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Equilibrium prices in economy of the GRID
resource allocation: Part one

S.V. Bredikhin, A.B. Khutoretsky

Abstract. In this paper, we consider Computational Grid as market of the two
commodities: CPU time and disc storage. Market agents are suppliers and users
(consumers). The suggested market model refines the model proposed by R. Wolski
et al. For the refined model, we discuss the possible application of the price-
adjustment mechanism elaborated by J. Ma and F. Nie.

1. Introduction

We consider a computational Grid (Grid thereinafter). We assume that users
pay for the Grid resources. These payments should cover, as a minimum, the
maintenance and development costs. The more is resource’s utility for the
user, the more is the user’s willingness to pay. Therefore, suppliers will have
incentive to increase supply of more useful resources. Prices generate fair
rules of access to the Grid resources. Equilibrium prices equalize demand
and supply, thus making it possible to obtain a feasible resource allocation
as a result of decentralized decision making by market agents [1].

Under this approach, the resource management system (RMS) should be
driven primarily by the users’ tendency to a maximum utility and suppli-
ers’ tendency to a maximum profit, while technical criteria (as average resi-
dence time) become essentially less important. Hence, the minimal “market”
role of RMS is in creation of infrastructure that would allow both suppliers
and users (to be exact, their representatives program-brokers) to “find each
other” and agree on volumes and prices of transactions. Such an approach
is proposed, for example, in [2].

Many authors give the RMS a more active role. They assume that
program-broker, that represents a market agent, “knows” his budget re-
striction and preferences on a set of resource bundles. Interacting with
program-brokers, the RMS can compute, if possible, the equilibrium prices.
Then “brokers” detect demand and supply at these prices. If mutually dis-
joint optimal resource bundles can be chosen for all market agents (in a
decentralized way or with participation of the RMS), then an equilibrium
allocation will be attained.

Such a market model of CPU time and disk storage allocation is proposed
in [3, 4]. Here we analyze and modify this model. Next, based on [5], we
propose an approach to calculate prices and discuss some related problems.
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2. Initial model

Let us briefly describe the market model proposed in [3, 4]. Each consumer
expresses his demand in the form of “jobs”. A job description specifies
size and occupancy duration for each required resource. Each consumer is
endowed by a budget, which is periodically renewed. However, “money” not
spent during the current period cannot be used to pay for resources in the
next period. These conditions stimulate full spending the current budget
and using the system resources for jobs of minor importance at the end of
the budget period, instead of saving money and priority execution of the
most important jobs.

When a user wishes to purchase resources for a job, he indicates the
required size of each commodity, but not the duration. At the time a supplier
agrees to sell, he fixes a price that will be charged to the user until the job
completes [3, p. 757]. Such a forward contract with an indefinite term of the
resource supply at a fixed price seems unrealistic.

Instead of the users’ utility functions, the authors suggest the following
algorithm to calculate an individual demand function at the current price
vector p(t).

At each time, the consumer has a queue of non-started jobs. At the
beginning of the unit period [t,¢ + 1), he calculates C1 = (Y, wipi(t))/t
and Cy = I(t)/(Ty — t), where w; is the total amount of the resource ¢ used
by the consumer from some initial moment 0, p;(¢) is a current price of the
resource ¢, I(t) is a current budget of the consumer, and 7} is the nearest
time of budget replenishment.

Here C1 is average expenditures (per time unit) that the consumer would
have in the period t if he always purchased resources at current prices;
(5 expresses maximal expenditures per time unit, which are possible for the
user in the period [t,T}) at uniform money expending. If C; > Cj, then
demand is equal to zero. Otherwise, the user “demands as many jobs from
the queue as he can afford” [3, p. 759]. The question arises: whether such a
demand function reflects the rational user’s preferences?

Let us assume that there is only one resource in the market and the
first job in the queue requires 10 units of this resource. Let I(1) = 30 and
Ty, = 3. Assume that the user has purchased 10 units of the resource during
the period [0,1). Then, at time 1 at price 2, we have C; = 20 > Cy = 15,
the demand is zero. After this I(2) = 30, and the user has purchased the
same 10 units of the resource during the period [0,2). At moment 2 at price
3, we have 'y = 15 < C5 = 30, so the job should be included in the demand.
Hence, the user prefers the execution of the job later and at a higher price.
Such a preference pattern does not seem to be highly rational.

There are two commodities in the market studied in [3, 4]: the CPU time
and disk storage. A memory supplier has a certain number of “files” of a
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fixed size for sale; the following algorithm describes its supply function. At
the moment ¢, each supplier calculates his average income from one file per
time unit during the period [0,t): C = R/(tS), where R is the total revenue
obtained by this supplier in the same period. If the current price is smaller
than C, then the supply is zero. Otherwise, a supply in the period [t,t 4 1)
includes all the files intended for sale.

The unit of CPU time is “slot”, a certain number of CPU cycles, the
processor speed share. Each CPU supplier owns one processor and agrees
to sell to the Grid no more then N slots. To determine supply at the given
price and time, each CPU calculates C' = R/(tN), where R is defined as
above. If the current price is less than C', then the supply is zero. Otherwise
supply in the period [t,¢ + 1) includes all N slots.

With such definitions of supply, it is easy to construct situations in which
a supplier behaves irrationally: prefers to sell later and at a smaller price.

3. A modified model

Let us modify the original market model to eliminate some of its drawbacks
noted above. We consider the period [1,T], where T is sufficiently large.
The unit period [7 — 1,7) will be called “moment 77.

3.1. Agents and goods. There are I = Iy + Ic + Ij; agents on the
market: users indexed by 1, ..., Iiy; the CPU time suppliers indexed by Iy +
1,..., Iy 4 I¢; and the disk storage suppliers indexed by Iy + Ig+1,...,1.
Let us assign the numbers 1,...,J = I + Ip to resources, assuming that a
resource j is owned by the supplier j+ Iyy. The supplier s (I < s < I) owns
V() units of the corresponding resource at each moment. In particular, for
suppliers of CPU time, this means that processors have, generally speaking,
different clock rates and, hence, provide different amounts of slots per time
unit.

It is convenient for further reasoning to “individualize” the resource
units: let us assign the numbers k € {1,...,V(s)} to units of the resource
owned by the supplier s; “the unit resource (j, k, 7)” is abbreviation for “unit
k of the resource j at the moment 7”. Now any collection A of resources
with timing can be represented by a characteristic vector

x=a(A) = (zj(r) [1<j<J, 1<k<V(i+1Iy), 1<7<T),

where xj;,(7) = 1 if the unit resource (j, k, 7) is included into A, and z (1) =
0, otherwise. Let x represent the set A in the above sense, and let Dﬁ(m)
be the amount of the resource j at the moment 7 included into A. Then

V(i+Iv)

DE(@)= > ajpr(r).

k=1
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3.2. Suppliers. When allocating a resource unit per unit period to a user,
the supplier s bears the maintenance costs ¢ > 0. He chooses a vector
q° = (¢2)I_, (¢S is a supply at the moment 7) and a number m; (demand
for money); ¢ < V(s). A utility function of the supplier s describes his
profit in the period under consideration:

Us(qsams) = MmMs _CSZQf-- (1)

At the prices p = (pj(7) | 1 < j < J, 1 <7 <T), the supplier s has the
budget restriction

mg < ij(T)Qi7 (2)

where j = s— Iy: the amount received cannot exceed the total revenue from
the resource sales.

A supplier’s demand set is defined as follows. Suppose that, when offering
g: resource units at the moment 7 to users, the supplier s thus presents
the demand for the remaining V(s) — ¢¢ units. The binary vector x of
appropriate dimensionality is a characteristic vector for a resource bundle
of the supplier s, if and only if for all 7

DE (@) € 0,V(s)] if j=s— T

(3)
DjRT(:I:) =0 otherwise.
(the supplier demands only his own resource). The demand set X of the
supplier s is a set of all vectors satisfying (3).

3.3. Consumers (users). The user i wishes to execute one job (with
number ¢). The job ¢ requires K; units of the CPU time (slots) to be
completed. Also, it requires M; memory units (files) at each moment from
start to completion. The set of resource units used by a job does not change
during each unit period, but the job can use different resource units at
different unit periods. The change of resources happens, if necessary, on the
border of a unit period immediately and free of charge. At each moment,
the job can use files from different suppliers, but only one processor.

The user 7 assigns the sum B; (budget) for execution of his job. He
chooses a resource bundle (which corresponds to some characteristic vec-
tor ') and a number m; (demand for money). Zero vector signifies the
refusal to execute the job. The vector 2 specifies the demand D¢ (") for
the CPU time and the demand DM (z?) for disc storage at each time 7:

Ic J
DC(a’) =S DE(z);  DM()= 3 DE().
Jj=1 Jj=Ilc+1
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The job i is executed at the moment 7 according to the plan x? if it
uses a processor: DC(x') > 0. Let us describe the set X; of all vectors
x' corresponding to the resource bundles admissible for the user i. The
moments of start and completion of the job i according to the plan x* will
be denoted by tV(x?) and t!(x?), respectively; t! (') = +0o means that the
job 7 could not be completed in the period [0, 7.

L If 32, DY (')

x' € X;; set t9(xf)

= 0 (the job is not executed in the period [0,77]), then
t(

z') = +o0.

2. Assume that > DY(x?) > 0. Then the value t’(z') = min{r |
DY (x) > 0} is determined.

2.1. If there are no t € [tY(x"), T] such that

t

> DY) > K;; (4)

T=t0(x?)

DM(z') > M;, Ve[, 1]; (5)

DE(x')>0— D (z") =0, Vje{l,....Ic},
Vke{1,.... I3\ {j}, Vre[t’(@),1],

then =’ ¢ X;; set t!(z?) = +oo. Condition (4) means that the job receives
sufficient CPU time in the period (t°(x*) — 1,#]. Condition (5) requires that
the job have enough memory for this period. Condition (6) forbids the job
using more than one processor at each moment 7 € [t9(x?),t].

2.2. There exist t € [t9(x?), T) satisfying (4)-(6). Then x' € X;; set
t!(x") equal to the least one of such t.
The utility function of the user ¢ is quasilinear. It has the form

Ui(z',m;) = wi(x") + my, (7)

where u;(z%) = g;(t'(z%)) and g;(7) is a pecuniary valuation of utility for
the user the job completion at the time 7. Let us assume that the function
¢i(7) is monotonically decreasing and tends to zero as 7 — 400.

At the prices p = (pj(7) |1 < j < J, 1 <7 <T), the user i has the
budget restriction

mi+ " DR @)y (7) < B ®)
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3.4. Equilibria. The supplier s at the prices p maximizes function (1)
subject to conditions (2) and 0 < ¢¢ < V(s) for all 7. Let j = s — Ip.
Constraint (2) is active at optimum: my = Y _p;(7)g;. So, the supplier’s
problem takes the form

> (pi(r) = c)gf > max st 0< g <V(s), Vr. (9)
=
As described in Subsection 3.2, each vector g° represents a resource bun-
dle of the supplier s. Some characteristic vector ® € X, in turn, corre-
sponds to this resource bundle (see Subsection 3.1). Then

Y (1) =gz =Y (pj(7) = es)(V(s) — Dji(a”))

T T

= C + ug(x®) — ij(T)Dﬁ(ws)>

where the constant C' = Y (p;(1) — ¢5)V(s) and us(x*) = ¢, Y. DE(z*).
Therefore, (9) is equivalent to the following problem:

0y(@,p) = uy(2*) — 3 py(r) D (2°) — max
T (10)
st. 0< Dﬁ(azs) <V(s), V.

Let Ds(p) denote a set of all solutions to this problem. Then p — Ds(p)
is a supply correspondence for the supplier s € {Iyy +1,...,1}.

The user i at the prices p solves the problem of maximizing function (7)
at conditions (8) and x' € X;. Budget restriction (8) should be active in
any optimal solution. The substitution m; = B; —3_, DJRT(aci)pj(T) in (7)
after constants elimination yields the following problem:

vi(@’,p) = uil@) = 3 DR (a')py (r) — max
71,7 (11)

st. z' e X;.

Let D;(p) denote a set of all solutions to this problem. Then p — D;(p)
is a demand correspondence for the user i € {1,...,Iy}.
Set e = (1,...,1). A pair (x,p) is an equilibrium if

@ = (x')] € Di(p) x ---x Dr(p) and Y ' =e.

In this case, « is an equilibrium resources distribution and p is an equilibrium
price vector.

In other words, specification of a demand vector for each market agent
gives an equilibrium distribution if it is feasible (each resource unit at each
moment is allocated to just one agent, either to the user or to the resource
owner) and provides each agent with a maximum utility within his budget
restriction at some (equilibrium) prices.
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4. The price adjustment mechanisms

The best-known model of detecting equilibrium prices is the Walras—Samuel-
son process [6, p. 2]. It assumes the existence of a certain central player,
the “Walrasian auctioneer” [7, p. 746]. Market agents, knowing the cur-
rent prices vector p, inform the auctioneer about their demand / supply vec-
tors. The auctioneer calculates the vector E(p) of an aggregated excess
demand (demand minus supply). He increases the price of the commodity 4
if E;(p) > 0 (the demand is greater than the supply) and decreases it if
E;(p) < 0. It is a tatonnement mechanism: transactions take place only at
equilibrium prices (when E;(p) = 0).

4.1. The Euler scheme. A version of this process in continuous time is
described by the Fuler vector differential equation

p=E(p). (12)

Let p(t) be a solution to (12). The limit p(t) at ¢ — 400 exists and gives
the equilibrium prices (see [8, 9]) if the function E satisfies the condition of
“gross substitutes”:

<0, Vi
opi Op;

>0, forij. (13)

Condition (13) means that the markets of different commodities are tightly
related: the price increase on the market immediately causes a money out-
flow from this market, and some part of this money comes to the market
of each commodity j # . If (13) is not satisfied, then process (12), gener-
ally speaking, does not converge [10]. There is an essential complementarity
of resources in the considered model (see Section 3), so (13) is not indeed
fulfilled.

4.2. S. Smale’s scheme and its use in [3, 4]. A more universal mech-
anism is given by Smale’s scheme

Je(p) - p=—-AE(p), (14)

where Jg(p) is Jacobian of the vector-function E(p). If an excess demand
function F is twice continuously differentiable and satisfies some additional
technical conditions, then process (14) converges to equilibrium prices [13].
This mechanism is tdtonnement as well. The discrete version of (14)

Je(p(t) - Ap(t) = —E(p(t)) (15)

is used in [3, 4]. The authors propose to calculate an excess demand at a
moment ¢ (on the basis of the current prices), and then find the prices for
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the next moment by solving equations (15). But a demand function in their
model is defined in such a way (see Section 2), that an excess demand at each
moment should depend on prices and volumes of the preceding transactions.
Hence, some resources were distributed and used outside the equilibrium.
This means that some non-tdtonnement mechanism but not Smale’s one is
realized.

Also, it should be noted, that the approach suggested in [3, p. 760]to
approximation of derivatives of the function E with respect to prices in
(15) seems unconvincing, and we do not know a satisfactory solution to this
problem.

4.3. J. Ma and F. Nie’s mechanism. In [5], the model of the market
of indivisible goods is studied under the following assumptions: there is
exactly one (indivisible) unit of each commodity in the market and the
market agents’ utility functions are quasilinear. For economics, the authors
offer a pricing mechanism (MN-mechanism), which generalizes the discrete
form of the Euler scheme (12). It consists in the following.

Let us arbitrarily fix a number b > 0 and divide the segment [0, b] into
n equal intervals of the length A,, = b/n by points ty = 0,¢1,...,t, = b
(the partition uniformity is not significant; we suppose it for simplicity).
Let us also fix an arbitrary price vector py > 0 and set p(0) = po. For all
le{l,...,n}, we calculate

p(t1) = p(ti1) + An[f(p(ti-1)) — €], (16)

where f(p) =), fi(p), fi(p) is any convex linear combination of optimal
resource vectors of the agent ¢ at prices p, and all components of the vector
e are equal to unity. For a market of the considered type, the term f(p)—e
generalizes an excess demand at the prices p.

After completing calculations by formula (16), we obtain the vector-
function p,(t) defined at the points ¢;. The following results were proved
in [5]:

1. A sequence of the functions p,(¢) uniformly converges to a certain
function p*(t) defined on the interval [0, b].

2. At any choice of po and f(-) in (16), the vector p*(b) approximates
equilibrium prices, in a sense, as close as possible.

3. If equilibrium exists, then p*(b) is a vector of equilibrium prices.

Thus, the sequence p, (b) converges in any case to a “good” system of prices
p*(b).

One can easily verify that the market model described in Section 3 (called
“model G”) is a special case of the “economy” considered in [5]. However, the
use of the MN-mechanism to allocate resources in the model G encounters
serious technical difficulties, which will be discussed below.
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5. Applying the MN-mechanism to model G

The MN-mechanism considers each resource unit as an independent “unit
resource”. Therefore, a price vector in the model G must be of the form
p= (p;k) jk,rs Where p7, is the price of the unit resource (J, k, 7). Assuming
that different units of the resource j at the moment 7 can have different
prices in the model G, we obtain a “disaggregated” model denoted by DG.
Problems (10) and (11) for the model DG have the form

vs(x®,p) = us(x®) = Y pjasy(r) — max
k,T

(17)
st. 0< Z:Ejk(T) < V(s), V1, where j=s— Iy,
k
and, respectively,
vi(@', p) = ui(w') — Z x;k(T)p;k — max
GobT (18)

st. x'e X;.

Theorem. If (x,p) is an equilibrium in the model DG, then there exists a
vector of prices P, such that (x,p) is an equilibrium in the model DG and
ﬁ;k does not depend on k (the prices of all units of the resource j at the
moment T are equal).

The proof of this theorem (see [11]) gives an efficient method for con-
structing the price system p. It is clear that p gives equilibrium prices for
the model G, that is, if DG has an equilibrium, then G has an equilibrium
as well. The reverse is also certainly true. However, an equilibrium for DG
is not necessarily an equilibrium for G.

Equations of system (16) for the model DG take the form

Pie(t) = Pl (ti-1) + Anlfie(P(ti-1)) — €], (19)
where f7, (p) is a corresponding component of the vector-function f(p).

5.1. Choosing the functions f(:). The easiest way of fixing the func-
tions f(:) is to select x'(p) € D;(p) for each p and i, and set f(p) =
fi(p) = >, x'(p). Then, to realize procedure (16), one should be able to
find solutions to both problems (17) and (18) for any p.

At such a choice of the function f(-), the prices of different units of the
same resource at the same moment can differ both during the process and
in the limit. If an equilibrium exists and the corresponding prices are con-
structed, we will be able to “correct” them in accordance with the theorem.
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If there is no equilibrium or we have not found a good approximation to
equilibrium prices, two units of the same resource at the same moment are,
nevertheless, equivalent for all market agents, and it is desirable that their
prices should be equal. We propose to provide such an equality at all iter-
ations of the MN-mechanism by choosing the function f(-) in the following
way.

For any p, let 2°(p) be equal to the arithmetic mean of all terms of D;(p)
(this is a finite set) and set f(p) = fo(p) = >, '(p). Then fx(p) in (19)
is equal to the frequency V;-'k of occurrence of the unit resource (j,k,7) in
the consumption bundles from D;(p). Hence, to realize the MN-mechanism,
it is sufficient to know, at each iteration, the number of optimal resource
bundles n(i) for each market agent i and the number m(i, j, k,7) of the
optimal resource bundles including the unit resource (j,k,7) (for all 4, j,
k, 7).

Let us assume that the price vector p(t;_1) provides a uniform price of
the resource j at the moment 7 for all j and 7 (p},(t;—1) does not depend on
k). Then the replacement of the unit resource (7, k1, 7) by the unit resource
(4, k2, 7) does not change utility of a resource bundle for a market agent.
Thus, the values m(i,j, k,7) do not depend on k; then f7 (p) and p(t)
in (19) do not depend on k, too. In other words, if f(-) = fa2(-) and the
initial price vector p(0) provides uniform prices, then uniformity of prices
is maintained at all iterations. In particular, one can set p]Tk,(O) = ¢, for
s = j+ Iy (the price of each resource unit is equal to the put-up price of the
supplier). In this case, all equations in (19) corresponding to given j and 7
are identical; it is sufficient to keep only one of them.

5.2. Selecting the optimal resource bundles for market agents. It
follows from the preceding section that implementation of the MN-mech-
anism requires (depending on the choice of the function f(-)) either one
element from each D;(p) or the frequency of occurrence of each unit re-
source in the consumption bundles from D;(p) (1 < i < I). In addition,
when the prices p* are found, it is desirable to have full descriptions of the
sets D;(p*).

Problem (17) can be easily solved. Let us fix s and p, and set j = s—Iy.
Substituting the expression for us (see Subsection 3.4) into (17), we reduce
this problem to the following form:

D (e —php)aip(r) » max st 0< Y al(r) < V(s), V.
k,T k

Let K+, K—, and K° be a set of unit resources (j, k, 7) such that Pj > Cs,
p}k < ¢g, and p}k = ¢s, respectively. Then each resource bundle in Ds(p)
does not include the unit resources from K, but includes all unit resources
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from K~ and some resources from K°. The number of such bundles is 2/& 0‘,

and each unit resource from K participates in half of them. Hence, Vi is

equal to 0, 1, or 0.5 if the unit resource (j, k,7) belongs to K+, K~, or K°,
respectively.

Let us consider problem (18). Apparently, it is an awkward combinatorial
problem in the general case. However, the problem can be considerably
simplified if we assume, for instance, that each job is either not executed or
executed at a constant speed and without interruptions.

Let us make another simplifying supposition: all processors are identical,
and each of them can provide only one slot per unit time. This means that
V(s) = 1 for Iy < s < Iy + Ic. An algorithm to solve problem (18)
providing this assumption is described in [11]. This algorithm makes a
partial enumeration of integer-valued pairs (a,b), 1 < a < b < T. It allows
us to find an optimal solution in a reasonable time. However, the calculation
of the number of optimal bundles and, moreover, listing all such bundles,
generally speaking, result in exponential complexity.

6. Conclusion

Let us assume that we have constructed the limit vector of prices p*, using
the MN-mechanism. To allocate resources at these prices, it is necessary
to describe the sets D;(p*). If all of them are single-element sets, then an
equilibrium exists (see [5, Theorem 8]). One can obtain the corresponding
resources distribution by allocating resources to each market agent ¢ accord-
ing to the unique demand vector included into D;(p*). With multi-element
sets D;(p*), the distribution of resources becomes a difficult combinatorial
problem, even if an equilibrium exists.

The literature gives many examples of the absence of equilibrium in the
markets of indivisible goods. It might be supposed that in our model, as
well, the indivisibility of files and slots will make an exact equality between
demand and supply a rare fact. Therefore, the statement of the problem
of resources distribution at prices p* should take into account the fact that
these prices, possibly, do not equilibrate the market.

The problem can be formulated as follows. A system (D; | ¢ € I) of
families of subsets of a certain finite set (of resource units) M is given. It
is necessary to construct a set of pairwise disjoint terms of the set |J, D;
containing no more than one representative from each D; and maximal in
a certain sense (for example, in the number of subsets, in the union of
subsets power, or in the aggregate priority of the “represented” numbers 7).
If equilibrium exists, then this set determines the equilibrium distribution.

It should be noted that the proposed model does not fully reflect the Grid
dynamics. The allocation problem discussed is dynamic in that it gives the
timing of jobs execution. We assumed, however, that sets of jobs and unit
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resources do not change. This is not the case in reality, and the resources
have to be redistributed time from time due to appearance / disappearance
of users and/or suppliers. The following proposal is obvious: the system
gathers requests for the jobs execution in the period [t, 00) up to the moment
t —e, and distributes the resources for these jobs during the interval [t —e, t).
However, the solution to the resources distribution problem can require so
many resources that there will be nothing to distribute. It is possible that a
quick procedure like auction would be more adequate to the situation being
considered.
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