
Joint NCC & IIS Bull., Comp. S
ien
e, 15 (2001), 17{29

© 2001 NCC Publisher

Towards de
idability of timed testing

?

E.N. Bozhenkova

In the paper, we 
onstru
t a formula that 
hara
terizes a timed event stru
ture up to

the timed must-preorder.

1. Introdu
tion

An important 
omponent of every pro
ess theory is a notion of equivalen
e

between pro
esses. Typi
ally, equivalen
es are used in the setting of spe
i�-


ation and veri�
ation both to 
ompare two distin
t systems and to redu
e

the stru
ture of a system. Over the past several years, a variety of equiv-

alen
es have been proposed, and the relationship between them has been

quite well-understood (see, for example, [9℄).

Among the major equivalen
es are testing ones presented in [8℄. Two

pro
esses are 
onsidered to be testing equivalent, if there is no test that


an distinguish them. A test itself is usually a pro
ess applied to another

pro
ess by 
omputing them together in parallel. A parti
ular 
omputation is


onsidered to be su

essful, if the test rea
hes a designated su

essful state,

and the pro
ess passes the test if every 
omputation is su

essful. This notion

is intuitively appealing; it has led to a well-developed mathemati
al theory

of pro
esses that ties together the equivalen
es and preorders. However, no


hara
terization of these equivalen
es has led to an algorithmi
 solution

for �nite-state pro
esses. Therefore, testing de
ision pro
edures are based

on redu
tion of testing to bisimulation [6℄. These equivalen
es have been


onsidered for formal system models without time delays [1, 6, 8, 10℄.

Re
ently, testing equivalen
es have been developed for models with time.

One of the papers [13℄ devoted to this subje
t investigates di�erent betting

semanti
s of "must" win and "may" win, taken from the testing methodol-

ogy, in the 
ontext of an event stru
ture model with delayed a
tions. Papers

[7℄ and [14℄ have treated timed testing for dis
rete and dense time transition

models, respe
tively. The latter paper also tries to provide a testing de
ision

pro
edure that uses the untimed bisimulation between deterministi
 graphs

built from mutually re�ned timer region graphs that are a �nite abstra
tion

of the operational semanti
s of the model under 
onsideration.
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In paper [4℄, a framework for testing preorders and equivalen
es in the

setting of timed event stru
tures has been developed. But as for the 
har-

a
terization and the de
ision pro
edure, it turns out that the results of [14℄

were not the 
ase for some timed event stru
tures. Sin
e these timed event

stru
tures 
an be easily transformed to timed transition systems, it seems

that the results of [14℄ are valid only for some sub
lass of timed transition

systems. So, we try to give the alternative 
hara
terization of the timed

testing relations. Moreover, we have found a sub
lass of stru
tures in whi
h

we 
ould redu
e timed testing relations to the 
orresponding variants of

symboli
 bisimulations.

This paper is devoted to de
idability of timed must-equivalen
es for

timed event stru
tures. We try to redu
e this problem to the model-
he
king

one. As a basi
 logi
, we take the timed logi
 L

�

. This logi
 has been de�ned

in [12℄ and used for 
onstru
tion of a 
hara
teristi
 formula for a timed

automaton up to the timed bisimilarity and, as a 
onsequen
e, for redu
tion

of the timed bisimilarity de
idability problem to the model-
he
king one. It

is known that the latter problem is de
idable.

Here we 
onstru
t a 
hara
teristi
 formula up to the timedmust-preoders.

We do it only for timed event stru
tures without internal a
tions, but this

approa
h 
an be used for those with internal a
tions, too.

The rest of the paper is organized as follows. In Se
tion 2, we remind the

basi
 notions 
on
erned with timed event stru
tures and timed testing. The

timed modal logi
 L

�

is des
ribed in Se
tion 3. In Se
tion 4, we 
onstru
t a

formula whi
h 
hara
terizes a timed event stru
ture up to the timed must-

preoder.

2. Timed event stru
tures

In this se
tion, we introdu
e a model of timed event stru
tures that is a

real time extension of Winskel's model of prime event stru
tures [15℄ by

equipping events with time intervals.

We �rst re
all a notion of an event stru
ture. The main idea behind event

stru
tures is to view the distributed 
omputations as a
tion o

urren
es,


alled events, together with a notion of 
ausal dependen
e between events

(whi
h are reasonably 
hara
terized via a partial order). Moreover, to model

nondeterminism, there is a notion of 
on
i
ting (mutually in
ompatible)

events. A labelling fun
tion determines whi
h a
tion 
orresponds to an event.

Let A
t be a �nite set of visible a
tions and � be an internal a
tion. Then

A
t

�

= A
t [ f�g.

De�nition 1. A (labelled) event stru
ture over A
t

�

is a 4-tuple S=(E;�;

#; l), where
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� E is a 
ountable set of events;

� � � E � E is a partial order (the 
ausality relation) satisfying the

prin
iple of �nite 
auses: 8e 2 E : fe

0

2 E j e

0

� eg is �nite;

� # � E�E is a symmetri
 and irre
exive relation (the 
on
i
t relation)

satisfying the prin
iple of 
on
i
t heredity: 8e; e

0

; e

00

2 E : e # e

0

� e

00

) e #e

00

;

� l : E ! A
t

�

is a labelling fun
tion.

Let C � E. Then C is left-
losed i� 8e; e

0

2 E : e 2 C ^ e

0

� e )

e

0

2 C; C is 
on
i
t-free i� 8e; e

0

2 C : :(e # e

0

); C is a 
on�guration

of S i� C is left-
losed and 
on
i
t-free. Let Conf(S) denote the set of all


on�gurations of S. For C 2 Conf(S), we de�ne the set of events enabled

in C En(C) = fe 2 E j C [ feg 2 Conf(S)g.

In the following, we will 
onsider only �nite event stru
tures, i.e., the

stru
tures whose sets of events are �nite.

Before introdu
ing the 
on
ept of a timed event stru
ture, we need to

propose some auxiliary notations. Let N

0

be the set of natural numbers

with zero, R

+

be the set of positive real numbers, and R

+

0

be the set of

nonnegative real numbers. For any d 2 R

+

0

, fdg denotes its fra
tional part,

bd
 and dde | its smallest and largest integer parts, respe
tively. Let us

de�ne the set Interv(R

+

0

) = f(d

1

; d

2

); (d

1

; d

2

℄; [d

1

; d

2

); [d

1

; d

2

℄ � R

+

0

j d

1

; d

2

2 N

0

g.

We are now ready to introdu
e the 
on
ept of timed event stru
tures.

De�nition 2. A (labelled) timed event stru
ture over A
t

�

is a pair TS =

(S;D), where

� S = (E;�;#; l) is a (labelled) event stru
ture over A
t

�

;

� D : E ! Interv(R

+

0

) is a timing fun
tion su
h that D(e) is a 
losed

interval from Interv(R

+

0

) for all e 2 E with l(e) 2 A
t.

In a graphi
 representation of a timed event stru
ture, the 
orresponding

a
tion labels and time intervals are drawn 
lose to events. If no 
onfusion

arises, we will often use a
tion labels instead of the event identi�ers to denote

events. The <-relations are depi
ted by ar
s (omitting those derivable by

transitivity), and 
on
i
ts are depi
ted by \#" (omitting those derivable by

the 
on
i
t heredity). Following these 
onventions, a trivial example of a

labelled timed event stru
ture is shown in Figure 1.

Let E

�

denote the set of all labelled timed event stru
tures over A
t

�

.

For 
onvenien
e, we �x timed event stru
tures TS = (S = (E;�;#; l);D),

TS

0

= (S

0

= (E

0

;�

0

;#

0

; l

0

);D

0

) from the 
lass E

�

and work with them

further.
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TS

1

a : e

1

[0; 1℄
b : e

2

[0; 1℄

� : e

3

[0; 1)

#

-

Figure 1

A state of TS is a pairM = (C; Æ), where C 2 Conf(S) and Æ : E ! R

+

0

.

The initial state of TS is M

TS

= (C

0

; Æ

0

) = (;; 0). A state M = (C; Æ) is

said to be terminated, if En(C) = ;. Let ST (TS) denote the set of all states

of TS.

A timed event stru
ture progresses through a sequen
e of states in one

of two ways given below.

Let M

1

= (C

1

; Æ

1

);M

2

= (C

2

; Æ

2

) 2 ST (TS) su
h that M

1

is a non-

terminated state. An event e 2 En(C

1

) may o

ur in M

1

(denoted M

1

e

!)

if Æ

1

(e) 2 D(e) and 8e

0

2 En(C

1

) 9d 2 R

+

0

: Æ

1

(e

0

) + d 2 D(e). We write

M

1

a

!, if M

1

e

! and l(e) = a. The o

urren
e of e in M

1

leads to M

2

(denoted M

1

e

!M

2

), if M

1

e

!, C

2

= C

1

[ feg and

Æ

2

(e

0

) =

�

0; if e

0

2 En(C

2

) n En(C

1

);

Æ

1

(e

0

); otherwise:

We write M

1

a

!M

2

, if M

1

e

!M

2

and l(e) = a.

A time d 2 R

+

may pass in M

1

(denoted M

1

d

!), if 8e 2 En(C

1

) 9d

0

2

R

+

0

(d

0

� d) : Æ

1

(e) + d

0

2 D(e). The passage d in M

1

leads to M

2

(denoted

M

1

d

!M

2

), if C

2

= C

1

and Æ

2

(e) = Æ

1

(e) + d for all e 2 E.

The weak leading relation) on states of TS is the largest relation de�ned

by:

�

)()

�

!

�

and

x

)()

�

)

x

!

�

), where

�

!

�

is the re
exive and transitive


losure of

�

! and x 2 A
t [R

+

. We 
onsider the relation

d

) as possessing

the time 
ontinuity property: M

d

1

+d

2

=) () M

d

1

)

d

2

) for some d

1

; d

2

2 R

+

.

From now on, we shall use the following notions and notations. Let

A
t(R

+

0

) = fa(d) j a 2 A
t ^ d 2 R

+

0

g be the set of timed a
tions

of A
t over R

+

0

. Then (A
t(R

+

0

))

�

is the set of �nite timed words over

A
t(R

+

0

). The fun
tion 4 : (A
t(R

+

0

))

�

! R

+

0

measuring the duration

of a timed word is de�ned by: 4(�) = 0; 4(w:a(d)) = 4(w) + d. The

domain for real-time languages is denoted by Dom(A
t; R

+

0

) = fhw; di j

w 2 (A
t(R

+

0

))

�

; d 2 R

+

0

; d � 4(w)g. The weak leading relation ) is

extended to timed words from (A
t(R

+

0

))

�

and Dom(A
t; R

+

0

) as follows.

Let d 2 R

+

0

; d

0

2 R

+

; a 2 A
t and w 2 (A
t(R

+

0

))

�

. Then

if M

a

)M

0

, then M

a(0)

) M

0

; if M

d

0

)

a

)M

0

, then M

a(d

0

)

) M

0

;

if M

w

)

a(d)

) M

0

, then M

w:a(d)

=) M

0

; if M

w

)M

0

, then M

hw; 4(w)i

=) M

0

;

if M

hw;di

=)

d

0

)M

0

, then M

hw; d+d

0

i

=) M

0

.
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The set L(TS) = fhw; di 2 Dom(A
t;R

+

0

) j M

TS

hw;di

=)g is the language of

TS. For instan
e, for the timed event stru
ture TS

1

(see Figure 1) we have

L(TS

1

) = fh�; d

1

i; h�; 1i, ha(d

1

); d

1

+ d

2

i, ha(1); 1i, ha(d

1

)b(d

2

); d

1

+ d

2

i j

d

1

+ d

2

< 1g.

The timed testing relations may be de�ned in terms of the responses

of timed event stru
tures to a 
olle
tion of tests. We shall, however, use

an alternative 
hara
terization that relies on the following de�nitions. Let

M 2 ST (TS) and hw; di 2 Dom(A
t; R

+

0

). Then S(M) = fx 2 A
t

�

[R

+

j

M

x

!g and A

(TS; hw; di) = fS(M

0

) j M

TS

hw; di

=) M

0

; M

0

6

�

!g (timed

a

eptan
e set). Let N;N

0

� 2

A
t[R

+

. Then N �� N

0

() 8S 2

N 9S

0

2 N

0

: [(S

0

j

A
t

� S j

A
t

) ^ (S j

R

+
= ; ) S

0

j

R

+
= ;)℄; N � N

0

()

N �� N

0

^ N

0

�� N .

De�nition 3.

� TS �

must

TS

0

() 8hw; di 2 Dom(A
t;R

+

0

) : A

(TS

0

; hw; di) ��

A

(TS; hw; di);

� TS '

must

TS

0

() TS �

must

TS

0

and TS

0

�

must

TS.

An example of timedmust-equivalent stru
tures is shown in Figure 2(a).

The timed event stru
tures TS

3

and TS

0

3

shown in Figure 2(b) are not timed

must-equivalent. Let us 
onsider the timed word hw; di = ha(0:5); 1:5i 2

L(TS

3

) \ L(TS

0

3

). We have A

(TS

3

; hw; di) = ffb; 
g [ (0; 1℄g, A

(TS

0

3

;

hw; di) = ffb; 
g[ (0; 1℄; f
gg, i.e., :(A

(TS

0

3

; hw; di) �� A

(TS

3

; hw; di)).

a a

�

[1; 1℄ [1; 1℄

[0; 1℄

TS

2

a

�

[1; 1℄

[0; 1℄

TS

0

2

a

�

[1; 1℄

[0; 1℄

#

[0; 1℄

a

b




#

[2; 3℄

[0; 2℄

1

q

TS

3

[0; 1℄

a

b




#

[2; 3℄

[0; 2℄

1

q

TS

0

3

[0; 1℄

a 


[0; 1℄

-

#

(a)

(b)

# #

-

�

[0; 1℄

#

Figure 2
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3. Timed modal logi


In [12℄, a dense-timed logi
 L

�

was 
onsidered. Here we shall re
all it and

modify a satis�ability relation for timed event stru
tures.

De�nition 4. Let K be a �nite set of 
lo
ks, Id be a set of identi�ers and

k be an integer. The set of formulas of L

�

over K, Id and k is generated by

the abstra
t syntax with � and  ranging over L

�

:

� := tt j ff j � ^  j � _  j 99� j 88� j hai� j [a℄� j x in � j x+ n ./ y +m j

x ./ m j Z,

where a 2 A
t, x; y 2 K, n;m 2 f0; 1; : : : ; kg, ./2 f=; <;�; >;�g and

Z 2 Id.

The meaning of the identi�ers from Id is spe
i�ed by a de
laration D

that assigns a formula of L

�

to ea
h identi�er. When D is 
lear, we write

Z := � for D(Z) = �. The K 
lo
ks are 
alled formula 
lo
ks and a formula

� is said to be 
losed if every formula 
lo
k x o

urs in � in the s
ope of

an \x in . . . " operator. Given a timed event stru
ture TS, we interpret the

formulas from L

�

over an extended state (C; Æu), where (C; Æ) is a state of

TS and u is a time assignment for K. Transitions between extended states

are de�ned by: (C; Æu)

�(d)

! (C; (Æ + d)(u + d)) and (C; Æu)

a

! (C

0

; Æ

0

u

0

) i�

(C; Æ)

a

! (C

0

; Æ

0

) and u = u

0

. Formally, the satisfa
tion relation between

extended states and formulas is de�ned as follows:

De�nition 5.

1

Let TS be a timed event stru
ture and D be a de
laration.

The satisfa
tion relation j=

D

is the largest one that satis�es the following

impli
ations:

(C; Æu) j=

D

tt ) true;

(C; Æu) j=

D

ff ) false;

(C; Æu) j=

D

� ^  ) (C; Æu) j=

D

� and (C; Æu) j=

D

 ;

(C; Æu) j=

D

99� ) 9d 2 R : (C; Æ + du+ d) j=

D

�;

(C; Æu) j=

D

hai� ) 9(C

0

; Æ

0

) 2 ST (TS) : (C; Æ)

a

! (C

0

; Æ

0

)

and (C

0

; Æ

0

u) j=

D

�;

(C; Æu) j=

D

x+m ./ y + n ) u(x) +m ./ u(y) + n;

(C; Æu) j=

D

x in � ) (C; Æu

0

) j=

D

�; where u

0

= [fxg ! 0℄u;

(C; Æu) j=

D

Z ) (C; Æu) j=

D

D(Z):

Any relation that satis�es the above impli
ations is 
alled a satis�ability

relation. We say that TS satis�es a 
losed formula � from L

�

and write

TS j= � when (C

0

; Æ

0

u) j=

D

� for any u. Note that if � is 
losed, then

(C; Æu) j=

D

� i� (C; Æu

0

) j=

D

� for any u; u

0

2 R

+

0

K

.

1

For the 
omplete de�nition, see [12℄.
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4. Formula 
onstru
tion

Further we restri
t our model to timed event stru
tures labelled only over

A
t.

Sin
e a timed event stru
ture is de�ned over a dense time domain, the

number of its states is in�nite. In order to get a dis
rete representation

of the state-spa
e of a timed event stru
ture, we use the 
on
ept of regions

(equivalen
e 
lasses of states) [2℄. But we do not 
onstru
t regions over states

of ST (TS) for the following reasons.

One of the problems we meet when trying to develop an algorithm of

de
idability of timed testing [4℄ is existen
e of several regions whi
h 
ontain

states rea
hable by the same timed word. So, we 
onstru
t a region over

states that unite all states of TS whi
h we get by passing some time word.

By doing so, we want to ex
lude nondeterminism when progressing in a

timed event stru
ture from state to state. For this purpose we de�ne the

notion of 
ommon states of TS.

The other problem is to syn
hronize a
tions being exe
uted in two timed

event stru
tures. Here we de
ide it by in
luding 
ounters into regions of one

timed event stru
ture in order to restri
t states of the se
ond one for whi
h

a region formula has to be 
he
ked.

Some subset of ST (TS) is 
alled a 
ommon state of TS, i.e., � � ST (TS)

is a 
ommon state of TS. We shall sometimes denote � as (C

1

; : : : ; C

n

; Æ

1

; : : :;

Æ

n

), where (C

i

; Æ

i

) 2 � (1 � i � n) and En(�) =

S

fEn(C) j C 2 �g. The

initial 
ommon state of TS is �

0

= fM

TS

g. The relation

z

! is modi�ed

on 
ommon states as follows: �

z

! �

0

= f(C

0

; Æ

0

) j 9(C; Æ) 2 � : (C; Æ)

z

!

(C

0

; Æ

0

)g, where z 2 A
t [ R

+

. Let STC(TS) denote the set of all 
om-

mon states rea
hable from �

0

. The leading relation on 
ommon states of

STC(TS) is extended to timed words from Dom(A
t;R

+

0

) just as on the

states of ST (TS).

Then the notion of region is de�ned analogously to Alur's one. Let

� = (C

1

; : : : ; C

n

; Æ

1

; : : : ; Æ

n

) 6= �

0

= (C

0

1

; : : : ; C

0

n

; Æ

0

1

; : : : ; Æ

0

n

). Then � ' �

0

i� there exists renaming �(n) : l ! �(n)(l), where l = 1; : : : n, su
h that

(C

1

; : : : ; C

n

) = (C

0

�(n)(1)

; : : : ; C

0

�(n)(n)

) and

(i) 81 � i � m : bÆ

1

j : : : jÆ

n

(i)
 = bÆ

0

�(n)(1)

j : : : jÆ

0

�(n)(n)

(i)
;

(ii) 81 � i; j � m :

| fÆ

1

j : : : jÆ

n

(i)g � fÆ

1

j : : : jÆ

n

(j)g () fÆ

0

�(n)(1)

j : : : jÆ

0

�(n)(n)

(i)g�

fÆ

0

�(1)

j : : : jÆ

0

�(n)

(j)g;

| fÆ

1

j : : : jÆ

n

(i)g = 0 () fÆ

0

�(n)(1)

j : : : jÆ

0

�(n)(n)

(i)g = 0,
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where Æ

1

j : : : jÆ

n

is the 
on
atenation of ve
tors Æ

i

(1 � i � n) and m =

P

1�i�n

j C

i

j.

A set R = [�℄ = f�

0

j � ' �

0

g is 
alled a region of TS. We de�ne

R

0

= [�

0

℄. Let R and R

0

be regions of TS. Then the leading relation on

regions is de�ned as follows: R

a

! R

0

i� 9� 2 R; �

0

2 R

0

: �

a

! �

0

(a 2 A
t);

R

�

! R

0

i� 9� 2 R; �

0

2 R

0

9d 2 R

+

: �

d

! �

0

^ 8 0 < d

0

< d �

d

0

! e� 2 R[R

0

.

The leading relation on regions is extended to timed words fromDom(A
t;

R

+

0

) just as on the states of ST (TS).

We shall 
all a partition of STC(TS) into regions stable if the following

holds: ifR

a

! R

0

, then 8� 2 R : �

a

! �

0

for some �

0

2 R

0

(a 2 A
t); ifR

�

! R

0

,

then 8� 2 R 9d 2 R

+

: �

d

! �

0

for some �

0

2 R

0

and �

d

0

! e� 2 R[R

0

for all

0 < d

0

� d. So, we 
an de�ne the notion of region graph of TS RG(TS) =

(V

RG

; E

RG

; l

RG

). The set of verti
es V

RG

is a stable partition of STC(TS),

the set of edges E

RG

is the leading relation on regions of V

RG

, the labelling

fun
tion l

RG

: E

RG

�! A
t[f�g is de�ned as: l((R;R

0

)) = z () R

z

! R

0

.

For 
orre
tness of our formula 
onstru
tion we need to introdu
e the

following notion.

De�nition 6. Let hw; di 2 L(TS) and RG(TS) = (V

RG

, E

RG

, l

RG

). Let

p = R

0

: : : R be a path in RG(TS). Then � 2 STC(TS) is rea
hable by

hw; di 
onsistent with p i� � 2 R and either

� p = R

0

and hw; di = h�; 0i,

or

� p = p

0

z

! R and there exists �

0

2 STC(TS) rea
hable by hw

0

; d

0

i


onsistent with p

0

and either

{ z = a 2 A
t, �

0

a

!

d

00

! � and hw; di = hw

0

a(d

0

��(w

0

); d

0

+ d

00

i for

some d

00

2 R

+

0

,

or

{ z = �, �

0

d

00

! � and hw; di = hw

0

; d

0

+ d

00

i for some d

00

2 R

+

.

Note that �

0

hw;di

) � () 8(C; Æ) 2 � (C

0

; Æ

0

)

hw;di

=) (C; Æ). Moreover,

for any hw; di there exists only one � 2 STC(TS) su
h that �

0

hw;di

=) �.

Consequently, R and path p from R

0

to R, su
h that � is rea
hable by

hw; di 
onsistent with p, are unique.

Lemma 1. Let hw; di 2 L(TS) and �

0

hw;di

=) �. Then there exists only one

path p in RG(TS) su
h that � is rea
hable by hw; di 
onsistent with p.
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Lemma 2. Let R 2 V

RG

. Then 8�; �

0

2 R 8(C; Æ) 2 � 9 (C

0

; Æ

0

) 2

�

0

: C = C

0

^ S((C; Æ)) j

A
t

= S((C

0

; Æ

0

)) j

A
t

^ S((C; Æ)) j

R

+
= ; ()

S((C

0

; Æ

0

)) j

R

+= ;.

Let RG(TS) be the region graph and X be a 
ountable set of 
oun-

ters. Before we shall start to 
onstru
t the formula, we need to add some

additional information into 
ommon states and regions. Let all regions of

RG(TS) get a unique number, then with ea
h region R

i

we shall asso
iate

its own 
ounter x

R

i

. For simpli
ity, sometimes we shall denote x

R

i

by x

i

.

Moreover, with ea
h region R we shall asso
iate the additional set of 
oun-

ters RC(R), the region representative �

R

= (C

1

; : : : ; C

n

R

; Æ

1

; : : : ; Æ

n

R

) 2 R

and the fun
tion �

R

: RC(R) �! 2

n

R

whi
h asso
iates the set of 
on�gura-

tions from �

R

with ea
h 
ounter of RC(R). At �rst, we suppose RC(R

0

) =

fx

0

g and take �

0

as a representative of R

0

, �

R

0

(x

0

) = fC

0

g. For others

R 2 RG(TS) we suppose RC(R) = ; and take an arbitrary � 2 R as its

representative, �

R

� ;. Then the leading relation on regions is modi�ed so

that we add x

R

into RC(R), if after exe
ution of some a
tion we get � 2 R

and some event be
omes enabled in C 2 �. Then the 
on�guration C is

asso
iated with x

R

. Additionally, we delete from RC(R) the 
ounters for

whi
h there are no 
on�gurations asso
iated with them. More formally:

� (R;RC(R))

a

! (R

0

; RC(R

0

)) (a 2 A
t) i� R

a

! R

0

(suppose �

R

a

! e�

for some e� 2 R

0

) and the set RC(R

0

) is modi�ed in two steps:

1. RC(R

0

) = RC(R

0

) [ (R n OLD(R; a)), where OLD(R; a) = fx

i

j

8j 2 �

R

(x

i

) : (C

j

; Æ

j

) 6

a

!g;

2. RC(R

0

) = RC(R

0

) [ fx

R

0

g if 9e 2 En(e�) n En(�

R

) ^ 8(C; Æ) 2

�

R

8e 2 C [En(C) Æ(e) 6= 0

and �

R

0

is modi�ed as follows:

1. for all x 2 RC(R

0

) \RC(R)

�

R

0

(x) = �

R

0

(x) [ fj j 9i 2 �

R

(x) 9(

e

C

k

;

e

Æ

k

) 2 e� : (C

i

; Æ

i

)

a

!

(

e

C

k

;

e

Æ

k

) ^ 9�(n

R

0

) : (C

0

j

; Æ

0

j

) = (

e

C

�(n

R

0

)(k)

; e�

�(n

R

0

)(k)

) 2 �

R

0

g;

2. if x

R

0

2 RC(R

0

) then �

R

0

(x

R

0

) = fi j (C

i

; Æ

i

) 2 �

R

0

: 9e 2

En(C

i

) Æ

i

(e) = 0g;

� ((R;RC(R))

�

! (R

0

; RC(R

0

)) i� R

�

! R

0

(suppose �

R

d

! e� for some

d 2 R

+

and e� 2 R

0

) and

{ RC(R

0

) = RC(R

0

)[ (RnOLD(R;�)), where OLD(R;�) = fx

i

j

8j 2 �

R

(x

i

)(:9(

e

C;

e

Æ) 2 e� : (C

j

; Æ

j

)

d

! (

e

C;

e

Æ)g;
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{ for all x 2 RC(R

0

) \RC(R)

�

R

0

(x) = �

R

0

(x) [ fj j 9i 2 �

R

(x) 9(

e

C

k

;

e

Æ

k

) 2 e� : (C

i

; Æ

i

)

d

!

(

e

C

k

;

e

Æ

k

) ^ 9�(n

R

0

) : (C

0

j

; Æ

0

j

) = (

e

C

�(n

R

0

)(k)

; e�

�(n

R

0

)(k)

) 2 �

R

0

g.

We also need a time assignment of our 
ounters, so, into all 
ommon states

� 2 R, we in
lude RI

�

= RC(R) and the time assignment �

�

: RI

�

! R

+

0

.

At �rst, suppose �

�

� 0. We shall omit subs
ription � if it will be 
lear.

The leading relation on 
ommon states is modi�ed as follows:

� (�;RI;�)

d

! (�

0

; RI

0

;�

0

) (d 2 R

+

) i� �

d

! �

0

and �

0

j

RI

= � j

RI

+d;

� (�;RI;�)

a

! (�

0

; RI

0

;�

0

) (a 2 A
t) i� �

a

! �

0

.

It is 
lear that additional pie
es of information have no in
uen
e on leading

relations on 
ommon states and regions. In the following, we shall use a

simple notation R and � instead of (R;RC(R)) and (�; RI; �).

Now we 
an 
onstru
t a formula for ea
h region R = [�

R

℄. In the formula,

we shall use the following notations: R

a

! R

a

and R

�

! R

�

and write its

optional parts in hhii.

F

R

= 88�(R) )  

R

;

 

R

= hh88�

>

(R) ) F

nil

ii ^

V

a62

S

fS((C;Æ))j(C;Æ)2�g

[a℄ff ^

V

a2

S

fS((C;Æ))j(C;Æ)2�g

[a℄(hhX

a

inii

b

F

R

a

) ^ ACC(R);

b

F

R

a

=

(

F

R

; if 9� 2 R 9d 2 R

+

: �

R

d

! �;

 

R

; otherwise:

Here 
onditions �(R) that hold for the time assignment of states only from

R are 
onstru
ted in the following way:

1. �(R) = tt;

2. for all x

i

; x

j

(x

i

6= x

j

) 2 RC(R) let b�

�

R

(x

i

)
 = a, b�

�

R

(x

j

)
 = b,

then

�(R) = �(R) ^

�

x

i

= a; if �

�

R

(x

i

) = b�

�

R

(x

i

)
;

a < x

i

< a+ 1; otherwise;

3.

�(R) = �(R) ^

8

<

:

x

i

+ b = x

j

+ a; if f�

�

R

(x

i

)g = f�

�

R

(x

j

)g;

x

i

+ b < x

j

+ a; if f�

�

R

(x

i

)g < f�

�

R

(x

j

)g;

x

i

+ b > x

j

+ b; if f�

�

R

(x

j

)g < f�

�

R

(x

i

)g:
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The 
onditions �

>

(R) whi
h mean that the values of 
ounters are larger

than appropriate time assignments in the states from R are 
onstru
ted as

follows:

�

>

(R) =

8

>

<

>

:

�(R) _

W

x

i

2RC(R)

x

i

� d�

�

R

(x

i

)e; if all(C; Æ) 2 �

R

are terminated;

W

fx

i

2RC(R)jf�

�

R

(x

i

)g=0g

x

i

> d�

�

R

(x

i

)e; otherwise.

Below we give subformulas of  

R

and 
onditions of in
luding them into  

R

.

� X

a

= fx j x 2 RC(R

a

) n RC(R)g is added if it is non empty;

� 88�

>

(R) ) F

nil

is added into  

R

if there is no region R

�

;

� ACC(R) =

W

(C;Æ)2�

((

V

a2S((C;Æ))

haitt) ^ hh�

(C;Æ)

^ F

R

�

ii ^ hhF

nil

ii);

� F

nil

=

V

a2A
t

[a℄ff is added into ACC(R) for all (C; Æ) 2 �

R

su
h

that S((C; Æ)) j

A
t

= ;;

� �

(C;Æ)

=

�

99�(R

�

) ) (

V

a2S((C;Æ))

haitt); if S(C; Æ) j

A
t

6= ;;

99�

>

(R

�

) ) (

W

a2A
t

haitt); otherwise;

� �

(C;Æ)

^ F

R

�

is added into ACC(R) for all (C; Æ) 2 �

R

su
h that

S((C; Æ)) j

R

+
6= ;.

Note that we use the symbol of impli
ation ()) for simpli
ity. But it is

easy to transform our formula into a 
orre
t formula from L

�

, be
ause nega-

tion of �(R) and �

>

(R) 
an be expressed in L

�

. Also, X

a

in F means

(x

1

in (x

2

in (: : : (x

n

in F ))) for X

a

= fx

1

; x

2

; : : : ; x

n

g. The formula  

R


ontains three obligatory groups. The �rst group of 
onjun
tions 
ontains an

[a℄-formula for any a
tion that 
an not be exe
uted in R. The se
ond group

of 
onjun
tions 
ontains an [a℄-formula for any a
tion that 
an be exe
uted

in R. The third group is a group of disjun
tions over all states in �

R

and

ea
h disjun
tion part 
ontains 
onjun
tions of hai-formulas for ea
h a
tion

that 
an be exe
uted in some state, and an optional part whi
h 
hara
terizes

the possibility of some amount of time to pass in this state. The optional

group of  

R

is in
luded into the formula, if there is no region R

�

.

For a timed event stru
ture TS, a 
hara
teristi
 formula is de�ned as

F

TS

= x

0

in F

R

0

. We have the following theorem

Theorem 1. TS �

must

TS

0

() TS

0

j=

D

F

TS

, where D 
orresponds to

the previous de�nition of F

R

for ea
h R from V

RG(TS)

.

To prove the theorem, we need

Lemma 3. Let (C

0

0

; Æ

0

0

u) j=

D

F

TS

, where (C

0

0

; Æ

0

0

) = M

TS

0

, u � 0. For all

hw; di 2 L(TS)\L(TS

0

) and (C

0

0

; Æ

0

0

)

hw; di

=) (C

0

; Æ

0

) it holds that (C

0

; Æ

0

u

0

)j=

D

 

R

, where R and u

0

are su
h that there exists � whi
h is rea
hable by hw; di


onsistent with a path from R

0

to R, and u

0

j

RI

�

= �

�

.



28 E.N. Bozhenkova

Proof (Theorem 1).

(() Take an arbitrary hw; di 2 L(TS

0

) and (C

0

; Æ

0

) su
h that (C

0

0

; Æ

0

0

)

hw; di

=)

(C

0

; Æ

0

). A

ording to De�nition 3, we shall show that there exists (C; Æ) 2

ST (TS) su
h that (C

0

; Æ

0

)

hw; di

=) (C; Æ) and S((C; Æ)) j

A
t

� S((C

0

; Æ

0

)) j

A
t

,

S((C

0

; Æ

0

)) j

R

+= ; ) S((C; Æ)) j

R

+= ;.

Assume hw; di 62 L(TS). Let hw; di = ha

1

(d

1

) : : : a

n

(d

n

);

P

1�i�n+1

d

i

i.

We 
an �nd the maximal 0 � k � n and 0 � d

0

� d

k+1

for whi
h hw; di =

ha

1

(d

1

) : : : a

k

(d

k

);

P

1�i�k

d

i

+ d

0

i 2 L(TS). Let �

0

hw; di

=) � 2 STC(TS)

and (C

0

0

; Æ

0

0

)

hw; di

=) (C

0

; Æ

0

)

h bw;

b

di

=) (C

0

; Æ

0

) for some (C

0

; Æ

0

) 2 ST (TS

0

) and

h bw;

b

di 2 Dom(A
t;R

+

0

). By Lemma 1, there exists a path p in the region

graph RG(TS) su
h that � is rea
hable by hw; di 
onsistent with p. Then,

by Lemma 3, (C

0

; Æ

0

u

0

) j=

D

 

R

holds, where p is the path from R

0

to

R and u

0

j

RI

�

= �

�

. Let us 
onsider  

R

. If d

0

< d

k+1

, then 8 (C; Æ) 2

� : S((C; Æ)) j

R

+= ;, i.e., there is no region R

�

. So, by 
onstru
tion of the

formula,  

R

in
ludes 88�

>

(R) ) F

nil

as a 
onjun
tive part. It is obvious

that (C

0

; Æ

0

u

0

) 2

D

88�

>

(R) ) F

nil

. We have got a 
ontradi
tion with the

assumption of Theorem 1. Similary, we 
an get a 
ontradi
tion if d

0

= d

k+1

.

So, hw; di 2 L(TS).

Let �

0

hw; di

=) � 2 STC(TS). By Lemma 1 and Lemma 3, we 
an �nd R

and u

0

su
h that p is a path from R

0

to R, u

0

j

RI

�

= �

�

and (C

0

; Æ

0

u

0

) j=

D

 

R

.

By 
onstru
tion of the formula  

R

and Lemma 2, there exists (C; Æ) 2 � for

whi
h S((C; Æ)) j

A
t

� S((C

0

; Æ

0

)) j

A
t

^ S((C

0

; Æ

0

)) j

R

+
) S((C; Æ)) j

R

+
.

()) Follows from 
onstru
tion of the formula F

TS

. 2

5. Con
lusion

In this paper, we have used as a formal model a timed generalization of

Winskel's prime event stru
tures [4℄ whi
h seems more appropriate for inves-

tigation of timed testing than the ones from [11, 5℄ be
ause of the possibility

to give notions of states and leading relation. This arti
le is 
on
entrated on


onstru
ting a 
hara
teristi
 formula. This formula allows us to de
ide the

problem of re
ognizing timedmust-equivalen
es by redu
ing it to the model-


he
king one. The formula obtained is only a �rst step towards the de
ision

pro
edure for timed testing. The results may be extended onto a model with

internal a
tions. Also, the way of 
onstru
tion of the 
hara
teristi
 formula

may be applied to other timed testing equivalen
es.
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