
Bull. Nov. Comp. Center, Comp. Science, 27 (2008), 41–50
c© 2008 NCC Publisher

Equilibrium prices in economy of
the GRID resource allocation: Part two

S.V. Bredikhin, A.B. Khutoretsky, E.A. Tiunova

Abstract. We consider a market model, which has arised under conditions of
the paid usage of CPU time. A new algorithm for calculating the price of the
local (for one processor) equilibrium is offered under the assumption that the users’
preferences are described by the Cobb–Douglas utility functions. An example shows
that equilibrium in a multiprocessor system does not necessarily exist. We describe
a process, in which each job may move from one processor to another to increase
utility. This process is finite and results in a Nash equilibrium for the corresponding
game.

1. Introduction

The problem of financing the operating and development costs for a dis-
tributed information system can be solved by providing the paid services
to users. Economic mechanisms of pricing are applicable for the resource
management in these systems.

In [1], the problem of distributing the processor time in a multiprocessor
system is considered under the assumption that the users’ preferences are
described by utility functions in the Cobb–Douglas form. The authors in-
troduce definitions of the local equilibria (for one processor) and equilibria
in a multiprocessor system and offer an algorithm for calculating the equi-
librium for an arbitrary group of users at a single processor. Nevertheless,
the existence of equilibrium for the whole system remains an open question.
In this paper, the dynamic distribution and redistribution of jobs among
processors is described. The authors hazard a conjecture that this process
is finite.

Our objective is to continue an analysis of local equilibria and equilibria
in a multiprocessor system under the same assumption. In Section 2, we
construct a new algorithm for calculating the local equilibrium, which is
more convenient and better interpreted than that in [1]. In Section 3, we give
an example of a two-processor system having no equilibrium. A possibility
of such a situation stimulates an interest to other methods of an expedient
distribution of jobs among processors. In Section 4, under the assumption
that each job can move from one processor to another, if it is profitable
for the user, we show that the arising process of reallocations is finite and
results in a Nash equilibrium of the corresponding game.

42 S.V. Bredikhin, A.B. Khutoretsky, E.A. Tiunova

2. A market model

The following market model refines the one described in [2].
The supplier j ∈ {1, . . . , n} owns the processor of speed Vj (cycles per

unit period) and selects the supply qj for the next unit period. The supplier’s
cost function is Cj(qj) = cj · qj if qj ≤ Vj , otherwise Cj(qj) =∞. Let pj be
the price for the processor j’s services within a certain unit period (i.e., the
value of one cycle). The supplier maximizes the profit:

(pj − cj)qj → max s.t. qj ∈ [0;Vj]. (1)

The user i ∈ {1, . . . ,m} has a job of scope Qi > 0 and a budget
Bi > 0. For the next unit period he selects a triple (j(i), si, zi), where
j(i) ∈ {1, . . . , n} is the number of a processor for solving the job; si ∈ [0;Qi]
is the speed of the job solution; zi ≥ 0 is a remainder of the user’s budget by
the beginning of the following unit period. The user may change a processor
only at the boundary of a unit period. This move takes neither time nor
money. The user’s utility function (in the Cobb–Douglas form) is:

Ui(si, zi) = sai
i m

bi
i , (2)

where ai > 0 and bi > 0. For a price vector p = (pj)j the user i’s budget
restriction is

sipj(i) + zi ≤ Bi. (3)

It is obvious that the solution of supplier’s problem (1) is the following
point-to-set mapping Sj(pj):

Sj(pj) =

 {0}, pj < cj ;
[0;Vj] , pj = cj ;
{Vj}, pj > cj .

(4)

In other words, if the price does not cover the cost, then the supply is
absent; if the profit is positive, then the supplier would like to operate at
the full power; if the price equals constant marginal costs, then all possible
values of the supply are indifferent for the supplier.

The user i with prices p = (pj)n1 maximizes his utility function under
the budget restriction. For each j, he searches a pair (sji ,m

j
i), which is

optimal in the case of selecting the processor j. Then he selects j(i) such
that Ui(s

j(i)
i ,m

j(i)
i) ≥ Ui(sji ,m

j
i) for all j. Let us set (si, zi) = (sj(i)i ,m

j(i)
i).

At fixed j, the user’s problem has the following form: Ui(s, z) → max
subject to conditions (3) and s ∈ [0;Qi], m ≥ 0. In [1, §2.3.2] it was shown
that one can calculate the optimal pair (sji (pj),m

j
i (pj)) as follows:

Equilibrium prices in economy of the GRID resource allocation 43

If pj = 0, then (sji (pj),m
j
i (pj)) = (Qi, Bi). If pj 6= 0, then

sji (pj) =
{
Qi, pj ∈ [0; kiBi/Qi] ,
kiBi/pj , pj > kiBi/Qi,

(5)

where ki = ai/(ai + bi). Respectively,

mj
i (pj) = Bi − sji (pj). (6)

A maximum utility at the price pj is ϕi(pj) = Ui(s
j
i (pj),m

j
i (pj)):

ϕi(pj) =

{
Qai
i (Bi − pjQi)bi , pj ∈ [0; kiBi/Qi] ,

(kiBi/pj)ai((1− ki)Bi)bi , pj > kiBi/Qi.
(7)

The function ϕi(·) is continuous and monotonously decreases. Hence, the
user will choose a processor with the minimal price.

3. The local equilibrium

For any set N(j) and any p ≥ 0 let us set D(p) =
∑

i∈N(j) s
j
i (p).

Definition. The processor j is in the local equilibrium with price p and a
group of users N(j) if D(p) ∈ Sj(p).

It is easily seen that the functions sji (·) are non-increasing. In the fur-
ther reasoning, we always assume i ∈ N(j). Set L(i) = kiBi/Qi, and let
λ(1) < . . . < λ(r) be a sequence of all pairwise distinct values of L(i).
According to (5)

D(p) =
∑

{i|p<L(i)}

Qi +
∑

{i|p≥L(i)}

kiBi/p. (8)

In [1, Theorem 2] it was proven that the local equilibrium always ex-
ists, and the equilibrium distribution of the processor capacity among users
(within a unit period) is uniquely determined. In the same paper, an al-
gorithm is proposed for calculation of equilibrium for each processor j. In
a nontrivial case, when D(cj) > Vj (the processor is overloaded), the algo-
rithm includes the calculation of

pjk =

∑
{i|L(i)≤λ(k)} kiBi

Vj −
∑
{i|L(i)≥λ(k+1)}Qi

(9)

for each k ∈ {1, . . . , r}. The proof of the above-mentioned theorem shows
that in the case in question the equilibrium price exists and is unique. There-
fore, there exists a unique value k such that pjk ∈ [λ(k);λ(k+ 1)). This pjk
is just the desired equilibrium price p∗.

44 S.V. Bredikhin, A.B. Khutoretsky, E.A. Tiunova

The computational complexity of the described mechanism is propor-
tional to r, and r is no more than the number of jobs. Below we propose
another algorithm of the same complexity for calculating the equilibrium
price. This second algorithm realizes a simple idea of the proportional dis-
tribution. It is more convenient in certain cases.

4. An algorithm of CPU capacity distribution

Construction of an equilibrium in the case of D(cj) ≤ Vj (the processor j is
not overloaded) is trivial. So, consider the case

D(cj) > Vj . (10)

From now, we fix j, i.e., choose one of the processors, and omit the
index j. Let us assume that the users with numbers i ∈ N have chosen this
processor for the next unit period. At the preliminary Step 0, we set I1 = N
(a set of jobs being active at Step 1), W1 = V (the number of unallocated
CPU cycles) and qi = 0 (the preliminary distribution of CPU cycles) for all
i ∈ N .

Step k > 0. At Step k − 1, the set Ik and the value Wk were determined.
For all i ∈ Ik, set αki = kiBi/

∑
r∈Ik krBr. At the current step, the algorithm

distributes Wk among the active jobs i ∈ Ik as follows.
Calculate a preliminary distribution xki = αkiWk, i ∈ Ik. Define Jk =

{i ∈ Ik | xkj ≥ Qi} (a set of those jobs, for which the number of the prelim-
inary allocated CPU cycles covers the demand), Ik+1 = Ik \ Jk = {i ∈ Ik |
xki < Qi} (a set of jobs being active at the following step), Wk+1 = Wk−Qi.
The job i ∈ N receives the CPU capacity

qki =
{
Qi, i ∈ Jk,
xki , i ∈ Ik+1.

(11)

The procedure terminates if xki ≤ Qi for all i ∈ Ik.

For each k, let us define

pk =
∑
i∈Ik

kiBi/Wk (12)

(the price of one cycle at the step k).
Note that at Step k, we distribute Wk (the unallocated cycles) among

active jobs i ∈ Ik in proportion to the values kiBi, where kiBi, according to
(5), is the maximal resource cost acceptable for the user i.

Theorem 1. The described algorithm of the CPU capacity distribution is
finite.

Equilibrium prices in economy of the GRID resource allocation 45

Proof. Let Ms = {i ∈ Is | xsi > Qi}. The condition of stopping the
algorithm may be written down in the form Mk = ∅. Let us prove that
Mk = ∅ at some step k ≤ m, where m = |N | (the number of those users who
have selected the considered processor for the next unit period). Indeed, for
s ≥ 1, we have Ms ⊆ Js ⊆ Is and Is+1 = Is \ Js. If Ms 6= ∅, then Is+1 ⊂ Is.
Therefore, N = I1 ⊃ I2 ⊃ . . . , and so the sequence I1, I2, . . . contains no
more than |N | elements.

Lemma. A sequence of prices pk is non-increasing.

Proof. Let us write the expression for pk+1:

pk+1 =

∑
i∈Ik+1

kiBi

Wk+1
=

∑
i∈Ik\Jk

kiBi

Wk −
∑

i∈Jk
Qi

=

∑
i∈Ik kiBi −

∑
i∈Jk

kiBi

Wk −
∑

i∈Jk
Qi

. (13)

It follows from (12) and (13) that pk+1 ≤ pk is equivalent to the inequality∑
i∈Jk

kiBi∑
i∈Ik kiBi

Wk ≥
∑
i∈Jk

Qi. (14)

By definition of the set Jk, for each i ∈ Jk we have

kiBi∑
i∈Ik kiBi

Wk = xki ≥ Qi. (15)

Summing these inequalities for all i ∈ Jk we obtain (14). Consequently,
pk+1 ≤ pk.

Denote by τ the number of the last step of the above algorithm (this
step exists according to Theorem 1). Let N be a set of numbers of all
users, who have selected the considered processor for the next unit period,
J∗ = ∪τk=1Jk, W

∗ = V −
∑

i∈J∗ Qi, I
∗ = N \ J∗, p∗ = pτ =

∑
i∈I∗ kiBi/W

∗.

Theorem 2. The local equilibrium price is equal to p∗.

Proof. The user i’s demand sji (pj) for the capacity of the processor j within
the considered unit period is described by formula (5). Let us fix i. Two
cases are possible at the last step τ of the above algorithm of the CPU
capacity distribution.

1) The user i obtains Qi cycles at the step τ . Then i ∈ Jk at some
step k ≤ τ and inequality (15) holds, i.e., pk ≤ kiBi/Qi. From Lemma 1 it
follows that p∗ ≤ pk for all k ≤ τ . Hence, p∗ ≤ kiBi/Qi, and sji (p

∗) = Qi
by (5).

46 S.V. Bredikhin, A.B. Khutoretsky, E.A. Tiunova

2) The user i obtains kiBi/p∗ < Qi CPU cycles at the step τ . Then
i /∈ Jτ and (15) with k = τ is not true, i.e., p∗ = pτ > kiBi/Qi and
sji (p

∗) = kiBi/p
∗ by (5).

Thus, the CPU capacity allocated to a user by the algorithm is equal
to the demand of this user under the price p∗, and the algorithm ensures∑

i s
j
i (p
∗) = Vj (the full processor capacity is distributed). Function (8) is

non-increasing, therefore from (10) follows p∗ > cj ; then the supply is Vj
according to (4). Hence, the total demand equals the supply. Therefore, p∗

is an equilibrium price.

5. Equilibrium in a multiprocessor system

It is natural to say that a multiprocessor system is in equilibrium if

• the local equilibria are established on all processors, and

• each user is “assigned” to the same processor he would choose under
the prices of these equilibria.

At the end of Section 2, we noted that it is profitable for a user to use a
processor with the minimal price for his job. Let J(p) = {j | ∀k(pj ≤ pk)}
be a set of numbers of all such processors. The user i’s demand is described
by the set of pairs

Di(p) = {(j, sji (pj)) | j ∈ J(p)}. (16)

Definition. A price vector p = (pj)j and a partitioning (N(j))j of a set
of all jobs is an equilibrium if each processor j is in the local equilibrium
with the price pj and the group of users N(j), and (j, sji (pj)) ∈ Di(p) for
all i ∈ N(j).

It was shown in [1, §2.4] that being in equilibrium, the prices pj coincide
for all j such that N(j) 6= ∅. That is, all jobs are served at the uniform
equilibrium price p∗. In addition, from N(j) = ∅ it follows that p∗ ≤ pj ≤ cj .
This means that in equilibrium the processors with high operating costs are
not used if all jobs can be served at a lower price. The fact is, we do not
know the existence conditions for equilibria in multiprocessor systems.

6. The Nash equilibrium

Functioning of a multiprocessor system can be described as follows.
At the moment when a new job (with number s) appears, the other jobs

are distributed among processors yet. Let N(j) be a set of all jobs assigned
to the processor j and being not completed during the current time unit.
The job s chooses a processor and capacity for the next time unit. The
rule of choosing follows from the fact that the function ϕi(pj) defined at the

Equilibrium prices in economy of the GRID resource allocation 47

end of Section 2 is decreasing (see (7)): the job prefers the processor j, for
which the price of the local equilibrium with a group of users N(j) ∪ {s}
(if the job j chooses the processor j) is minimal. It may be supposed that the
system defines this price itself (for example, by application of the mechanism
described in Section 4) and, respectively, allocates the job (such an allocation
does not contradict to the user’s preferences). Nevertheless, after the job s
is allocated to the processor j with a new price pj of the local equilibrium,
it may turn out that some job i ∈ N(j) “wants” to move to the processor
k 6= j, because the local equilibrium price for the processor k with a set of
jobs N(k) ∪ {i} is less than pj .

To formulate the process of jobs reallocation among processors (a moving
process), in any case, the equilibrium price should be uniquely determined.
Let Pj(M) be a set of local equilibrium prices for the processor j with the
set of jobs M . It is proved in [1, Theorem 2] that Pj(M) 6= ∅ for any M and
the equilibrium price is ambiguously determined only in the following two
cases:

(A) If M = ∅ and cj > 0, then Pj(M) = [0; cj].

(B) If
∑

i∈M sji (cj) = Vj and cj < min{kiBi/Qi | i ∈ M} = λ, then
Pj(M) = [cj ;λ].

To check, whether a job i ∈ N(j) passes to the processor k 6= j, it is
necessary to compare pj(N(j)) and pk(N(k) ∪ {i}). In this case, N(j) 6= ∅
and N(k) ∪ {i} 6= ∅, therefore we do not need to consider the case (A).
Nevertheless, for completeness assume pj(∅) = cj . In the case (B), we choose
the minimal equilibrium price cj , since it stimulates reallocation of jobs to
those processors, which are less loaded and have lower starting prices. In
other words, in the case cj ∈ Pj(M), we set pj(M) = cj . Using this definition
of pj(M) we prove the finiteness of the moving process.

Theorem 3. If the equilibrium price at each processor j for any set of jobs
M takes the value pj(M), and a set of all jobs is invariable, then the moving
process is finite.

Proof. Assume that jobs are distributed for the nearest unit period. All
new jobs have come to the system and all completed jobs have left it be-
fore starting the moving process. The number of jobs allocations among
processors is finite. A uniquely defined vector of the equilibrium prices
p = (pj(N(j))j corresponds to each distribution (N(j))j . Therefore, a set of
possible equilibrium prices is finite. Let us arrange these values in increasing
order: π1 < π2 < . . . < πr−1 < πr. Let mk be a number of all jobs using
the processors with prices of the local equilibrium higher than πk. Let us
consider the processor a with the price of the local equilibrium πk and a set
of users N(a). We assume the job s to move from the processor a to another

48 S.V. Bredikhin, A.B. Khutoretsky, E.A. Tiunova

processor b. Then pb(N(b) \ {s}) < πk (otherwise the job s would not move
to the processor b). After the movement of the job s, the price for services
of the processor a will decrease to adapt to the set of jobs N(a) \ {s}. It
is clear that pa(N(a) \ {s}) < πk if πk > ca, and pa(N(a) \ {s}) = πk if
πk = ca. In any case, the number of users served at prices not lower than πk
will decrease. Therefore, no more than mr reallocations will occur, where
m is the number of jobs, and r is the number of equilibrium prices pj(M)
(for all M).

The job moving process results in the final distribution when none of
the users want to change a processor. This distribution is not necessarily
an equilibrium one in terms of the definition given in Section 5. But it is a
Nash equilibrium in the following game form.

The players are m users and n suppliers. Each user wants to execute
one job, each supplier has one processor. Let N be a set (of numbers) of
all players, |N | = m + n. The user i ∈ {1, . . . ,m} reports to the system
the volume Qi of his job and willingness to pay kiBi; the supplier j ∈
{m+1, . . . ,m+n} reports the processor capacity Vj (cycles per unit of time)
and the reservation price cj . User i chooses a number j(i) ∈ {m + 1, . . . ,
m + n} of the processor, which he wants to use within the nearest unit
period; supplier j chooses the capacity yj ∈ [0;Vj] he would like to place at
the disposal of the system for the same period. Thus, the strategy zk of the
player k is j(k), if 1 ≤ k ≤ m, and yk if m < k ≤ m + n. The situation
or the strategy profile is a vector z = (z1, . . . , zn) including one strategy for
each player. Given the strategy profile, the users pay for resources at the
prices of the corresponding local equilibria (see Section 3).

Now let us define the payoff functions. Given the strategy profile z, let
Nj(z) = {i | 1 ≤ i ≤ m, zi = j} be a set of all users choosing the processor
j in the situation z. For each j ∈ {m+ 1, . . . ,m+n}, the system calculates
the local equilibrium price pj = pj(Nj(z)) ≥ cj for the maximal possible
supply Vj and the group of users Nj(z). If the demand for the processor
j capacity under the price pj is not equal to the supply yj (corresponding
to situation z), then the gains of supplier j and all the users i ∈ Nj(z)
are equal to zero, Fj(z) = Fi(z) = 0. Otherwise, according to (1), (7), the
supplier’s gain equals his profit, Fj(z) = (pj − cj)yj , and the user’s gain
equals the obtained utility, Fi(z) = Ui(s

j
i (pj), Bi − pjs

j
i (pj)) for i ∈ Nj(z).

Let us denote by z−i the collection of all players’, except the player i,
strategies in the situation z. Then z = (zi, z−i). If in the situation z0, there
are Fi(z0

i , z
0
−i) ≥ Fi(zi, z0

−i) for each i and any strategy zi of the player i,
then z0 is a Nash equilibrium.

To each step of the moving process there corresponds some distribution
(N(j))j of the jobs among processors. In turn, each distribution (N(j))j
creates the strategy profile z in the considered game as follows.

Equilibrium prices in economy of the GRID resource allocation 49

For all i (1 ≤ i ≤ m) we set zi = j, if i ∈ N(j). Then, knowing the
sets N(j), we calculate the local equilibrium prices pj = pj(N(j)) for all
processors. At these prices each supplier j (m < j ≤ m + n) chooses the
supply Sj(pj) according to (4); we set zj = Sj(pj).

Theorem 4. The strategy profile that corresponds (as described above) to
the final distribution of the moving process is a Nash equilibrium in the
considered game.

Proof. Let (N(j))j be the final distribution of the moving process and z
is the corresponding strategy profile. Let us show that it is not profitable
for each player i to deviate from the strategy zi if all other players k 6= i
choose strategies zk. Let pj = pj(N(j)) be the local equilibrium price for
the processor j. It follows from the definition of pj(M) (in the beginning of
this section) that pj ≥ cj .

If pj = cj , then all possible values of yj give zero profit to the supplier
j, and rhus zj is one of his best responses to the other player’s strategies.
If pj > cj , then supply yj = Vj corresponds to the local equilibrium for the
processor j, so, zj = Vj ; just this strategy will be chosen by supplier j, since
it maximizes his profit, see (1). Therefore, the supplier is not interested in
deviation from the strategy zj .

Let j(i) be the number of a processor, for which the job i is assigned
in the considered final distribution. The user i’s payoff function Fi(z) is
his indirect utility function, it depends only on the equilibrium price for the
processor j(i) and does not increase in price (see, e.g. [3, proposition 3.D.3]).
If the moving process is completed, then the reallocation of any job i subject
to an invariable allocation of all other jobs will not result in a decrease of the
equilibrium price, by which the job i will be served. Therefore, the player
i’s payoff function will not increase, and so the consumer i is not interested
in deviation from the strategy zi = j(i).

Therefore, for each player k, the strategy zk is one of the best responses
to the other players’ strategy profile, so, z is a Nash equilibrium.

The statement, converse to Theorem 4, is evident: if the moving process
starts with the distribution of jobs corresponding to a Nash equilibrium,
then no movements will occur and the initial distribution is also the final
one.

7. Conclusion

The equilibrium allocation in a single-processor system gives, in fact, a
schedule of the jobs execution. In a multiprocessor system, it is possible
to use the local equilibrium prices for an expedient time distribution by, for

50 S.V. Bredikhin, A.B. Khutoretsky, E.A. Tiunova

example, the moving process described in this paper. This process results
in a Nash equilibrium.

References

[1] Bredikhin S.V., Khutoretskiy A.B., Savchenko I.Yu., Vyalkov I.A. Two models
of adjusting for distribution of computational resources // Siberian J. Industrial
Math.–– 2006. –– Vol. IX, No. 1 (25). –– P. 28–46 (In Russian).

[2] Bredin J., Kotz D., Rus D. Utility Driven Mobile-Agent Scheduling.–– Hanover
(Germany): Dartmouth College, 1998. –– (Technical Report; PCS-TR98-331).

[3] Mas-Colell A., Whinston M.D., Green J.R. Microeconomic Theory. –– Oxford
(USA): Oxford Univ. Press, 1995.

