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The Monte Carlo method
for conjugate stationary diffusion
equation with special item*

A.V. Burmistrov

1. The basic estimator

Consider the three-dimensional Dirichlet problem for the equation
Au + (v, grad u) + cu = —g, 'Ua|]f‘=’l,b (1.1)

in a domain {2 with the boundary I', which is assumed simply connected
and piecewise smooth. We suppose the functions v, ¢, and g to satisfy the
Hélder condition in {2, and the function 4 to be continuous on I'. Let I,
be e-neighborhood of T', let D(r) be the maximal ball with center at the
point r, which lies in @, and let S(r) be the corresponding sphere of the
radius d = d(r). For the function u(r) we can write down the corresponding
integral equation which has the following form in Q \ T, [2]:

ur(r) = Wl(r) [ (e (s))ds + f G () c(r'Yus (') dr’ +

5(r) D(r)

fG,(r’)(v(r'),gradul(r'))dr' + fG,(r')g(r')dr'. (1.2)
D(r) D(r)

Where
: _L(L_i)
G,.(r)—4ﬂ_ lr—7'| d

is the “central” Green’s function for the ball D(r). We consider u; = u for
r € .. Denote the unit vector in the direction of the velocity v by [, i.e.,
I = v/|v|. Using “non-central” Green’s function we can derive the following
integral equation for the function (grad u(r)); = du,/dl (see, e.g. [2]):

*Supported by the scientific program “Russian Universities — Basic Research” (3759)
and FCP “Integration” (274).



12 A.V. Burmistrov

dur, [ 3w (s)w(r(s)) el
a (") = .[ 4nd3(r) ds + fT‘;aT
5(r) D(r)
2t (1, 00" rad () e’ + [ S, e )g(e") ' (1)
D(r) D(r)

(r,r)e(rYui (r') dr' +

Where q;(r,r') = (r' — r,1)/|r' — r| is the cosine of the angle between unit
vector [ and the vector ' — r. Note that the functions

y _ 6G.(r) 4 0G A —fr—r
Folr) = =0 3d)m 81 ") T Sadiy =2

are probability densities in the ball D(r). To construct the algorithms of the
Monte Carlo method, we henceforth combine (1.2) and (1.3) into a single
integro-algebraic equation by means of a special extension of the phase space.
Here it is reasonable to consider (v, grad u) in the moving coordinate system
with the basis vector I(r) = v(r)/|v(r)|, in this system (v,gradu) = v - %‘!‘.

and F(r,r') =

Moreover, we pass from the function %—‘l‘('r) to the function ﬂ?%‘f(r).
Extend the phase space by adding a discrete variable j: j =0 or j = 1.

Put w = (r,j) and introduce the following notations:

FU("? T')

u‘(r): J = 0'! _""5"‘"‘"1 j: 0,
Uw)=U(rj)=1d k(w,w') =
%)‘;—'j(r), i=1, F(rr) .4
2 b b
[Giatyar', =0,
_ D(r) 1, 7=0,
2 fﬁ r,e)g(r)dr', j =1, ailryr’), 3 =1,
3 ol
D(r)
; !
20, i=0, =0,
Co
!
N !
1] COd(r')
M(w,w') = 4 3e(r)ay(r, ) (1.4)
ar A ?T: 1=1, j'=0a
Co
v(r)ay(r,r") "
i W et . W S =1 =1.
| CUd(T') ? 1 J

Here ¢y is a constant satisfying the inequality cod2,,, < 6. Using these
notations, write down the system of integral equations (1.2), (1.3) in the
form
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lﬁm)=fﬂw+{1—%£&ql[“mH“LmUW“”ﬁﬂu+

6 1—cod?/6 4nd%(r)
5(r)

[cad2 ]Z /Mww (w,w" U (w Ndr', reQ\T., (1.5)

7'=0p(r)
Ul(w) = U(w)? rel..

According to (1.5), the estimator of the Monte Carlo method for U(w) is
constructed as follows.

With the probability 1 — cod?(r,,)/6, the new point 7,41 is chosen uni-
formly at random on the sphere S(r,), the weight Q, is multiplied by
(1 — cod?(rn) /6] a(wn, wni1), and jp4q is set to equal 0.

With the probability cod?(r,)/6 the point r,.; is chosen at random in
the ball D(r,) with the density 2k(wpn,w'). Next, j,41 takes one of the
values 0 or 1 with equal probabilities. Finally, the weight @, is multiplied
by M(wn,Wn41)-

In the process of modeling, this “walk on spheres and balls”, when the
point occurs in I'; at a random step N, the chain terminates and the esti-
mator of solution, multiplied by the weight, is added to the counter. As a
result we obtain the following estimator for U(wyo):

wO) Z QnH(wn

n=0
where
o " a(wgo1,wy)
= EM(M‘_LWW) g = cod(r_1)/6"
Here {ry}, i = 1,...,n — my, are points chosen on spheres, and {ry,}, i =

1,...,my, are points chosen in balls. The function H(w) = H(r,j) = h;(r)
can be estimated by the Monte Carlo method for one “random knot” [1].

2. Unbiasedness of the estimator and
boundedness of the variance

Lemma 1. Suppose that the conditions

Mmg%,wg%wy (2.1)

are satisfied for cg < 6¢* /m%, where —c* is the first eigenvalue of the Laplace
operator in Q. Then the Neumann series for equation (1.5) converges.
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Proof. Consider the function

6 sinz) 6 , 6 4 6 4
f(:c)=P(1— . )—1—5:1: +ﬁ$ g e

It is easy to see that the function f(z) decreases from 1 to 6/n% on the
interval [0, 7]. On the other hand, the inequality co/c* < f(z) implies that

1 < diver
1—cod?/6 ~ sind;vc*'

(2.2)

where -

z = divVer < dmaxVe*r <.

In view of (2.1), relation (2.2) means that £(wp) termwise dominated by
some (not necessarily maximal) standard estimator ¢ of a “walk on spheres”
for which the Neumann series converges [2]. O

For specific types of domains, the condition ¢p/c* < 6/7% ~ 0.6079 can
be weakened on accounting for the exact value of dyay. For example, for a
cube with the edge b we have ¢* = 3% /b%, dax = /2, co/c* < 0.6888.

Lemma 2. Let Uy and Ky be respectively the Neumann series and the in-
tegral operator of egquation (1.5) for aj = 1, ¢ = ¢9/3, 0 < ¢y < 6¢c*/n2,
g=go>0, and vo(r) = %(ﬂ% sgnUp(r,1). Moreover, assume be satisfied
the following conditions in T';: Uy(r,1) = C° and Uy(r,0) = uy, where

Aug + cug = —go, uglr = c’. (2.3)
Then T}Lngo K3Up(w) = 0 and Up(w) > C°.
Proof. The first claim of the lemma follows from the representation
n .
Ug(w) = Z KBHO + K61+1U(}(w)
i=0

relating to the fact that, under the conditions of the lemma, the Neumann
series converges (see the proof of Lemma 1) and satisfies the equation

Up(r'(s),0 d? , , ,  d?
;(;dgz) ) ds + “";8 /Fg[Ug(r 0) + [Us(r', 1)]] dr’ + %

5(r) D(r)

U[)(T‘, 0) =

On the other hand, the function ug(r) in © \ T, satisfies the equation
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_ uo(r'(s) cod?(r) d? d°g0
uo(r)_s(f) B T (/) Fouo(r') dr' + =22
T D(r

Hence,
Uo(r,0) > ug(r) > C°.

Using this estimate for Up(r,0) together with the integral equation for
Us(r,1), we obtain

Ubds _ cod? dg
Uo(n1) = [ 2+ 32 [ FlUa,0) + 0o, Dl)ar' + S22 > 0,

S(r) D(r)
which completes the proof of the second claim of the lemma. a
Theorem 1. Under the conditions of Lemma 1, there exists a unique bound-

ed solution to (1.7) which is representable by the Neumann series; moreover,

Ur(r,0) = u(r), Uy(r,1) = 4D 8u(py,

Proof. Let u(r) be a solution such that

d(r) Ou
lu(r)| < C1 and ‘—3 EI < (.
Then
n X Cl
— ZK1H+ Kn+1U1, lKn+1U | < Kn+1U

i=0
This yields a representation for U; in the form of a Neumann series. The
remaining assertions of the theorem are valid in view of uniqueness of a
bounded solution to the original differential problem. a

Remark. To estimate the derivative of a solution u in an arbitrary direction
p (rather than only in the direction of the velocity v), at the first step of

the algorithm we should use for %ﬂg—z a representation similar to (1.5):

(r) ou, . cod?(r) ayu(r'(s)) ds
( ) = hulr) + [ 6 ] )1”— cod? /6 4md?(r)

+

r

After the above-described randomization of representation (2.4), we im-
plement the modeling algorithm that relates to the basis vector I(r).

Since the values U(w) are unknown in I, we construct estimators for
these values as follows. For jy = 0 we can put H(ry,0) = u(ry) = 9(r}),
where
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ry €T, rv €L, |rny—ry|=d(rn).
Assume that the first-order derivatives of a solution are bounded in €2, i.e.,

d(r) Ou
TE = O(E) for re€ 1—‘5.

Then for jy = 1 we can take approximately H(ry,jn) = 0. As a result, we
obtain a biased estimator & (wp) for a solution.

Theorem 2. Suppose that the first-order derivatives of the function u(r)
are bounded in Q0 and that the conditions of Lemma 1 are satisfied. Then
E&.(r,0) = u(r) ezists, and

lu(r) — ue(r)] < Cae, € >0, 7€Q.
Moreover, E&.(r,1) = fic(r) exists, and

d(r) du
IT“él“*fls("')lfc?:E: e>0, ref.

Proof. Obviously,

1€ — &| = 1Qn[U(rn, 5) — ¥(r})(1 = )| < QW eCy,

where QS?,) is the weight corresponding to some standard estimator of a walk
on spheres for the case ¢ < c¢*, g =0. O

Theorem 3. Suppose that (2.8) is satisfied, ¢y < 0.488c*, and g = 0. Then
Dé < Cy < +oo foralle > 0.

Proof. Put y = cy/c*, t = dv/c*. Direct calculations show that the value

ofu>o: () <)
maxy " \1-yt?/6/ ~ sint

is attended at a point y* such that 0.488 < y* < 0.489; moreover, the value
of ;- (1 —yt?/6)? is minimal and equal to unity for ¢ ~ 2.175. Hence, £2 is
dominated in the same way as £ in the proof of Lemma 1. m|

To relax the boundedness condition on variance, we carry out the fol-
lowing modification of the estimator. We calculate the function H(r, j) only
at the step (r,j) — (r',0), i.e., at the step to a sphere, but with the weight
[1 — cod?®(r)/6]~ 1. Thus, H(r,j) - H(r,j):
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_ . - . 1 .
H(rk;‘*h:}) =0, H(Tt.‘—h]) = 1— Codg(rt._l)/ﬁH(rti—hJ)'

In the place of the estimator ¢,, we thereby consider the estimator €1 for
which E{, = E&, ;.

Theorem 4. Under the conditions of Theorem 3 the following estimates
hold for g Z 0: D€,y < Cyq1 < +oo for all e > 0.

Proof. Assuming the conditions of the theorem, we have

dvce* 1 2 2
— -1 — ] 1> .
sin(dv/c*) (1 —codz/ﬁ) 2 Csd

Also, observe that H(r,j) = O(d*(r)). Put s(c,d) = ﬁi%"z‘)' Termwise

dominating |€ 1| by the standard estimator 5(®) of a “walk on spheres” for
the case ¢ = ¢/3 < 0.488c*/3 with the replacement H — H, 3e/ep — 1,
a(w,w') = 1, we have

N—-mpy

N
|£E,1| < Z |@nl Iﬁ(wn)f < Cs Z Qz’d?
n=0 i=0

Cﬁ N-mpy ri—1
< g X |Iste.ds)] (e, -1
5 =0 Y=o
C meN . ~
= 5: Y (@i Qinr) = Cr(QW — 1), (2.5)
i=1
Hence; [€.1] <7 for all £ > 0; moreover D@ < 4oo. O
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