
Joint NCC & IIS Bull., Comp. Science, 16 (2001), 103–113
c© 2001 NCC Publisher

Constraint propagation in presence of

arrays

S. Brand

We describe the use of array expressions as constraints, which represents a consequent

generalisation of the element constraint. Constraint propagation for array constraints is

studied theoretically, and for a set of domain reduction rules the local consistency they

enforce, arc-consistency, is proved. An efficient algorithm is described that encapsulates

the rule set and so inherits the capability to enforce arc-consistency from the rules.

1. Introduction

Many problems can be modelled advantageously using “look up” functional-
ity: to access an object given its index. Imperative programming languages
provide arrays for this. With i one of 1, 2, 3 and a definition such as
integer a[3], the construct a[i] represents an integer variable, while with
a definition b[] = {5, 7, 9} the ‘value’ of i according to table b can be
looked up by x = b[i].

A usual condition for look-up expressions to be valid is that the index be
known when the expression is evaluated. In a constraint programming envi-
ronment, this is a restriction that can be disposed of. The binary element

constraint (originally in CHIP, [4]), semantically equivalent to a lookup ex-
pression using a 1-dimensional array, allows a variable as the index and a
variable for the result, constraining both. It proved to be very beneficial
to allow a variable for the index. Many important problems (scheduling,
resource allocation, etc.) modelled as CSPs make use of this constraint.

OPL, a modelling language for combinatorial optimisation and constraint
programming ([11]), supports arrays of constants and variables, and arrays
indexed by variables (or other expressions). These array expressions are
most general. However, domain reduction in OPL is weaker than possible,
for instance the reduction for an index variable depends on its position ([11],
p. 100).

In this work we study constraint propagation enforcing arc-consistency
for general array expressions. Arrays are multidimensional, and variables
can occur wherever constants can. An expression x = a[y1, . . . , yn] is seen as
a constraint on the variables x and y1, . . . , yn, and all the variables collected
in the array a.

104 S. Brand

Example. Consider an application of arrays. Assume a conventional cross-
word grid, with entries for words in the rows and columns and remaining
fields blackened. Further consider a set of words, a subset of which is to be
filled into the entries in the grid. A natural formulation of this problem as
a CSP is to take, for each word entry, a variable Ei whose initial domain is
the set of words that fit the entry length-wise.

The words, split up into their letters, are collected in a two-dimensional
array l such that l[w, p] represents the letter of word w at position p. The
conditions on crossings of entries are then easily stated as constraints. A
crossing of field E1 at position 4 and field E2 at position 3 is stated as
l[E1, 4] = l[E2, 3]. An additional alldifferent constraint on the Ei ensures
that no two word entries contain the same word.

Enforcing arc-consistency for array expressions solves some instances of
the crossword problem without any backtracking ([10], p. 140, which uses a
custom constraint for crossing entries that is equivalent to the one here).

2. Preliminaries

A constraint satisfaction problem 〈C;D〉 consists of a set of variables (im-
plicit here), a set D of domain expressions x ∈ Dx that associate a set of
admissible values with every variable, and a set C of constraints. A constraint
is a relation on a set of variables that is a subset of the cartesian product of
their domains.

A solution for a constraint is an assignment of values to its variables that
are consistent with the constraint. A solution for a CSP is an assignment
that is a solution for all its constraints. A CSP, or a constraint, is satisfiable
if a solution exists. A domain value, or a partial solution, is supported if it
is part of a solution.

Local consistency notions, weaker approximations of (global) satisfia-
bility, are essential in constraint solving. A central one is arc-consistency
([8]). We disregard the arity of constraints and define: a constraint is arc-

consistent, if all domain values of all its variables are supported. A CSP is
arc-consistent if all its constraints are arc-consistent.

2.1. A rule-based formalism

Constraint programming can be seen as transforming a CSP into one or
several simpler but equivalent CSPs in a rule-based way. This view allows
separate consideration of the reductive strength of some set of constraint
propagation rules and its scheduling. The transformations on CSPs lend

Constraint propagation in presence of arrays 105

themselves to a declarative formulation. We adopt the proof theoretic for-
malism of [1], and introduce the relevant elements.

A transformation step from a CSP P, the premise, to a CSP Q, the con-
clusion, by application of a rule (r) and possibly subject to a side condition
〈C 〉 on P is represented as

(r)
P

Q
〈C 〉

Two CSPs P and Q are equivalent if all variables in P are present in
Q and every solution for P can be extended to a solution for Q by an
assignment to variables only in Q. If a rule application preserves equivalence,
then the rule is sound.

A rule is required to be relevantly applicable, that is, the result Q must
be different from P in the sense that the set of domain expressions or the
set of constraints changes. If a rule, or a set of rules, is not applicable to P
then P is stable or closed under it. Applying a rule to a constraint means
applying it to the CSP consisting only of this constraint.

Notation. The domain expressions v ∈ Dv used in the rules are implicitly
represented in the set D. Replacing a domain expression from D is denoted
by D, v ∈ Dnew

v . If in P = 〈C;D〉 the set of constraints consists of only one
constraint, C = {con}, then we may just write P = 〈con ;D〉. The expression
s 7→ t denotes a substitution, assignment, or mapping, from s to t.

Example. We illustrate these concepts with a rule-based characterisation
of arc-consistency. A constraint C is arc-consistent if for all variables v of
C and all values d ∈ Dv an instantiation of v to d in C, written C{v 7→d},
retains satisfiability. If C{v 7→d} is not satisfiable, then d is redundant and
can be removed from Dv. The resulting CSP is equivalent to the original
one. This principle is captured in a rule:

Lemma 1. A satisfiable constraint C is arc-consistent iff it is closed under

the application of

(ac)
〈C ; D〉

〈C ; D, v ∈ Dv\{d}〉
C{v 7→d} has no solution

✷

3. Arc-consistency for array constraints

An array a of arity n is a set of mappings index 7→ variable , where index

is a unique n-tuple of constants, and variable is a variable with a domain.

106 S. Brand

The array expression a[b1, . . . , bn] evaluates to v, if a contains a mapping
(b1, . . . , bn) 7→ v, otherwise it is not defined (in what follows it is assumed
that indices accessing a are valid). Note that arrays of constants come as a
specialization of this model.

3.1. Simple array constraints

Array expressions a[y1, . . . , yn] are functional. The simplest extension to a
constraint is the equality constraint C ≡ 〈x = a[y1, . . . , yn]〉. We establish
arc-consistency first for this case, and then discuss compound (nested) array
expressions. Also, occurrences of variables are restricted in that no variable
in the constraint may occur more than once (C is linear). Note that the
variables of C are x, y1, . . . , yn, and all variables v for valid (b1, . . . , bn)
and (b1, . . . , bn) 7→ v in a. Such v will from now on be denoted directly as
a[b1, . . . , bn].

Theorem 1 (Arc-consistency for arrays). A satisfiable linear equality

constraint 〈x = a[y1, . . . , yn]〉 is arc-consistent iff it is closed under the rule

set Rarr:

(arrx)
〈x = a[y1, . . . , yn] ; D〉

〈

x = a[y1, . . . , yn] ; D, x ∈ Dx ∩
(

⋃

bi∈Dyi
Da[b1,...,bn]

)〉

(arry)
〈x = a[y1, . . . , yn] ; D〉

〈x = a[y1, . . . , yn] ; D, yk ∈ Dyk\{b}〉
〈Cy〉

〈Cy〉 : Dx ∩

⋃

bi ∈Dyi
, bk=b

Da[b1,...,bn]

 = ∅

(arra)
〈x = a[y1, . . . , yn] ; D〉

〈

x = a[y1, . . . , yn] ; D, a[b1, . . . , bn] ∈ Da[b1,...,bn] ∩Dx

〉 〈Ca〉

〈Ca〉 : Dy1 × . . .×Dyn = {(b1, . . . , bn)}

✷

Proof.

(⇐) Suppose C ≡ 〈x = a[y1, . . . , yn]〉 is closed under Rarr. Then all values
in the domains of variables in C are supported.
(1) Take some d ∈ Dx. C is closed under (arrx), thus also d ∈
(

⋃

bi∈Dyi
Da[b1,...,bn]

)

. Then there exists some (b1, . . . , bn) with d ∈

Da[b1,...,bn]. This index and a[b1, . . . , bn] 7→d support x 7→d.

Constraint propagation in presence of arrays 107

(2) For some b ∈ Dyk we consider the necessarily failing condition of (arry).
Thus a value d exists in both Dx and Da[b1,...,bn], for some (b1, . . . , bn) with
bk = b. Assigning bi to yi, and x 7→ d and a[b1, . . . , bn] 7→ d is a solution
supporting b.

(3) Consider a value d ∈ Da[b1,...,bn] and the following cases:
(3.1) (b1, . . . , bn) /∈ Dy1 × . . .×Dyn .
The index (y1, . . . , yn) can not select the variable a[b1, . . . , bn]; however, C
remains satisfiable. Therefore, there is a solution for C that is indifferent to
the value of a[b1, . . . , bn], and so supports a[b1, . . . , bn] 7→d.

(3.2) (b1, . . . , bn) ∈ Dy1 × . . .×Dyn .
(3.2.1) {(b1, . . . , bn)} = Dy1 × . . . ×Dyn .
Here the condition of (arra) is fulfilled, its consequence holds and according
to it d ∈ Dx. A supporting solution is therefore x 7→ d, a[b1, . . . , bn] 7→ d,
yi 7→bi for all i.

(3.2.2) Some Dyk contains more than one element.
Consider some index (b′1, . . . , b

′

n) with b′k 6= bk that also fulfills Dx ∩
Da[b′

1
,...,b′n]

6= ∅. Such an index exists because otherwise (arry) would be
applicable. Choose d′ ∈ Dx and instantiate x 7→d′, a[b′1, . . . , b

′

n] 7→d′, yi 7→b′i
for all i. This solution to C does not assign to a[b1, . . . , bn] and hence sup-
ports a[b1, . . . , bn] 7→d.

(⇒) Suppose here that C is not closed under Rarr. Then domains of some
variables in C contain unsupported values.

(1) Assume (arrx) is applicable, that is, Dx ⊃
⋃

bi∈Dyi
Da[b1,...,bn]. Then there

is some value d ∈ Dx, d /∈ Da[b1,...,bn] for all (b1, . . . , bn) ∈ Dy1 × . . . ×Dyn .
Clearly, d is not a part of any solution.

(2) Suppose some bk ∈ Dyk could be removed by (arry). From the condition
of (arry) it follows that with yk 7→bk no index (b1, . . . , bn) can be found that
allows the same value for x and a[b1, . . . , bn].

(3) For a singleton index domain and a possible application of (arra) , we
consider a[b1, . . . , bn] 7→ d with d /∈ Dx. Such d can not be supported by x.

✷

Linearity requirement. It is necessary to restrict occurrences of variables.
Consider the array xor = {(0, 0) 7→0, {(0, 1) 7→1, {(1, 0) 7→1, {(1, 1) 7→0} and
the CSP P ≡ 〈0 = xor [y, y]; {y ∈ {0, 1}}〉. P is inconsistent but stable under
Rarr.

Origin of Rarr. Each rule in Rarr can be derived as an instance of the
general rule (ac) in Lemma 1. Such a derivation, perhaps unsurprisingly,
proceeds along the same case distinctions as in the (⇐) part of the above

108 S. Brand

proof. We believe the derivation to be interesting in its own right, but choose
here the proof for its relative brevity.

3.2. Arc-consistency and compound expressions

The following result allows decomposition of nested array expressions and
equality constraints for the purpose of establishing arc-consistency. Expres-
sions such as l[w, p] = l[w′, p′] from the crossword example are decomposed
with a fresh variable into v = l[w, p] and v = l[w′, p′], upon which arc-
consistency can be enforced independently.

Lemma 2. Assume Ct ≡ 〈s = t(v)〉 and Cv ≡ 〈v = r〉 be linear con-

straints on, apart from v, distinct sets of variables. The constraint C ≡
〈s = t{v 7→r}〉 is arc-consistent if Ct and Cv are arc-consistent. ✷

Proof. Suppose Ct and Cv are arc-consistent.
Any solution for Ct assigns a value to v that is also supported by a

solution to Cv, and vice versa. Due to the conditions on variables, such
solutions do not assign to the same variables. Therefore, their union is also
a solution for C. Thus, a supporting solution for any domain value of a
variable in Ct, Cv, and C, can be extended to a supporting solution for C.

Hence, C is arc-consistent. ✷

3.3. Domain reduction and transformation

As instances of (ac), the rules in Rarr are domain reduction rules by type.
From a semantical, and particularly from an operational, point of view,
however, it may be worth to have, instead transformation, the rules that
change the representation of constraints.

Consider (arra), which applies if the index is fully instantiated. This
means that we can also dispense entirely with the array look-up: no choice
is left. The array expression can be replaced by the selected variable. Thus,
an alternative to (arra) would be

〈x = a[y1, . . . , yn] ; D〉
〈

x = a[b1, . . . , bn] ; D, a[b1, . . . , bn] ∈ Da[b1,...,bn] ∩Dx

〉 〈Ca〉.

This rule is now both a transformation rule and a domain reduction rule.
Note that the domain reduction takes place between variables. In the pres-
ence of the rules for primitive equality constraints 〈x = y〉, one can simplify
even more into a pure transformation rule:

(arr′a)
〈x = a[y1, . . . , yn] ; D〉

〈x = a[b1, . . . , bn] ; D〉
〈Ca〉.

The combination of (arr′a) and rules for 〈x = y〉 is equivalent to (arra).

Constraint propagation in presence of arrays 109

4. A non-naive algorithm

An exhaustive application of Rarr is computationally expensive, in part
unavoidable due to the strength of arc-consistency, and the large number of
variables involved in array constraints. Inefficiency that can be remedied is
the large number of set operations on domains, due to the fact that individ-
ual array variable domains Da[b1,...,bn] are read and processed many times.

The algorithm arr-ac (Figure 1) reads every Da[b1,...,bn] addressable
by (y1, . . . , yn) at most once. Consider T = Dx ∩ Da[b1,...,bn] for some
(b1, . . . , bn) ∈ Dy1 × . . . ×Dyn . T is a subset of the intersection in the con-
clusion of (arrx), so it is necessarily a part of the new domain of x, and
only Dx\T instead of Dx needs to be subjected to further restriction. With
regard to (arry), a nonempty T implies that the side condition fails. Thus,
no bk of (b1, . . . , bn) can be removed from Dyk by (arry).

for all i: Bi := Dyi
index

for all i: Yi := Dyi
potentially redundant for yi

X := Dx potentially redundant for x
S := ∅ indices skipped for X

while B 6= ∅ and some Yk 6= ∅ ¿ loop for Y and X
choose and remove (b1, . . . , bn) from B
if some bk ∈ Yk then

T := Dx ∩Da[b1,...,bn]

if T 6= ∅ then

for all i: Yi := Yi\{bi}
X := X\T

else S := S ∪ {(b1, . . . , bn)}

while S 6= ∅ and X 6= ∅ rest loop for X
choose and remove (b1, . . . , bn) from S
X := X\Da[b1,...,bn]

for all i: Dyi
:= Dyi

− Yi remove redundant values

Dx := Dx −X

Figure 1. arr-ac (core)

Note that arr-ac makes a positive guess whether the values are supported.
If in the end some domain is really reduced, then arr-ac needs to repeat the
run. Indeed, if somewhere before the regular end of the run, as described in
Figure 1, it is definite that some domain Dyj will be reduced, the run could
terminate immediately, commit the change to Dyj , and restart.

110 S. Brand

The core part of arr-ac can itself be regarded as a complex domain reduc-
tion rule, encapsulating (arrx) and (arry). The rule set {arr-ac:core, (arra)}
establishes arc-consistency.

Example. Consider x ∈ {B,C,D}, y1 ∈ {1, 2}, y2 ∈ {1, 2, 3} and
〈x = a[y1, y2]〉 and let a be defined as an array of constants

(y1, y2) 1 2 3

1 A B C

2 D E F

The constraint is arc-consistent, which arr-ac verifies as follows. First it reads
a[1, 1] = A. Nothing is done. It follows that a[1, 2] = B. B is in Dx, so B is a
supported value for x, and 1 is supported for y1 and 2 for y2. The next step
is reading a[1, 3] = C. This supports C for x and 3 for y2. Finally, a[2, 1] = D

is reached. This supports the last missing value D for x, and, moreover, 2
for y1 and 1 for y2.

The support for all values in the domains was found, hence arc-
consistency is established. Only one incomplete run was necessary, skipping
the indices (2, 2), (2, 3) that are still permissible by (y1, y2). ✷

For one run of arr-ac (and ignoringX here), the number of iterations that
enter the computation of T has an upper bound of O (dn) with d the maximal
size of the domains of yi. This reflects the number of possible different indices
(b1, . . . , bn). The lower bound, on the other hand, is only O (d). It is reached
when every iteration reduces all (nonempty) Yi by an element, and occurs
if the constraint is arc-consistent and every instantiation of (y1, . . . , yn) is
part of a solution.

An operationally useful side effect of arr-ac is that it can also yield
the variables that contain the supporting values. Initially, all variables
a[b1, . . . , bn] are part of the constraint, whereas after complete instantiation
of the index (y1, . . . , yn) only the variable a[y1, . . . , yn] is constrained and
contains support. The algorithm arr-ac regards these variables a[b1, . . . , bn]
as supporting, for which the intersection T is nonempty.

The algorithm arr-ac has been implemented in ECLiPSe ([6]), using the
finite domain primitives of lib(fd). An implementation of Rarr in the same
environment Has been compared to arr-ac by testing it against an instance
of the crossword problem and was roughly 50% slower.

Constraint propagation in presence of arrays 111

5. Final remarks

5.1. Related work

The established precursor of array constraints is the element constraint
([4]). It is the one-dimensional specialization, and usually the look-up list
that links an index with a result is restricted to a list consisting of constants.

Arrays in OPL ([11, 7]) are similarly general as in this work. In [9] on
OPL++, a model of the stable marriages problem is described that employs
an array of variables indexed by a variable. Constraint propagation of array
expressions in OPL is strictly weaker, however. For all three cases treated by
Rarr , we could construct simple examples using small 2-dimensional arrays
in which reduction of domains is possible but not performed, see Figures 2
and 3.

The paper [3] describes an implementation of element using indexicals
in AKL(FD), in which the look-up list can consist of domain variables. It is
equivalent to a one-dimensional instance of Rarr.

In [2] a new constraint case is proposed that subsumes multidimensional
array constraints with arrays of constants. An algorithm, which seems similar
in effect to the use of Rarr, based on graph theory, is outlined.

The paper [5], on unifying optimization and constraint satisfaction meth-
ods, studies a continuous relaxation of element with a look-up list of vari-
ables with continuous domains by using a cutting-planes approach.

5.2. Conclusions

We study here the use of arrays in constraint programming mainly from
the theoretical point of view. There are good arguments in favour of the
fact that arrays are beneficial in constraint models. Indices of objects are a
basic notion in mathematics. The object element is implemented in many
constraint systems. Arrays with multiple dimensions have long been used in
imperative, now object-oriented, languages. These language styles obviously
inspired OPL ([11] and [9]), a successful constraint programming system. Yet
it would be desirable to have better examples of using the multidimensional
arrays.

Such problems could also help us to evaluate the use of arc-consistency as
the objective in constraint propagation. It is now clear from our experience
that the type of consistency, that is most advantageous, depends on the
problem. Sometimes a weaker notion, such as bound or range consistency,
might suffice, for example, when applied in the early stages of solving a
problem and later replaced by full arc-consistency. Rarr provides a starting

112 S. Brand

point for obtaining the reduction rules for those consistency notions which
are subsumed by, yet very similar to, arc-consistency.

Acknowledgements. Krzysztof Apt has suggested the topic of this work and
made many helpful comments. I am thankful also to referee comments on
an earlier presentation of the subject.

References

[1] K.R. Apt. A proof theoretic view of constraint programming. Fundamenta

Informatica, 34, 1998.

[2] N. Beldiceanu. Global constraints as graph properties on structured network
of elementary constaints of the same type. Technical report, Swedish Institute
of Computer Science, Jan. 2000.

[3] B. Carlson, S. Haridi, and S. Janson. AKL(FD)-A concurrent language for FD
programming. In M. Bruynooghe, editor, Proceedings of the 11th International

Symposium on Logic Programming, Cambridge, MA, USA, 1994. MIT Press.

[4] M. Dincbas, P.V. Hentenryck, H. Simonis, A. Aggoun, T. Graf, and
F. Berthier. The constraint logic programming language CHIP. In I. for New
Generation Computer Technology (ICOT), editor, International Conference
on Fifth Generation Computer Systems, volume 2. Springer Verlag, 1988.

[5] J.N. Hooker, G. Ottosson, E. S. Thorsteinsson, and H.-J. Kim. A scheme for
unifying optimization and constraint satisfaction methods. Knowledge En-

gineering Review, Special Issue on Artifical Intelligence and Operations Re-

search, 15(1):11–30, 2000.

[6] IC-Parc. ECLiPSe. http://www.icparc.ic.ac.uk/eclipse/.

[7] ILOG. OPL Studio 3. http://www.ilog.com/.

[8] A.K. Macworth. Consistency in networks of relations. Artificial Intelligence,
8(1):118–126, 1977.

[9] L. Michel and P.V. Hentenryck. OPL++: A modeling layer for constraint
programming libraries. Technical Report CS-00-07, Department of Computer
Science, Brown University, Dec. 2000.

[10] P. van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press,
1989.

[11] P. van Hentenryck, I. Lustig, L. Michel, and J.-F. Puget. The OPL optimization

programming language. M.I.T. Press, 1999.

Constraint propagation in presence of arrays 113

enum Dz { i, j };

enum Dy { k, l, m };

enum Da { p, q, r };

Da a[Dz, Dy] = #[i: #[k:p, l:q, m:r]#,

j: #[k:p, l:q, m:r]#]#;

var Da x;

var Dz z;

var Dy y;

var Dz u;

var Dy v;

solve { v <> l; // OPL arc-consistency

a[u, v] = x; // x in { p, q, r } { p, r }

//

a[z, y] = q; // y in { k, l, m } { l }

};

Figure 2. OPL: non-applied (arrx), (arry)

enum Dy { i, j, k };

enum Da { p, q, r };

var Da a[Dy];

var Da x;

var Dy y;

solve { y = j;

x <> q; // OPL arc-consistency

x = a[y]; // a[j] in { p, q, r } { p, r }

};

Figure 3. OPL: non-applied (arra)

114

