, time approximations for this equation
should be selected so that the property of monotonicity be conserved. It
can be done easily with the help of implicit schemes.

To solve the problem of convection-diffusion two methods of time ap-
proximation of the equations were used. In the first case, the method of
weak approximation with fractional steps was used [1]. In the second case,
an implicit scheme was chosen. The problems were solved by space split-
ting. In the first case, on each fractional step the scheme of Crank-Nicolson
type was formed. Thus two numerical schemes for the solution of the set
of equations of convection-diffusion are constructed. The schemes are abso-
lutely stable with second order of approximation in space. The first scheme
is conditionally monotonic; the second scheme is monotonic. Because of
the linearization of the model both schemes are of the first order of time
approximation.

At the adjustment stage the following set of equations is solved:

uj+1 + uj aﬂ‘j'i'l vj+1 + Uj 37!'3'1'1

it — i+l _
At oz fo 0, At dy +lu 0,
j+1 i gritl _ git+l 4 gi )
T Tt =0, g set=0, ()

uitl  Jpitl  Pwit!
+—+
Oz oy 0z




Model of dynamics of the atmosphere with monotone numerical schemes 5

For simplicity the primes at all unknown quantities are omitted. u/+!,
vi+1, wi*l are expressed through functions from the previous time step
and are substituted in the discrete analog of the continuity equation. The
equation concerning function 7 is obtained:

Oritl dritl gmitl
152 +o dy tu dz
0 omitt 9 9nitd 9 omitl
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Equation (7) has the same spatial structure as equations (3). Therefore,
approximation in space for equation (7) is constructed by the same scheme.
For the solution of the obtained system of difference equations the method

_of minimal discrepancies is used [5].

For testing of the obtained difference schemes some numerical experi-
ments were carried out. Some problems of forming of the atmospheric circu-
lation above an inhomogeneous relief were considered. All experiments were
carried out with the following input parameters X = 29 km, Y = 29 km,
H =2.9 km, Az = Ay = 1000 m, Az = 200 m, At = 30 s, py, = p, = 1000
m?/s, v = 10 m?/s. In Figures, the two-dimensional vertical sections of the
fields of wind velocity and temperature are represented in the plane (z, z)
at y = 14 km.

In Figures 1 and 2, the evolution of circulation under the influence of
a temperature inhomogeneity of the underlying surface is given and the
surface is represented by a pyramid Dy in the center of the area,

Do = {11<z <17 (km), 11<y<17 (km), 0<z< 200 (m)}u
{13<z <15 (km), 13<y<15(km), 200< z< 400 (m)}.
The deviation of temperature for the pyramid is 2 degrees. The calculations
are given at ¢ = 5 min, in Figure 1 for the monotonic scheme and in Figure 2
for the conditionally monotonic one.

The results of calculations represented in Figures 1 and 2, are cha.racter—
istic for meteoprocesses formed in day time, when the slopes are heated up.
There is a vertical rise of the air above top of the mountain, and downward
streams are observed above the slopes.

In Figures 3 and 4, the calculation results of forming of the atmospheric
process in a long and deep hollow Dy are given, where

Do = DU D;U Dy
= {0<z<9(km), 0<y<29(km), 0<z<200(m)}u
{9<z<19(km), 0<y<29(km), z=0m}U
{19< <29 (km), 0<y<29(km), 0< z< 200 (m)}
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In the areas D; and D;, the perturbation of temperature is 2 degrees. The
calculations are given at £ = 5 min, in Figure 3 for the monotonic scheme
and in Figure 4 for the conditionally monotonic one. The following evolution
of the circulation is observed: there are ascending streams above the heated
up surfaces and there is a descending stream to the bottom of the hollow.
Also a weak leaking of the air from the bottom of the hollow up to the
heated surface is seen.

On the whole, all figures show the probable direction of development
of circulations. But further research of the behaviour of the constructed
schemes is necessary.
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