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Towards decidability of timed testing*®

E. N. Bozhenkova

In the paper, we construct a formula that characterizes a timed event structure up to
the timed must-preorder.

1. Introduction

An important component of every process theory is a notion of equivalence
between processes. Typically, equivalences are used in the setting of specifi-
cation and verification both to compare two distinct systems and to reduce
the structure of a system. Over the past several years, a variety of equiv-
alences have been proposed, and the relationship between them has been
quite well-understood (see, for example, [9]).

Among the major equivalences are testing ones presented in [8]. Two
processes are considered to be testing equivalent, if there is no test that
can distinguish them. A test itself is usually a process applied to another
process by computing them together in parallel. A particular computation is
considered to be successful, if the test reaches a designated successful state,
and the process passes the test if every computation is successful. This notion
is intuitively appealing; it has led to a well-developed mathematical theory
of processes that ties together the equivalences and preorders. However, no
characterization of these equivalences has led to an algorithmic solution
for finite-state processes. Therefore, testing decision procedures are based
on reduction of testing to bisimulation [6]. These equivalences have been
considered for formal system models without time delays [1, 6, 8, 10].

Recently, testing equivalences have been developed for models with time.
One of the papers [13] devoted to this subject investigates different betting
semantics of "must” win and "may” win, taken from the testing methodol-
ogy, in the context of an event structure model with delayed actions. Papers
[7] and [14] have treated timed testing for discrete and dense time transition
models, respectively. The latter paper also tries to provide a testing decision
procedure that uses the untimed bisimulation between deterministic graphs
built from mutually refined timer region graphs that are a finite abstraction
of the operational semantics of the model under consideration.
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In paper [4], a framework for testing preorders and equivalences in the
setting of timed event structures has been developed. But as for the char-
acterization and the decision procedure, it turns out that the results of [14]
were not the case for some timed event structures. Since these timed event
structures can be easily transformed to timed transition systems, it seems
that the results of [14] are valid only for some subclass of timed transition
systems. So, we try to give the alternative characterization of the timed
testing relations. Moreover, we have found a subclass of structures in which
we could reduce timed testing relations to the corresponding variants of
symbolic bisimulations.

This paper is devoted to decidability of timed must-equivalences for
timed event structures. We try to reduce this problem to the model-checking
one. As a basic logic, we take the timed logic L,. This logic has been defined
in [12] and used for construction of a characteristic formula for a timed
automaton up to the timed bisimilarity and, as a consequence, for reduction
of the timed bisimilarity decidability problem to the model-checking one. Tt
is known that the latter problem is decidable.

Here we construct a characteristic formula up to the timed must-preoders.
We do it only for timed event structures without internal actions, but this
approach can be used for those with internal actions, too.

The rest of the paper is organized as follows. In Section 2, we remind the
basic notions concerned with timed event structures and timed testing. The
timed modal logic L, is described in Section 3. In Section 4, we construct a
formula which characterizes a timed event structure up to the timed must-
preoder.

2. Timed event structures

In this section, we introduce a model of timed event structures that is a
real time extension of Winskel’s model of prime event structures [15] by
equipping events with time intervals.

We first recall a notion of an event structure. The main idea behind event
structures is to view the distributed computations as action occurrences,
called events, together with a notion of causal dependence between events
(which are reasonably characterized via a partial order). Moreover, to model
nondeterminism, there is a notion of conflicting (mutually incompatible)
events. A labelling function determines which action corresponds to an event.

Let Act be a finite set of visible actions and 7 be an internal action. Then
Act, = Act U {T}.

Definition 1. A (labelled) event structure over Act, is a 4-tuple S=(E,<,
#,1), where
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e [ is a countable set of events;

e < C E x E is a partial order (the causality relation) satisfying the
principle of finite causes: Ve € E . {e' € E | ¢’ < e} is finite;

e # C ExFE isasymmetric and irreflexive relation (the conflict relation)
satisfying the principle of conflict heredity: Ve,e',e" € E . e # ¢
<e = e

e [:FE — Act; is a labelling function.

Let C C E. Then C is left-closed iff Ve,e! € E.e € C AN ¢ <e =
e € C; C is conflict-free iff Ve, €' € C . =(e # ¢€'); C is a configuration
of S iff C is left-closed and conflict-free. Let Conf(S) denote the set of all
configurations of S. For C' € Conf(S), we define the set of events enabled
inC En(C)={ec E|CU{e} € Conf(S)}.

In the following, we will consider only finite event structures, i.e., the
structures whose sets of events are finite.

Before introducing the concept of a timed event structure, we need to
propose some auxiliary notations. Let Ny be the set of natural numbers
with zero, RT be the set of positive real numbers, and RS“ be the set of
nonnegative real numbers. For any d € R(T , {d} denotes its fractional part,
|d] and [d] — its smallest and largest integer parts, respectively. Let us
define the set Interv(Ra') = {(dl, dg), (dl,dg], [dl, dg), [dl,dg] C RS_ | dl,dg
€ NU}

We are now ready to introduce the concept of timed event structures.

Definition 2. A (labelled) timed event structure over Act, is a pair T'S =
(S, D), where

e S=(E, <, #,1) is a (labelled) event structure over Act,;

e D:E — Interv(R{) is a timing function such that D(e) is a closed
interval from Interv(Rg) for all e € E with [(e) € Act.

In a graphic representation of a timed event structure, the corresponding
action labels and time intervals are drawn close to events. If no confusion
arises, we will often use action labels instead of the event identifiers to denote
events. The <-relations are depicted by arcs (omitting those derivable by
transitivity), and conflicts are depicted by “#” (omitting those derivable by
the conflict heredity). Following these conventions, a trivial example of a
labelled timed event structure is shown in Figure 1.

Let &, denote the set of all labelled timed event structures over Act;.
For convenience, we fix timed event structures TS = (S = (E, <,#,1), D),
TS = (8 = (E',<',#,I'),D") from the class & and work with them
further.
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TS [0,1] a:e1 —b:ey [0,1]

#
T:e3 [0,1)

Figure 1

A state of T'S is a pair M = (C, §), where C' € Conf(S)and 6 : E — R{.
The initial state of TS is Mps = (Cy,d9) = (0,0). A state M = (C,9) is
said to be terminated, if En(C') = (. Let ST(TS) denote the set of all states
of TS.

A timed event structure progresses through a sequence of states in one
of two ways given below.

Let My = (C1,61), My = (Cs,d02) € ST(TS) such that M; is a non-
terminated state. An event e € En(Cy) may occur in My (denoted M; )
if 61(e) € D(e) and Ve' € En(Cy) 3d € Ry . §1(€') + d € D(e). We write
M, 5, it My 5 and I(e) = a. The occurrence of e in M; leads to My
(denoted My = M), if My 5, Cy = Cy U {e} and

5y(e') = 0, if ¢ € En(Cy) \ En(Ch),
20¢) = d1(e’), otherwise.

We write My % My, if My 5 My and I(e) = a.
A time d € R* may pass in My (denoted M; i>), if Ve € En(Cy) 3d' €
R (d' > d) . §1(e) +d € D(e). The passage d in M; leads to My (denoted

My % M), if Cy = C) and dx(e) = 61 (e) + d for all e € E.
The weak leading relation = on states of T'S is the largest relation defined
€ T * T € T € T * . . "
by: = <= — and = <= ==, where — is the reflexive and transitive

closure of 5 and z € Act UR™. We consider the relation =% as possessing

the time continuity property: M Wil o M AE (o some dy,dy € RT.

From now on, we shall use the following notions and notations. Let
Act(R§) = {a(d) | a € Act A d € R} be the set of timed actions
of Act over R{. Then (Act(Rg))* is the set of finite timed words over
Act(Rg). The function A : (Act(Rg))* — R{ measuring the duration
of a timed word is defined by: A(e) = 0, A(w.a(d)) = A(w) + d. The
domain for real-time languages is denoted by Dom(Act, R§) = {(w,d) |
w € (Act(R7))*, d € Ry, d > A(w)}. The weak leading relation = is
extended to timed words from (Act(Rg))* and Dom(Act, Ry) as follows.
Let d € Ry, d € R", a € Act and w € (Act(Rg))*. Then

i ML M, then M D M it M AL M7, then ML) A,
it M 2D 0 then M2 My i MR MY, then M 2N .

it M 29L A then M LT .
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The set L(TS) = {{w,d) € Dom(Act,RJ) | Mrs (w=’d>>} is the language of
T'S. For instance, for the timed event structure 7'S; (see Figure 1) we have
L(Tsl) = {(6, d1>7 <€7 1>7 (a(d1)7d1 + d2>7 (a(l)a 1>a (a(dl)b(d2)7d1 + d2> |
di+do < 1}.

The timed testing relations may be defined in terms of the responses
of timed event structures to a collection of tests. We shall, however, use
an alternative characterization that relies on the following definitions. Let
M € ST(TS) and (w, dy € Dom(Act, R{). Then S(M) = {z € Act,UR" |

M 5} and Ac(TS, (w, d)) = {S(M') | Mps =2 M7, M' B (timed

acceptance set). Let N, N’ C 24¢WR* Then N cc N/ <« VS e
N 3S" e N' . [(8" |4ctC S |act) N (S |ge=0= 85" |g+=0)]; N=N' <+—
Ncc N A N ccN.

Definition 3.
o TS <pust TS" <= Y{w, d) € Dom(Act,Ry) . Acc(TS', (w,d)) CC
Ace(TS, (w, d));
o TS ~pua TS = TS <,uet TS and T'S" <,pust T'S.

An example of timed must-equivalent structures is shown in Figure 2(a).
The timed event structures 7'S3 and 7'S% shown in Figure 2(b) are not timed
must-equivalent. Let us consider the timed word (w,d) = (a(0.5),1.5) €
L(TS3) N L(TS%). We have Acc(T'Ss, (w,d)) = {{b,c} U (0,1]}, Acc(TS5,
(w,d)) = {{b,c}U(0,1],{c}}, i-e., 7(Acc(TS, (w,d)) CC Acc(TSs, (w,d))).

(a) TS, TS!
[1,1] [1,1] [1,1] [1,1]
4 # 4 4
[0, 1] [0, 1] [0, 1] [0, 1]
(b) TS TS}
b[2,3] b [2,3]
01 # 01 #
T e T e

#
[0,1]a — ¢ [0,1]

Figure 2
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3. Timed modal logic

In [12], a dense-timed logic L, was considered. Here we shall recall it and
modify a satisfiability relation for timed event structures.

Definition 4. Let K be a finite set of clocks, Id be a set of identifiers and
k be an integer. The set of formulas of L, over K, Id and k is generated by
the abstract syntax with ¢ and ¢ ranging over L,:

=t | ff1dAY [PV [ HE[WH|(a)p|lalp |z ing|z+noay+m|

z>xm| Z,

where a € Act, z,y € K, n,m € {0,1,...,k}, e {=,<,<,>, >} and
Z e ld.

The meaning of the identifiers from Id is specified by a declaration D
that assigns a formula of L, to each identifier. When D is clear, we write
Z := ¢ for D(Z) = ¢. The K clocks are called formula clocks and a formula
¢ is said to be closed if every formula clock xz occurs in ¢ in the scope of
an “x in ...” operator. Given a timed event structure T'S, we interpret the
formulas from L, over an eztended state (C,du), where (C,J) is a state of
TS and u is a time assignment for K. Transitions between extended states

are defined by: (C,du) 9 (C,(6 + d)(u + d)) and (C,6u) % (C', &) iff
(C,8) % (C',0") and u = «'. Formally, the satisfaction relation between
extended states and formulas is defined as follows:

Definition 5. ! Let 7'S be a timed event structure and D be a declaration.
The satisfaction relation =p is the largest one that satisfies the following
implications:

(C,0u) =ptt = true;
(C,0u) Ep ff = false;
(C,ou) Ep oAy = (C,éu) Ep ¢ and (C,0u) =p ;
(C,ou) =pFp = 3IdeR.(C,0+du+d)=p ¢;
(C,ou) Ep (a)p = 3(C', ") € ST(TS) . (C,8) = (C',§)

and (C',8'u) Ep &;
(Cyou) Epz4+m=y+n = wu(z)+m=u(y)+n;
(C,éu) Epzring = (C,0u') Ep ¢, where v = [{z} — 0]u;
(C,ou) =p Z = (C,du) E=p D(Z).

Any relation that satisfies the above implications is called a satisfiability
relation. We say that T'S satisfies a closed formula ¢ from L, and write
TS = ¢ when (Cy,dpu) Ep ¢ for any u. Note that if ¢ is closed, then

(C,éu) Ep ¢ iff (C,0u') =p ¢ for any u,u’ € RS“K.

'For the complete definition, see [12].
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4. Formula construction

Further we restrict our model to timed event structures labelled only over
Act.

Since a timed event structure is defined over a dense time domain, the
number of its states is infinite. In order to get a discrete representation
of the state-space of a timed event structure, we use the concept of regions
(equivalence classes of states) [2]. But we do not construct regions over states
of ST(TS) for the following reasons.

One of the problems we meet when trying to develop an algorithm of
decidability of timed testing [4] is existence of several regions which contain
states reachable by the same timed word. So, we construct a region over
states that unite all states of T'S which we get by passing some time word.
By doing so, we want to exclude nondeterminism when progressing in a
timed event structure from state to state. For this purpose we define the
notion of common states of T'S.

The other problem is to synchronize actions being executed in two timed
event structures. Here we decide it by including counters into regions of one
timed event structure in order to restrict states of the second one for which
a region formula has to be checked.

Some subset of ST(T'S) is called a common state of TS, i.e., u C ST(TS)
is a common state of T'S. We shall sometimes denote p as (Cy,...,Cy, d1,. ..,
dn), where (C;,0;) € p (1 < i <n)and En(u) = J{En(C) | C € u}. The
initial common state of T'S is ug = {Mrg}. The relation 5 is modified
on common states as follows: p = ' = {(C",8") | 3(C,d) € . (C,6) >
(C",48")}, where z € Act UR™T. Let STC(TS) denote the set of all com-
mon states reachable from pg. The leading relation on common states of
STC(TS) is extended to timed words from Dom(Act, RJ) just as on the
states of ST(T'S).

Then the notion of region is defined analogously to Alur’s one. Let
pw=(Cry...,Cpyd1,...,0,) # 1 = (C},...,Cl.8,...,0.). Then p ~ p'
iff there exists renaming 7(n) : [ — mw(n)(l), where [ = 1,...n, such that
(Cr,y...,Cp) = (C;(n)(l), . .,C;T(n)(n)) and

() Vi<i<m. [01]...10n()] = L0 )0yl - - |0y oy ()]s
(i) V1<i,j<m.
— {oul- - 10n (@} < {01l 10n()} = {0yl - Ty (D <
{05y |- 107y () 4
B DD =0 = (T o (D} = O,
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where d1|... |0, is the concatenation of vectors ¢; (1 < i < n) and m =

Aset R = [u] = {i | p = p'} is called a region of T'S. We define
Ry = [uo]- Let R and R' be regions of T'S. Then the leading relation on
regions is defined as follows: R = R'if 3u e R, p/ € R' . n 5 i’ (a € Act);
RYRiff3ucR feR3IeRY . ub i/ Avo<d <d u® i e RUR.

The leading relation on regions is extended to timed words from Dom (Act,
R{) just as on the states of ST(T'S).

We shall call a partition of STC(T'S) into regions stable if the following
holds: if R % R, thenVu € R. pu % 1/ for some i/ € R' (a € Act); if RS R/,
thenVu € RId e RY . i % 1/ for some 4/ € R and % i € RUR' for all
0 < d < d. So, we can define the notion of region graph of TS RG(TS) =
(Vra, ErG,lrc)- The set of vertices Vgq is a stable partition of STC(T'S),
the set of edges Fr¢ is the leading relation on regions of Vgg, the labelling
function Ipg : Erg — ActU{x} is defined as: [((R,R')) =z <= R > R

For correctness of our formula construction we need to introduce the
following notion.

Definition 6. Let (w,d) € L(T'S) and RG(T'S) = (Vra, Era, lrc). Let
p = Ry ... R bea path in RG(TS). Then p € STC(TS) is reachable by
(w,d) consistent with p iff 4 € R and either

¢ D= Ry and (’LU,d> = <€70>7
or

e p=19p 5 R and there exists i/ € STC(TS) reachable by (w',d')
consistent with p’ and either

— z=a € Act, i/ ady pand (w,d) = (w'a(d — A(w'),d" + d"} for
some d” € Ry,

or

— z=x, 4 p and (w,d) = (w',d" + d") for some d”’ € R*.
(wyd) (w,d)
=" pu <= VY(C,9) € p (Cy,d0p) = (C,d). Moreover,
for any (w,d) there exists only one p € STC(TS) such that gy (w:’@ L.
Consequently, R and path p from Ry to R, such that p is reachable by
(w,d) consistent with p, are unique.

Note that ug

Lemma 1. Let (w,d) € L(TS) and g <w=’d>> w. Then there exists only one

path p in RG(TS) such that p is reachable by (w,d) consistent with p.
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Lemma 2. Let R € Vgg. Then Vu, p' € R V(C,0) € p 3 (C', &) €
p.C=C" A S((C,0) |ac= S(C",0)) lac A S((C,0)) [r+=0
S((C',8) [r+=0.

Let RG(TS) be the region graph and X be a countable set of coun-
ters. Before we shall start to construct the formula, we need to add some
additional information into common states and regions. Let all regions of
RG(TS) get a unique number, then with each region R; we shall associate
its own counter zp,. For simplicity, sometimes we shall denote =g, by z;.
Moreover, with each region R we shall associate the additional set of coun-
ters RC(R), the region representative up = (C1,...,Cnp,01,-..,0n,) € R
and the function o : RC(R) — 2™® which associates the set of configura-
tions from pp with each counter of RC(R). At first, we suppose RC(Ry) =
{zo} and take po as a representative of Ry, ogr,(zo) = {Co}. For others
R € RG(TS) we suppose RC(R) = () and take an arbitrary u € R as its
representative, og = (). Then the leading relation on regions is modified so
that we add zg into RC(R), if after execution of some action we get u € R
and some event becomes enabled in C € p. Then the configuration C' is
associated with zp. Additionally, we delete from RC(R) the counters for
which there are no configurations associated with them. More formally:

e (R,RC(R)) % (R',RC(R))) (a € Act) iff R % R' (suppose pup — i
for some i € R’ ) and the set RC(R') is modified in two steps:

1. RC(R') = RC(R')U(R\ OLD(R,a)), where OLD(R,a) = {x; |
Vj € or(z;) - (Cj,8;) 7}

2. RC(R') = RC(R)U{zg} if de € En(nn) \ En(ur) AV(C,0H) €
pr Ve € CUEn(C) §(e) #0

and opg is modified as follows:

1. for all z € RC(R') N RC(R) o
op(z) = or(x) U{j | Fi € or(x) I(Ck,0k) € 1 . (Cy,0;) —
(Ck, k) A Im(ng) . (CL85) = (Crpny ) k) Tnng) () € MR

2. if zpr € RC(R') then op(zr) = {i | (Ci,0;) € pup . Je €
En(C;) 6i(e) = 0};

e ((R,RC(R)) % (R',RC(R") iff R % R’ (suppose ur LN i for some
deR" and g € R ) and

— RC(R')=RC(R)U (R\OLD( , X)), where OLD(R, x) = {z; |
Vj € on(e:)(-3(C.0) € /i . (C1,6;) % (C.o)k;
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— for all z € RC(R') N RC(R)
op(x) = op(@) U{j | 3 € on(®) ICh&) € fi - (Ciy05)
(Ck,0k) A 3m(ng) . (C},05) = (Crtnp)k)s On(np) (k) € BR }-

We also need a time assignment of our counters, so, into all common states
1 € R, we include RI, = RC(R) and the time assignment A, : RI,, — Ry.
At first, suppose A, = 0. We shall omit subscription p if it will be clear.
The leading relation on common states is modified as follows:

e (1, RI,A) 4 (W,RI'A") (d e RT) iff u LN p' and A" |pr= A |grr +d;
o (u,RI,A)Y % (W, RI'A") (a € Act) iff p = 4.

It is clear that additional pieces of information have no influence on leading
relations on common states and regions. In the following, we shall use a
simple notation R and p instead of (R, RC(R)) and (u, RI, A).

Now we can construct a formula for each region R = [ug]. In the formula,
we shall use the following notations: R — R, and R X R, and write its
optional parts in (()).

Fr= WB(R)= vg;
Yr= (WB~(R)= Fuu)) A NagUtsooycnen [alff A
NacUisconicoeny [@l((Xa in) Fr,) A ACC(R);
. _ ) Fr, if3peR3IAeRY . pp S p,
Ra = :
g, otherwise.

Here conditions S(R) that hold for the time assignment of states only from
R are constructed in the following way:

1. B(R) = tt;
2. for all z;,zj(x; # z;) € RC(R) let |A,,(z5)] = a, [Auz(z5)] = b,
then

Ty = @, if App (i) = [Apg (7)),
a<z;<a+1, otherwise;

B(R) = B(R) A {

i +b:x]' +a, if {AMR(Q:i)} = {AMR(Ij)}a
,B(R) :,B(R)/\ :1:Z~+b<$j+a, if {A”R(,’Ei)} < {A#R(Ij)},
z; +b>xz; +0b, if {AMR(Z‘J‘)} < {AMR(‘TZ')}'
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The conditions S~ (R) which mean that the values of counters are larger
than appropriate time assignments in the states from R are constructed as
follows:

B(R) V Vacromr) Ti 2 [Aug ()], if all(C, ) € ur
B”(R) = are terminated,

V (ae ROB){ Ay p (i)} =0} Ti > [Aug (2i)],  otherwise.
Below we give subformulas of ¢z and conditions of including them into ¢g.
X, ={z |z € RC(R,) \ RC(R)} is added if it is non empty;
W3~ (R) = Fp; is added into 9g if there is no region R,;

ACC(R) =V (c.5)en((Naesoop (@tt) A xcs N Fro) A (Fnic);
Foit = Nocaal@lff is added into ACC(R) for all (C,0) € pg such
that S((C,0)) |act= 0;

[ FBER) = eyt i S(C0) Laat b
(©8) B> (Ry) = (Vyenn(@)tt),  otherwise;

X(cs) A Fr, is added into ACC(R) for all (C,d) € pg such that

S((C,0)) lr+# 0

Note that we use the symbol of implication (=) for simplicity. But it is
easy to transform our formula into a correct formula from L,, because nega-
tion of B(R) and B~ (R) can be expressed in L,. Also, X, in F means
(z1 in (z2 in (... (z, in F))) for X, = {z1, z2,..., z,}. The formula g
contains three obligatory groups. The first group of conjunctions contains an
[a]-formula for any action that can not be executed in R. The second group
of conjunctions contains an [a]-formula for any action that can be executed
in R. The third group is a group of disjunctions over all states in g and
each disjunction part contains conjunctions of (a)-formulas for each action
that can be executed in some state, and an optional part which characterizes
the possibility of some amount of time to pass in this state. The optional
group of 9 is included into the formula, if there is no region R,.

For a timed event structure T'S, a characteristic formula is defined as
Frs = z¢ in Fr,. We have the following theorem

Theorem 1. TS <t TS' <= TS E=p Frg, where D corresponds to
the previous definition of Fr for each R from Vrg(rs)-

To prove the theorem, we need

Lemma 3. Let (C{, &, u) =p Frg, where (C,6)) = Mpg, u = 0. For all
(w, dy € LITS)NL(TS') and (C,5b) = (€7, 8") it holds that (C", & u')Ep
Y, where R and u' are such that there exists i which is reachable by (w, d)
consistent with a path from Ry to R, and u’' |r1,= Ay
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Proof (Theorem 1).
(<) Take an arbitrary (w, d) € L(T'S’) and (C’, ") such that (C}, dp) (w &)
(C',0"). According to Definition 3, we shall show that there exists (C,d) €
ST(TS) such that (Co,dy) 2 (C,8) and S((C,0)) [4aC S(C", ")) |aer,
S((C",0") [r+=0 = S((C,9)) [r+= 0.

Assume (w, d) ¢ L(T'S). Let (w, d) = (a1(d1)...an(dn), > o1<jcni1 di)-

We can find the maximal 0 < k < n and 0 < d’ < dj for which (w, d) =
(a1(dr) .. ax(dy), cicpdi +d) € LITS). Let py = T € STC(TS)
and (C}, d)) iy (.8 Y (C',8") for some (C',3') € ST(TS') and

~

@, d
=

(0,d) € Dom(Act,R{). By Lemma 1, there exists a path p in the region
graph RG(TS) such that [z is reachable by (@, d) consistent with 7. Then,
by Lemma 3, (6’,31 @) E=p g holds, where p is the path from Ry to
R and @ |pr,= Ag. Let us consider ¢p. If d' < dj4q, then V (C,6) €
p. S((C,0)) |[r+= 0, i.e., there is no region R,. So, by construction of the
formula, 17 includes W3~ (R) = Fp; as a conjunctive part. It is obvious
that (C',3 @) ¥p WB>(R) = F,;. We have got a contradiction with the
assumption of Theorem 1. Similary, we can get a contradiction if d' = dj .
So, (w, d)y € L(TS).

Let po <w=’>d> p € STC(TS). By Lemma 1 and Lemma 3, we can find R
and u' such that p is a path from Ry to R, v’ |rr,= A, and (C', 0" v') |=p ¥r.
By construction of the formula ¢z and Lemma 2, there exists (C, d) € p for
which S((C,8)[4uC S((C', ) [a A S(C',8))gs = S((C, ) [gr-

(=) Follows from construction of the formula Frg. O

5. Conclusion

In this paper, we have used as a formal model a timed generalization of
Winskel’s prime event structures [4] which seems more appropriate for inves-
tigation of timed testing than the ones from [11, 5] because of the possibility
to give notions of states and leading relation. This article is concentrated on
constructing a characteristic formula. This formula allows us to decide the
problem of recognizing timed must-equivalences by reducing it to the model-
checking one. The formula obtained is only a first step towards the decision
procedure for timed testing. The results may be extended onto a model with
internal actions. Also, the way of construction of the characteristic formula
may be applied to other timed testing equivalences.
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