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Domain-specific transition systems and their
application to a formal definition of a model

programming language∗
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Abstract. The paper presents a new object model of domain-specific transition
systems, a formalism designed for the specification and validation of formal meth-
ods for assuring software reliability. A formal definition of a model programming
language is given on the basis of this model.
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1. Introduction

Assuring software reliability is an urgent problem of the theory and practice
of programming. Formal methods play an important role in solving this
problem. Currently, there are quite a lot of reliable software development
tools based on formal methods. They cover many aspects, from design and
prototyping of software systems to their formal specification and verification.

However, while in the Semantic Web there is a tendency to integrate
heterogeneous data and services, in the reliable software development we are
still dealing with a set of separate tools, each of which covers only certain
specific aspects of the development and, as a rule, is designed for use only
with a small number of computer languages. The gap between the great
potential of formal methods and, with a rare exception, toy examples of
their application is also noticeable [11]. Among the obstacles that prevent
a widespread introduction of formal methods to software development, we
note the difficulties to master them, the high price of their introduction, and
the fact that the software engineers and programmers are skeptical about
them. Insufficient attention is also focused on the technological aspects of
the development of formal semantics of computer languages, which plays an
important role in assuring the software reliability.

A unified approach to assuring the software reliability which covers the
stages of software development such as prototyping, design, specification, and
verification of software systems was proposed in [10, 6, 2]. This approach
was also used to develop a formal operational semantics and safety logic
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(a variant of axiomatic semantics) of computer languages [5]. It is based
on a special kind of transition systems, domain-specific transition systems
(DSTSs).

DSTSs can also be considered as “technological” abstract state machines
[8], in which the rules for defining the states and the transition relation are
explicitly specified. In this case, DSTSs provide a higher level of abstrac-
tion in specifying software systems in comparison with the implementation
languages of abstract state machines ASML [7] and XASM [9].

The Atoment language for specification of DSTSs and the sublanguages
for specification of particular kinds of DSTSs focused on solving the tasks
of reliable software development were presented in [6, 4, 3]. The Atoment-
oriented object model of DSTSs was presented in [1]. In this paper, we
describe the language-independent object model of DSTS and apply it to
define formally a model programming language.

2. Preliminaries

Let int, nat, and bool denote the set of integers, the set of natural numbers,
and the set {true, false}, respectively.

Let Set∗ denote the set of all finite sequences consisting of the elements of
a set Set, Set+ denote the set of all finite nonempty sequences consisting of
the elements of Set, and pset(Set) denote the set of all subsets of Set. Let
empseq denote the empty sequence, and El1 . . . ElN denote the sequence
consisting of the elements El1, . . . , ElN . Let len(Seq), Seq.I, first(Seq),
and last(Seq) denote the length of a sequence Seq and its I-th, first, and
last elements, respectively.

Let Set → Set′ denote the set of all functions from Set to Set′, and
Set →t Set′ denote the set of all total functions from Set to Set′. Let
dom(Fun) denote the domain of a function Fun, and und denote the inde-
terminate value. We assume that Fun(Arg) = und, if Arg /∈ dom(Fun).
Let dom(Fun) ∩ dom(Fun′) = ∅. The union Fun ∪ Fun′ of the functions
Fun and Fun′ is defined as the function Fun′′ such that dom(Fun′′) =
dom(Fun) ∪ dom(Fun′), Fun′′(Arg) = Fun(Arg) for Arg ∈ dom(Fun), and
Fun′′(Arg) = Fun′(Arg) for Arg ∈ dom(Fun′). Let range(Fun) denote the
range of Fun, i.e. the set {Fun(Arg) | Arg ∈ dom(Fun)}. Let graph(Fun)
denote the graph of Fun, i.e. the set {(Arg, Fun(Arg)) | Arg ∈ dom(Fun)}.

The boolean function odif is defined as follows: odif(Fun, Fun′, Set) =
true if and only if Fun(Arg) = Fun′(Arg) for Arg /∈ Set. Thus, the values
of the functions Fun and Fun′ may differ only at the elements of Set.

We say that Set is defined by the functions Fun1, . . . , FunN , if
dom(FunI) = Set for each 1 ≤ I ≤ N , and information about Set is specified
only by these functions. For simplicity, we will omit the only argument of
these functions where it will not cause collisions. For example, we can write
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Fun1 instead of Fun1(El) for some implicit argument El ∈ Set.

3. The main concepts of the theory of domain-specific
transition systems

The set dsts of domain-specific transition systems is defined by the functions
el, par, elgen, frm, match, and atom.

The set el(Dsts) of elements includes integers and boolean values, i.e.
int ∪ bool ⊂ el. The element sequences (in particular, elements as one-
element sequences) have static and dynamic semantics. The static semantics
of Elseq defines the value val(Elseq, St) ∈ el returned by Elseq in the
current state St of the system Dsts. The function val and the set st of
states are defined below. In this case, Elseq can be considered as a query to
Dsts to get information about the current state St of the system Dsts. The
dynamic semantics of Elseq defines how Elseq change the current state of
Dsts, i.e. it defines the set of states to which Dsts can go from the current
state by Elseq. In this case, Elseq can be considered as an instruction
controlling the state of Dsts.

The set par(Dsts) of parameters, where par(Dsts) ⊆ el, is defined by
the functions vkind, skind, and catched such that skind(Par) ∈
{elem, seq}, vkind(Par) ∈ {eval, quote}, and catched(Par) ∈ bool.

The parameters are used as the pattern parameters in the pattern match-
ing. If skind(Par) = elem, the pattern matching associates Par with an
element. If skind(Par) = seq, the pattern matching associates Par with
(possibly empty) an element sequence. The function skind is called a pa-
rameter structure specifier.

The function catched specifies the propagation of the indeterminate
value false in the definition of the function val (see below). The element
false plays the role of both the boolean and the indeterminate value.

The element sequences associated with parameters are converted to the
parameter values and used as arguments of the functions defining the static
semantics of these element sequences. Let Par be associated with ElSeq. If
vkind(Par) = eval, Par is called an evaluated parameter, and
val(Elseq, St) is the value of Par. If vkind(Par) = quote, Par is called
a quoted parameter, and Elseq is the value of Par. The function vkind is
called a parameter value specifier.

The set elgen(Dsts) of element generators is defined by the functions sem
and embedded such that sem(Elgen) is a function, range(sem(Elgen)) ⊆ el,
embedded(Elgen) ∈ nat → bool, dom(embedded(Elgen)) ⊆
{I ∈ nat | 1 ≤ I ≤ arity(sem(Elgen))}, and if Arg ∈ sem(Elgen),
1 ≤ I ≤ arity(sem(Elgen)), and embedded(Elgen)(Arg.I) = true, then
Arg.I ∈ el∗.

The element generators are used to generate new kinds of elements. The
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element El is generated by Elgen, if El = sem(Elgen)(Arg) for some Arg ∈
dom(sem(Elgen)).

The element generators also define the embedded structure of element se-
quences. The element El′ appears in El, if El′ = El, or El =
sem(Elgen)(Arg), and El′ appears in Arg.I for some 1 ≤ I ≤ len(Arg)
such that embedded(Elgen)(I) = true.

The set elgen includes the object seqcomp such that sem(seqcomp) ∈
el∗ →t el is a bijection, and embedded(seqcomp)(1) = true. The object
seqcomp is called a sequential element composition.

For simplicity, below we write Elgen instead of sem(Elgen). For example,
we write seqcomp instead of sem(seqcomp).

The elements of the set sub = el → el∗ are called substitutions. If
dom(Sub) = {X1, ..., Xn}, Sub can be written as {(X1 ← Sub(X1)), ...,
(Xn ← Sub(Xn))}. The substitution function subst ∈ el∗ × sub → el∗ is
defined as follows (the first proper rule is applied):

• subst(empseq, Sub) = empseq;

• if El ∈ dom(Sub), then subst(El, Sub) = Sub(El);

• subst(sem(Elgen)(Arg), Sub) = sem(Elgen)(Arg′);

• subst(El, Sub) = El;

• subst(El Elseq, Sub) = subst(El, Sub) subst(Elseq, Sub).

The sequence Arg′ is defined as follows:

• if embedded(Elgen)(I) = true, then Arg′.I = subst(Arg, Sub);

• if embedded(Elgen)(I) ̸= true, then Arg′.I = Arg.

Substitutions are used to associate parameters with the element
sequences as a result of the pattern matching, and to associate parameters
with their values.

The set frm of forms is defined by the functions pat, pars, pcond, rvcond,
and kind.

A form Frm defines the static and dynamic semantics for the set of ele-
ment sequences called the instances of the form. The pattern matching uses
the functions pat, pars, and pcond to define whether Elseq is an instance
of Frm.

The sequence pat(Frm) ∈ el+ is called a pattern of Frm.
The sequence pars(Frm) ∈ par∗ such that the elements of pars(Frm)

are pairwise distinct defines the parameters of the pattern pat(Frm). Let
1 ≤ I ≤ len(pars(Frm)). The element par(Frm).I is called a parameter
of Frm. The number len(pars(Frm)) is called the arity of Frm denoted
by arity(Frm).
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A form defines the static semantics of its instances by its value. The
value of Frm is defined as a function of the values of its parameters.

The element pcond(Frm) ∈ el is called a parameter condition of Frm.
It defines a restriction on the values of the parameters of Frm. The sequence
Elseq is an instance of Frm only if this restriction is satisfied.

The element rvcond(Frm) ∈ el is called a return-value condition of
Frm. It defines a restriction on the value of Frm. The condition
rvcond(Frm) can include the parameters of Frm and the element retval ∈
el, where retval ∈ elgen, which refers to the value of Frm.

The partial function kind(Frm) ∈ {statedependent, statefree,
defined} defines the kind of Frm. Thus, forms are divided into four kinds
(the fourth kind corresponds to kind(Frm) = und), and each kind has its
own semantics.

The forms of the fourth kind define the state of Dsts. The function St ∈
{Frm | kind(Frm) = und} → ∪n∈nat0(eln →t el) such that St(Frm) ∈
elarity(Frm) →t el for all Frm is called the state of Dsts. Let st be the
set of all states of Dsts. The state St is called empty, if dom(St) = ∅. The
element St(Frm) is called the value of Frm in St.

The form Frm of the kind statedependent is called a state-dependent
predefined form. It is additionally defined by the function frmsem such
that frmsem(Frm) ∈ st → ∪N∈nat0(el

N →t el), and frmsem(Frm)(St) ∈
elarity(Frm) →t el. The function frmsem is called a form semantics. The
element frmsem(Frm)(St) is called the value of Frm in St.

The form Frm of the kind statefree is called a state-free predefined
form. It is additionally defined by the function frmsem such that
frmsem(Frm) ∈ ∪N∈nat0(el

N →t el), and frmsem(Frm) ∈ elarity(Frm) →t

el. The function frmsem is called a form semantics. The element
frmsem(Frm) is called the value of Frm in St.

The form Frm of the kind defined is called a defined form. It is ad-
ditionally defined by the function body such that body(Frm) ∈ el+, which
specifies the value of Frm. The elements of body(Frm) can include the
parameters of Frm. Let Sub′ map the parameters of Frm onto their values.
The value of Frm in St is a function which maps the values of parameters
of Frm, represented by Sub′, onto val(subst(body(Frm), Sub′), St). The
function val is defined below.

The function match(Dsts) ∈ el+ → pset(frm × sub) is called a form
matching if for all (Frm, Sub) ∈ match(Elseq) the following properties are
satisfied:

• Elseq = subst(Frm, Sub);

• dom(Sub) is the set of parameters of Frm;

• if skind(Par) = elem, then Sub(Par) ∈ el;
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• if skind(Par) = seq, then Sub(Par) ∈ el∗;

• arity(Frm) = arity(Frm′), and Sub(pars(Frm).I) =
Sub′(pars(Frm′).I) for all (Frm′, Sub′) ∈ match(Elseq), and 1 ≤
I ≤ arity(Frm).

The sequence Elseq is called an instance of Frm w.r.t. Sub, if (Frm, Sub) ∈
match(Dsts)(Elseq) for some Sub. The sequence Elseq is called an instance
of Frm, if Elseq is an instance of Frm w.r.t. some Sub.

The function match(Dsts) ∈ el+×st→ frm×sub×sub is called a form
matching with parameter meaning if match(Elseq, St) = (Frm, Sub, Sub′)
if and only if the following properties are satisfied:

• (Frm, Sub) ∈ match(Dsts)(Elseq);

• Sub′ = parval(pars(Frm), Sub, St);

• val(subst(pcond(Frm), Sub′), St) = true.

It matches the form and the element sequence and sets the values of the
parameters of this form. The function parval that sets the values of the
parameters of the matched form is defined below.

The sequence Elseq is called an instance of Frm in St w.r.t. the matching
substitution Sub and the parameter meaning Sub′, if match(Elseq, St) =
(Frm, Sub, Sub′). The sequence Elseq is called an instance of Frm in St, if
Elseq is an instance of Frm in St w.r.t. some Sub and Sub′.

The set elgen(Dsts) includes the functions quote ∈ el+ → el, and
eval ∈ el+ → el such that embedded(quote, 1) = embedded(eval, 1) =
true. They specify the value of Par in the case when Sub(Par) has the
form eval(Elseq) or quote(Elseq). If Sub(Par) = eval(Elseq), then
Sub′(Par) = val(Elseq, St). If Sub(Par) = quote(Elseq), then
Sub′(Par) = Elseq.

The function parval ∈ par∗×sub×st→ sub sets the values of parame-
ters in accordance with the element sequences which match these parameters:

• if sub(Par) = eval(Elseq), then parval(Par Parseq, Sub, St) =
{(Par ← val(Elseq, St))} ∪ parval(Parseq, Sub, St);

• if sub(Par) = quote(Elseq), then parval(Par Parseq, Sub, St) =
{(Par ← Elseq)} ∪ parval(Parseq, Sub, St);

• if vkind(Par) = eval, and skind(Par) = elem, then parval(Par
Parseq, Sub, St) = {(Par ← val(Sub(Par), St))} ∪ parval(Parseq,
Sub, St);

• if vkind(Par) = eval, skind(Par) = seq, and Sub(Par) =
Elorpar1 . . . ElorparN , then parval(Par Parseq, Sub, St) =
{(Par ← ifval(Elorpar1, eval, St) . . . ifval(ElorparN , eval, St))}
∪ parval(Parseq, Sub, St);
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• if vkind(Par) = quote, and skind(Par) = elem, then parval(Par
Parseq, Sub, St) = {(Par ← Sub(Par))} ∪ parval(Parseq, Sub, St);

• if vkind(Par) = quote, skind(Par) = seq, and Sub(Par) =
El1 . . . EN , then parval(Par Parseq, Sub, St) = {(Par ←
ifval(El1, quote, St) . . . ifval(ElN , quote, St))} ∪ parval(Parseq,
Sub, St).

The function ifval ∈ el+ × st × {eval, quote} → el is defined as
follows:

• ifval(eval(Elseq), St, V parorqpar) = val(Elseq, St);

• ifval(quote(Elseq), St, V parorqpar) = Elseq;

• ifval(El, St, eval) = val(El, St);

• ifval(El, St, quote) = El.

The function val ∈ el+ × st→ el called an element sequence meaning
is defined as follows (the first proper rule is applied):

• val(true, St) = true;

• if match(Elseq) = (Frm,Sub, Sub′), pars(Frm) = Par1 . . . ParN ,
Arg = Sub′(Par1), . . . , Sub

′(ParN ), and Retvalcond(U) denotes

val(subst(rvcond(Frm), Sub′∪{(retval(Dsts)← U)}), St) = true,

then

– if catched(ParI) ̸= true, and Sub′(ParI) = false for some
1 ≤ I ≤ arity(Frm), then val(Elseq, St) = false;

– if kind(Frm) = und, St(Frm) ̸= und, and Retvalcond(St(
Frm)(Arg)), then val(Elseq, St) = St(Frm)(Arg);

– if kind(Frm) = statedependent, and Retvalcond(frmsem(Frm
)(St)(Arg)), then val(Elseq, St) = frmsem(Frm)(St)(Arg);

– if kind(Frm) = statefree, and Retvalcond(frmsem(Frm)(
Arg)), then val(Elseq, St) = frmsem(Frm)(Arg);

– if kind(Frm) = defined, and Retvalcond(val(subst(body(
Frm), Sub′), St)), then val(Elseq, St) = val(subst(body(Frm
), Sub′), St);

• if atom(Dsts)(Elseq) = true, then val(Elseq, St) = Elseq;

• val(Elseq, St) = false.

The element val(Elseq, St) is called the value of Elseq in St.
The function atom(Dsts) ∈ el+ →t bool defines the element sequences

which coincide with their values. Such sequences are called atoms.
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The dynamic semantics of the element sequences is defined by the func-
tion tr ∈ conf× conf→ bool called a transition relation. The set conf of
configurations and the function tr are defined below. The system Dsts can
go from Conf to Conf ′ if and only if tr(Conf,Conf ′) = true.

The set conf of configurations is defined by the functions seq and st

such that seq(Conf) ∈ el∗, and st(Conf) ∈ st. The sequence seq(Conf)
is called a control sequence of Conf . It defines the states to which Dsts can
go from the current state and the control sequences executed in these states.

The configuration Conf is called a final one, if there is no configuration
Conf ′ such that tr(Conf,Conf ′) = true. The sequence Confseq ∈ conf+

is called a run, if last(Confseq) is a final configuration.
A final configuration Conf is called unsafe, if seq(Conf) ̸= empseq. It

specifies incorrect termination of Dsts. A final configuration Conf is called
safe, if Conf is not unsafe. A run Confseq such that last(Confseq) is
unsafe, is called unsafe. A run Confseq is called safe, if Confseq is not
unsafe. A configuration Conf is called unsafe, if there is an unsafe run
Confseq such that first(Confseq) = Conf . A configuration Conf is
called safe, if Conf is not unsafe.

A sequence Elseq is correct in St, if Conf is safe, where seq(Conf) =
Elseq, and st(Conf) = St. A sequence Elseq is incorrect in St, if Elseq is
not corrrect in St.

The set elgen includes the function fail ∈ el such that if
first(seq(Conf)) = fail, then Conf is final. The configuration Conf
is also unsafe, since seq(Conf) ̸= empseq. Therefore the element fail is
called an unsafe termination.

Let tr(Conf,Conf ′) = true. Then seq(Conf) and seq(Conf ′) are
called the input and output control sequences of the transition, and
st(Conf) and st(Conf ′) are called the input and output states of the tran-
sition, respectively.

The function tr is defined by a special kind of forms, or transition rules.
A form Frm is called a transition rule, if it is additionally defined by the
function rkind such that rkind(Frm) ∈ {defined, predefined}. The func-
tion kind defines the kind of the rule. Thus, if rkind(Frm) = und, then
Frm is not a transition rule, and transition rules are divided into two kinds,
and each kind has its own semantics. Let rul(Dsts) be a set of all rules of
Dsts, and Rul ∈ rul(Dsts).

A rule Rul of the kind defined is called defined. It is additionally defined
by the function body such that body(Rul) ∈ el∗. The sequence body(Rul)
is called the body of Rul and it defines the execution of Rul.

A rule Rul of the kind predefined is called predefined. It is additionally
defined by the function rulsem such that rulsem(Rul) ∈ conf × conf ×
sub →t bool. This function is called a rule semantics and it defines the
execution of Rul. The third argument of the function stores the values of



Domain-specific transition systems and their application to ... 31

the parameters of Rul.
The function tr is defined as follows: tr(Conf,Conf ′) = true if and

only if there is a rule Rul such that tr(Conf,Conf ′, Rul) = true.
The function tr with an additional argument Rul is defined as follows:

tr(Conf,Conf ′, Rul) = true if and only if seq(Conf) = Elseq Elseq′,
match(Elseq, st(Conf)) = (Rul, Sub, Sub′), and one of two conditions is
satisfied: rkind(Rul) = predefined, and rulsem(Rul)(Conf,Conf ′,
Sub′) = true, or rkind(Rul) = defined, seq(Conf ′) = subst(body(Rul),
Sub′) Elseq′, and st(Conf ′) = st(Conf).

Thus, when a defined rule Rul is applied, the state of Dsts does not
change, and the control sequence changes only its prefix matched with Rul.

The configuration Conf is called final w.r.t. Rul, if there is no configu-
ration Conf ′ such that tr(Conf,Conf ′, Rul) = true.

4. Domain-specific transition systems with backtracking

The use of backtracking in DSTSs expands their expressive power.
A DSTS Dsts is called a DSTS with backtracking if the following prop-

erties are satisfied:

• conf is additionally defined by the function rulset such that
rulset(Conf) ⊆ rul(Dsts). This function specifies which transition
rules have been applied in the transitions from the configuration Conf .

• Dsts is additionally defined by the function backfrm such that
backfrm(Dsts) ⊆ Frm. The set backfrm(Dsts) specifies the forms
whose values are preserved when Dsts backtracks to the previous back-
tracking point.

The function ifst(St, St′) returns a state; it is defined as follows:

• if Frm ∈ backfrm, then ifst(St, St′)(Frm) = St′(Frm);

• if Frm /∈ backfrm, then ifst(St, St′)(Frm) = St(Frm).

DSTS with controlled backtracking. A DSTS Dsts with backtrack-
ing is called a DSTS with controlled backtracking, if

• elgen(Dsts) includes the functions backtrack and branch such that
backtrack ∈ el, branch ∈ el∗∗ →t el, and embedded(branch)(1) =
true. The element backtrack called a backtracking condition initi-
ates backtracking to the previous backtracking point. The element
branch(ElSeqSeq) called a branch element is used to define possible
variants in the backtracking point given by the elements of ElSeqSeq.

• tr ∈ conf∗ × conf∗ → bool is a controlled backtracking.
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Let ba(St) and fi(St) be configurations such that seq(ba(St)) =
backtrack, st(ba(St)) = St, rulset(ba(St)) = ∅, seq(fi(St)) = empseq,
st(fi(St)) = St, and rulset(ba(St)) = ∅.

A transition relation tr ∈ conf∗ × conf∗ → bool is called a controlled
backtracking, if tr(Confseq, Confseq′) = true if and only if the first proper
property is satisfied:

• Confseq = Confseq′′ Conf , seq(Conf) = backtrack Elseq, where
Elseq ̸= empseq, or rulset(Conf) ̸= ∅, and Confseq′ = Confseq′′

ba(st(Conf));

• Confseq = Confseq′′ Conf ba(St), where seq(Conf) =
branch(Elseq′ Elseqseq) Elseq, Confseq′ = Confseq′′ Conf ′ Conf ′′,
seq(Conf ′) = branch(Elseqseq) Elseq, st(Conf ′) = st(Conf),
rulset(Conf ′) = rulset(Conf), seq(Conf ′′) = Elseq′ Elseq,
st(Conf ′′) = ifst(st(Conf), St), and rulset(Conf ′′) = ∅;

• Confseq = Confseq′′ Conf ′ Conf ba(St), where seq(Conf) =
branch(empseq) Elseq, and Confseq′ = Confseq′′ Conf ′ ba(St);

• Confseq = Conf ba(St), where seq(Conf ′) = branch(empseq)
Elseq, and Confseq′ = ba(ifst(st(Conf), St));

• Confseq = Confseq′′ Conf , where seq(Conf) =
branch(Elseq′ Elseqseq) Elseq, Confseq′ = Confseq′′ Conf ′ Conf ′′,
seq(Conf ′) = branch(Elseqseq) Elseq, st(Conf ′) = st(Conf),
rulset(Conf ′) = rulset(Conf), seq(Conf ′′) = Elseq′ Elseq,
st(Conf ′′) = st(Conf), and rulset(Conf ′′) = ∅;

• Confseq = Confseq′′ Conf , where seq(Conf) = branch(empseq)
Elseq, and Confseq′ = Confseq′′ fi(st(Conf));

• Confseq = Confseq′′ Conf ba(St), where seq(Conf) = Elseq0

Elseq, Elseq0 /∈ predel(Dsts), Rul ∈ rul(Dsts) \ rulset(Conf),
tr(Conf2, Conf3, Rul) = true, seq(Conf2) = Elseq0 Elseq,
st(Conf2) = ifst(st(Conf), St), seq(Conf3) = Elseq′, Confseq′ =
Confseq′′ Conf4 Conf5, seq(Conf4) = Elseq0 Elseq, st(Conf4) =
st(Conf), rulset(Conf4) = rulset(Conf) ∪ {Rul}, seq(Conf5) =
Elseq′, st(Conf5) = st(Conf3), and rulset(Conf5) = ∅;

• Confseq = Confseq′′ Conf ′ Conf ba(St), and Confseq′ =
Confseq′′ Conf ′ ba(St);

• Confseq = Conf ba(St), and Confseq′ = ba(ifst(st(Conf), St));

• Confseq = ba(St), and Confseq′ = fi(St);

• Confseq = Confseq′′ Conf , where seq(Conf) = Elseq0 Elseq,
Elseq0 /∈ predel, Rul ∈ rul(Dsts)\rulset(Conf), tr(Conf,Conf ′,
Rul) = true, Confseq′ = Confseq′′ Conf ′′ Conf ′′′, seq(Conf ′′) =
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seq(Conf), st(Conf ′′) = st(Conf), rulset(Conf ′′) =
rulset(Conf) ∪ {Rul}, seq(Conf ′′′) = seq(Conf ′), st(Conf ′′′) =
st(Conf ′), an rulset(Conf ′′′) = ∅;

• Confseq = Confseq′′ Conf , where seq(Conf) = Elseq0 Elseq,
Elseq0 ∈ predel(Dsts), rulsem(Dsts)(Conf,Conf ′) = true,
Confseq′ = Confseq′′ Conf ′′ Conf ′′′, seq(Conf ′′) = Elseq,
st(Conf ′′) = st(Conf), rulset(Conf ′′) = rulset(Conf),
seq(Conf ′′′) = seq(Conf ′), st(Conf ′′′) = st(Conf ′), and
rulset(Conf ′′′) = ∅;

• false.

5. Examples of predefined transition rules

Let us consider examples of predefined transition rules which are often used
to define operational semantics of computer languages.

Let elgen(Dsts) include the function stop ∈ el. A form Rul is called
a stop rule, if pat(Rul) = stop, arity(Rul) = 0, cond(Rul) = true,
rkind(Rul) = predefined, and rulsem(Rul)(Conf,Conf ′) = true, where
seq(Conf) = stop Elseq, if and only if seq(Conf ′) = empseq, and
st(Conf ′) = st(Conf). The element stop is called a stop element.

Let elgen(Dsts) include the function assume ∈ el→ el. A form Rul is
called a continuation rule, if pat(Rul) = assume(Par), pars(Rul) = Par,
vkind(Par) = eval, skind(Par) = seq, cond(Rul) = true, rkind(Rul) =
predefined, and rulsem(Rul)(Conf,Conf ′) = true, where seq(Conf) =
El Elseq, if and only if match(El, st(Conf)) = (Rul, Sub, Sub′),
st(Conf ′) = st(Conf), and the first proper property is satisfied:

• if Sub′(Par) = true, then seq(Conf ′) = Elseq;

• seq(Conf ′) = backtrack Elseq.

The element El is called a continuation condition. This condition is based
on the element backtrack and used in DSTS with controlled backtracking.

Let elgen(Dsts) include the function frmupd ∈ el+ × el+ → el. A
form Rul is called a form update rule, if pat(Rul) = frmupd(Par, Par′),
pars(Rul) = Par Par′, vkind(Par) = quote, vkind(Par′) = eval,
skind(Par) = skind(Par′) = seq, cond(Rul) = true, rkind(Rul) =
predefined, and rulsem(Rul)(Conf,Conf ′) = true, where seq(Conf) =
El Elseq, if and only if match(El, st(Conf)) = (Rul, Sub, Sub′), and the
first proper property is satisfied:

• if match(Sub′(Par), st(Conf)) = (Frm, Sub1, Sub
′
1), kind(Frm) =

und, arity(Frm) = N , Arg = Sub′1(pars(Frm).1), . . . ,
Sub′1(pars(Frm).N), then seq(Conf ′) = Elseq, odif(st(Conf ′),
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st(Conf), {Frm}) = true, odif(st(Conf ′)(Frm), st(Conf)(Frm),
{(Arg)}) = true, and st(Conf ′)(Frm)(Arg) = Sub′(Par′);

• seq(Conf ′) = fail El Elseq, and st(Conf ′) = st(Conf).

The element El is called a form update.
Let elgen(Dsts) include the function assert ∈ el+ → el. A form

Rul is called a safety rule, if pat(Rul) = assert(Par), pars(Rul) = Par,
vkind(Par) = eval, skind(Par) = seq, cond(Rul) = true, rkind(Rul) =
predefined, rulsem(Rul)(Conf,Conf ′) = true, where seq(Conf) = El
Elseq, if and only if match(El, st(Conf)) = (Rul, Sub, Sub′), st(Conf ′) =
st(Conf), and the first proper property is satisfied:

• if Sub′(Par) = true, then seq(Conf ′) = Elseq;

• seq(Conf ′) = fail El Elseq.

The element El is called a safety condition.
Let elgen(Dsts) include the function cases ∈ par× par ∪ par× par×

par ∪ el∗ × el∗∗ ∪ el∗ × el∗∗ × el∗ → el, such that (Elseq, Elseqseq[,
Elseq′]) ∈ dom(cases) if and only if len(Elseq) = len(Elseqseq).

A form Rul is called a conditional branching rule, if pat(Rul) =
cases(Par, Par′[, Par′′]), pars(Rul) = Par Par′ Par′′, vkind(Par) =
quote, and skind(Par) = seq for each Par ∈ pars(Rul), cond(Rul) =
true, rkind(Rul) = predefined, rulsem(Rul)(Conf,Conf ′) = true,
where seq(Conf) = El Elseq, if and only if match(El, st(Conf)) =
(Rul, Sub, Sub′), st(Conf ′) = st(Conf), and seq(Conf ′) =
branch(Arg.1, . . . , Arg.N [, Sub′(Par′′)]), where Arg.I =
assume(Sub′(Par).1) Sub′(Par′).1 for 1 ≤ I ≤ len(Sub′(Par)) = N . The
element El is called a conditional branching.

6. Formal definition of the model programming language

Let us define a simple model programming language MPL by DSTS.
The MPL language includes the set id of identifiers (sequences of letters

from {a, . . . , z, A, . . . , Z}, digits from {0, . . . , 9}, and the underscore character
_, starting with a letter), the finite set btype ⊂ id of basic types such that
lit(Btype) is a set of literals of the type Btype ∈ btype, lit(Btype) ∩
id = ∅ for each Btype, int ∈ btype, lit(int) = {. . . ,−2,−1, 0, 1, 2, . . .},
bool ∈ btype, and lit(bool) = {true, false}, the operations =, and ! = on
these types, the arithmetic operations +, −, ∗, div, mod, and the arithmetic
relations <, >, <=, >= on integers, the boolean operations and, or, not,
implies, variable declaration, assignment statement, if statement, and while
statement.

Let us consider Dsts which specifies MPL. The functions el, par, elgen,
frm, match, and atom are defined as follows:
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• el
def
= id ∪ ∪Elgen∈elgen(Dsts)range(Elgen);

• par(Dsts)(El) = true if and only if El ∈ id \ dtype;

• elgen(Dsts)
def
= {delcomp, eval, quote, fail, backtrack, branch,

stop, assume, frmupd, assert, cases};

• if len(Elseq) = N , then delcomp(Elseq)
def
= (Elseq.1 ... Elseq.N);

• eval(Elseq)
def
= (eval Elseq);

• quote(Elseq)
def
= (quote Elseq);

• retval(Dsts)
def
= retval;

• fail
def
= fail;

• backtrack
def
= backtrack;

• branch(Elseqseq)
def
= (branch Elseqseq);

• stop
def
= stop;

• assume(Elseq)
def
= (assume Elseq);

• frmupd(Elseq, Elseq′)
def
= (Elseq ::= Elseq′);

• assert(Elseq)
def
= (assert Elseq);

• if len(Elseq) = N , then cases(Elseq, Elseqseq, Elseq′)
def
= (cases

(if Elseq.1 then Elseqseq.1) . . . (if Elseq.N then Elseqseq.N)(else
Elseq′));

• frm(Dsts)
def
= {Frm_Id | Id ∈ id} ∪ {Rul_Id | Id ∈ id};

• the algorithm match(Dsts) choose the first proper element sequence
from left to right. For example, if pat(Frm) = (if X then Y else Z),
pars(Frm) = X Y Z, skind(X) = elem, skind(Y ) = seq, and
skind(Z) = seq, then (Frm, (X ← A, Y ← B,Z ← C else D)) ∈
match(Dsts)((if A then B else C else D)), and (Frm, (X ← A,
Y ← B else C,Z ← D)) /∈ match(Dsts)((if A then B else C else

D));
• atom(Dsts)(El) = true if and only if El ∈ id ∪

∪
Btype∈btype lit(

Btype).

The form Frm_bool is associated with the type bool, and it is de-
fined as follows: pat(Frm_bool) = (X isof bool), pars(Frm_bool) = X,
vkind(X) = eval, skind(X) = elem, pcond(Frm_bool) = true,
rvcond(Frm_bool) = true, kind(Frm_bool) = statefree, and
frmsem(Frm_bool)(El) = true if and only if El ∈ lit(bool).
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The form Frm_sort checks whether an element sequence belongs to a
particular sort, and it is defined as follows: pat(Frm_sort) = (X is Y ),
pars(Frm_sort) = X, vkind(X) = quote, vkind(y) = eval, skind(X) =
skind(Y ) = seq, pcond(Frm_sort) = true, rvcond(Frm_sort) =
((retval) isof bool), kind(Frm_sort) = statefree, and
frmsem(Frm_sort)(El) = true if and only if (X isof Y ). The forms with
the pattern (X isof Elseq) for particular sorts Elseq are defined below.

The form Frm_id specifies the characteristic function for id, and it is
defined as follows: pat(Frm_id) = (X isof identifier), pars(Frm_id) =
X, vkind(X) = quote, skind(X) = elem, pcond(Frm_id) = true,
rvcond(Frm_bool) = ((retval) is bool), kind(Frm_id) = statefree,
and frmsem(Frm_id)(El) = true if and only if El ∈ id.

The form Frm_btype specifies the characteristic function for btype, and
it is defined as follows: pat(Frm_btype) = (X isof btype),
pars(Frm_btype) = X, vkind(X) = quote, skind(X) = elem,
pcond(Frm_btype) = (X is identifier), rvcond(Frm_btype) =
((retval) is bool), kind(Frm_btype) = statefree, and
frmsem(Frm_btype)(El) = true if and only if El ∈ btype.

The form Frm_Btype specifies the characteristic function for Btype ̸=
bool, and it is defined as follows: pat(Frm_Btype) = (X isof Btype),
pars(Frm_Btype) = X, vkind(X) = eval, skind(X) = elem,
pcond(Frm_Btype) = true, rvcond(Frm_Btype) = ((retval) is bool),
kind(Frm_Btype) = statefree, and frmsem(Frm_Btype)(El) = true if
and only if El ∈ lit(Btype).

The operations =, and ! = on basic types, the arithmetic operations +, −,
∗, div, mod, and arithmetic relations <, >, <=, >= on integers, the boolean
operations and, or, not, =⇒ are defined by the corresponding state-free pre-
defined forms Frm_eq, Frm_neq, Frm_add, Frm_sub, Frm_mul, Frm_div,
Frm_mod, Frm_less, Frm_more, Frm_lesseq, Frm_moreeq, Frm_and,
Frm_or, Frm_not, and Frm_implies:

• pat(Frm_eq) = (X = Y ), pars(Frm_eq) = X Y , vkind(X) =
vkind(Y ) = eval, skind(X) = skind(Y ) = elem, pcond(Frm_eq) =
true, rvcond(Frm_eq) = ((retval) is bool), kind(Frm_eq) =
statefree, and frmsem(Frm_eq)(El,El′) = true if and only if El ∈
Btype, El′ ∈ Btype for some Btype, and El = El′;

• pat(Frm_add) = (X + Y ), pars(Frm_add) = X Y , vkind(X) =
vkind(Y ) = eval, skind(X) = skind(Y ) = elem, pcond(Frm_add) =
((X is int) and (Y is int)), rvcond(Frm_add) = ((retval) is int),
kind(Frm_add) = statefree, and frmsem(Frm_add)(El,El′) = El′′

if and only if El′′ = El + El′;

• pat(Frm_less) = (X < Y ), pars(Frm_less) = X Y , vkind(X) =
vkind(Y ) = eval, skind(X) = skind(Y ) = elem,
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pcond(Frm_less) = ((X is int) and (Y is int)),
rvcond(Frm_less) = ((retval) is bool), kind(Frm_less) =
statefree, and frmsem(Frm_less)(El,El′) = true if and only if
El < El′;

• pat(Frm_and) = (X and Y ), pars(Frm_and) = X Y , vkind(X) =
vkind(Y ) = eval, skind(X) = skind(Y ) = elem, pcond(Frm_and) =
((X is bool) and (Y is bool)), rvcond(Frm_and) =
((retval) is bool), kind(Frm_and) = statefree, and
frmsem(Frm_and)(El,El′) = true if and only if El = true, or El′ =
true.

The other forms are defined in a similar way.
The state St of Dsts is defined by the forms Frm_isvar, Frm_vartype,

and Frm_varval.
The form Frm_isvar specifies which identifiers are variables in St and is

defined as follows: pat(Frm_isvar) = (X is variable),
pars(Frm_isvar) = X, vkind(X) = quote, skind(X) = elem,
pcond(Frm_isvar) = (X is identifier), rvcond(Frm_isvar) =
((retval) is bool), and kind(Frm_isvar) = und.

The form Frm_vartype specifies the types of variables in St and is de-
fined as follows: pat(Frm_vartype) = (type of X), pars(Frm_vartype) =
X, vkind(X) = quote, skind(X) = elem, pcond(Frm_vartype) =
(X is variable), rvcond(Frm_vartype) = ((retval) is btype), and
kind(Frm_vartype) = und.

The form Frm_varval specifies the values of variables in St and is defined
as follows: pat(Frm_varval) = X, pars(Frm_varval) = X, vkind(X) =
quote, skind(X) = elem, pcond(Frm_varval) =
(X is variable), rvcond(Frm_varval) = ((retval) is (type of X)), and
kind(Frm_varval) = und.

The variable declaration is defined by the rule Rul_vardec such that
pat(Rul_vardec) = (var X Y ), pars(Rul_vardec) = X Y , vkind(X) =
vkind(Y ) = quote, skind(X) = skind(Y ) = elem, pcond(Rul_vardec) =
((X is identifier) and (not (X is btype)) and (not (X is variable))
and (Y is btype)), rvcond(Rul_vardec) = true, rkind(Rul_vardec) =
defined, and body(Rul_vardec) = ((X is variable) ::= true) ((type of
X) ::= Y ).

The assignment statement is defined by the rule Rul_assign such that
pat(Rul_assign) = (X := Y ), pars(Rul_assign) = X Y , vkind(X) =
quote, vkind(Y ) = eval, skind(X) = skind(Y ) = elem,
pcond(Rul_assign) = ((X is variable) and (Y is (type of X))),
rvcond(Rul_assign) = true, rkind(Rul_assign) = defined, and
body(Rul_assign) = (X ::= Y ).

The if statement is defined by the rule Rul_if such that pat(Rul_if) =
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(if X then Y else Z), pars(Rul_if) = X Y Z, vkind(X) = vkind(Y ) =
vkind(Z) = quote, skind(X) = elem, skind(Y ) = skind(Z) = seq,
pcond(Rul_if) = (X is bool), rvcond(Rul_if) = true,
rkind(Rul_if) = defined, and body(Rul_if) = (cases (if X then Y )
(else Z)).

The while statement is defined by the rule Rul_while such that
pat(Rul_while) = (while X do Y ), pars(Rul_while) = X Y ,
vkind(X) = vkind(Y ) = quote, skind(X) = elem, skind(Y ) = seq,
pcond(Rul_while) = true, rvcond(Rul_while) = true,
rkind(Rul_while) = defined, and body(Rul_while) = (cases (if X
then Y (while X do Y )) (else)).

An element sequence is called a program in the MPL language. A pro-
gram Elseq is called correct in St, if Elseq is a correct sequence in St. A
program Elseq is called incorrect in St if Elseq is not correct in St.

The program (var X int) (X := 5) (if (X = 5) then (X :=
0) else) is correct in the empty state. Its execution returns the state St′

such that dom(St′) = {Frm_isvar, Frm_vartype, Frm_varval}, graph(St′(
Frm_isvar)) = {(X, true)}, graph(St′(Frm_vartype)) = {(X, int)}, and
graph(St′(Frm_varval)) = {(X, 0)}.

The program (X := 5) is incorrect in the empty state, since in accor-
dance with the definition of the rule Rul_assign the identifier X must be
a variable in this state.

The program (assume ((X is variable) and ((type of X) is int)))
(X := 5) is correct in the empty statement, since in accordance with the
definition of assume the assignment (X := 5) will not be executed. In
accordance with the definition of the controlled backtracking, execution of
this program terminates in the empty statement.

The program (var X int) (X := 5) (var X int) is incorrect in
the empty statement, since in accordance with the definition of the rule
Rul_vardec a variable can not be declared twice.

7. Conclusion

DSTSs are a special type of transition systems for determining domain-
specific languages used to solve the problems of the development of com-
puter language semantics and of the design, specification, prototyping, and
verification of software systems. DSTSs form the basis of a comprehensive
approach to solving these problems.

In this paper, the new object model of DSTSs has been described. It in-
troduces new entities and concepts into the theory of DSTSs such as forms,
element generators, and propagation of the indeterminate value with its han-
dling. It also extends the concepts of substitution and pattern matching,
determines the classification of forms and transition rules, adds constraints
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on the parameters and the return values of forms, improves the algorithm
for finding the element values, considers the transition rules as a special kind
of forms, improves the definitions of backtracking, safe configurations and
runs, and correct control element sequences. The formal definition of the
model programming language with the extensible set of basic types, based
on this model, has been also given.
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