
Bull. Nov. Comp.Center, Comp. Science, 48 (2024), 1–12
© 2024 NCC Publisher

Software system
for cellular automata modeling of gas flows

E.K. Burnyshev

Abstract. The paper presents a new software system for cellular automata model-
ing of gas flows. The developed software modules of this system and the algorithms
used in them are described. Testing of the developed modules and system was car-
ried out on several basic gas dynamics problems. The comparison with the known
results is made.

Introduction

Modern science provides a wide range of approaches for modeling natural
processes. One of the most promising methods for modeling spatial-dynamic
processes is cellular automata (CA) [1]. This approach is particularly useful
for describing systems in which the process under investigation is modeled
by nonlinear or discontinuous functions. The cellular automata approach
has been extensively applied in the modeling of gas dynamic phenomena.
The main advantages of cellular automata include a high degree of agree-
ment between simulation results and analytical solutions for gas dynamics
problems, as well as their natural parallelism. Due to these factors, sci-
entists are increasingly resorting to the use of cellular automata models in
their research.

Among the promising methods for two-dimensional modeling of gas flows
is the FHP-MP model [2]. These cellular automata are a generalization of
the classical boolean FHP model [3]. However, in the implementation of the
FHP-MP cellular automata, there is a need to support the following func-
tionalities: defining and adjusting the geometry of the modeling domain;
setting boundary conditions for the problem; utilizing tools to transfer com-
putational models from other software packages.

This paper is dedicated to the description of a software system designed
for modeling gas flows, alongside its main modules and the algorithms em-
ployed within their operation. Specifically, the paper describes: an algo-
rithm for converting a raster image into the hexagonal grid of the FHP-MP
model and an algorithm for converting the geometry of a finite element
model into the FHP-MP cellular automata. The general appearance of the
software system is presented, as well as the architecture of the developed
software modules. Results of system testing on several basic gas dynam-



2 E.K. Burnyshev

ics problems are provided. A qualitative assessment of the results obtained
during the computational experiment is given.

1. Software system architecture

1.1. Overview of the software system. The structure of the software
system for modeling gas flows is described below. The system’s architecture
is illustrated in Figure 1.

Figure 1. Scheme of the software system for modeling gas flows

In Figure 1, the preprocessor, solver, and postprocessor of differential
equations (DEs) are represented by the corresponding modules of the LO-
GOS Aero-Hydro software suite [4]. The solver and postprocessor for cellular
automata are part of the FHP-MP software implementation developed at
the Laboratory of Parallel Program Synthesis of the Institute of Computa-
tional Mathematics and Mathematical Geophysics (ICMMG) of the Siberian
Branch of the Russian Academy of Sciences (SB RAS) [2]. The converters
between the differential and cellular automata representations are located
at the center of the diagram in Figure 1. These converters are essentially
standalone software modules whose primary function is to convert the com-
putational model from one format to another.

Subsystems 1–8 of the software system, illustrated at the top of Figure 1,
are the most popular, understandable, and familiar to researchers [5]. Sub-
systems 4–5 of the software system, located at the bottom of Figure 1,
represent a classical modeling scheme adapted to cellular automata.

The main idea of this work is to combine two modeling approaches: the
mesh models of the LOGOS Aero-Hydro software suite and the FHP-MP
cellular automata. This will attract the attention of researchers and applied
engineers using finite element modeling packages to the cellular automata
approach. Specifically, paths 2-3-5 and 2-3-6-7 (see Figure 1) will allow a
user unfamiliar with the cellular automata approach to utilize the cellular
automata solver. As part of this work, a converter module for transforming
differential representations into cellular automata, as well as a cellular au-
tomata preprocessor, were developed. These modules are marked in green
in Figure 1.



Software system for cellular automata modeling of gas flows 3

1.2. Preprocessor and converter. The cellular automata preprocessor
is a standalone software module implemented in C++ using the CATlib
library [6]. Its primary function is to automatically convert the initial and
boundary conditions from a raster image representing the computational
domain into an input file for the FHP-MP cellular automata solver. The
CA-preprocessor has the following features:

� A bitmap image in the specified format with a description of the sub-
ject area is submitted to the input;

� The cell types (wall, environment, etc.), initial concentration, and
boundary conditions are set using RGB channel values of the input
raster in the specified format;

� As an output, a data file is generated with a description of the modeling
area in the format of the input file for the solver of the FHP-MP
software implementation.

Similarly, the converter from differential representation to cellular au-
tomata is a separate program. The computer implementation of the con-
verter takes as input the mesh of the model under study, obtained from
the LOGOS Aero-Hydro package in the “.ngeom” format [7]. As output, it
generates a data file describing the modeling domain in the format required
by the FHP-MP software solver. The resulting data file is binary and its
format is completely regulated by the CATlib library.

Two new algorithms serve as the basis for the developed software mod-
ules: an algorithm for converting a raster image into a cellular array, and
an algorithm to convert mesh geometry into a cellular array. Descriptions
of these algorithms are provided in the following section.

2. Employed algorithms

To further describe the developed algorithms, it is necessary to clarify the
basic concepts of the FHP-MP model.

The cellular automata of the FHP-MP model will be denoted as a triple
of objects (W,A,N), where W = {w1, w2, . . .} is the set of cells. Each cell
w ∈ W is assigned a corresponding finite automata A. For each cell w ∈ W ,
there is a defined ordered set

N(w) = {Ni(w): N0(w) = w, Ni(w) ∈ W & d(w,Ni(w)) = 1, i = 1, . . . , b};

the elements of which are neighbors of cell w and are called its adjacent cells
or neighbors. Furthermore, d(w1, w2) is the distance between w1 and w2,
where w1, w2 ∈ W . The constant b is the number of neighbors of cell [2].

In the FHP model (Figure 2), the cells can be one of four types: envi-
ronment, wall, inlet, outlet.



4 E.K. Burnyshev

Figure 2. Cell of the FHP-MP model

2.1. Algorithm for converting a raster image into a cellular array.
To implement the cellular automata preprocessor module of the FHP-MP
model, an algorithm was developed for converting a raster image into a
hexagonal model grid. The algorithm consists of the following steps.

1. A hexagonal mesh is superimposed on the original raster, and a rect-
angle is described around each cell, as shown in Figure 3.

2. Within the area of the rectangle, nodes of an orthogonal grid are es-
tablished with a step size of KX/gridSteps (see Figure 3), where
KX is the size of the hexagonal cell, and gridSteps is the number of
partitions in the orthogonal grid.

3. An iteration is performed over all nodes of the orthogonal grid within
each rectangle. For each node, its geometric membership within the
hexagonal cell, which is circumscribed by this rectangle, is determined.
In Figure 3, nodes belonging to the cell are marked in blue, while those
outside are marked in red.

4. During the rectangle traversal, the type of the model cell is determined:
environment, wall, inlet, or outlet. The number of internal nodes for
the cell is calculated by their types. The type of the pixel where the
node is located determines its membership to a specific type.

5. After traversing the nodes of the rectangle, the hexagonal model cell
is assigned the type of the most common type of nodes trapped inside
(environment, wall, inlet, outlet).

In the above-mentioned algorithm, information regarding the type of
pixel and initial concentration is derived based on the values of the RGB
channels in the original raster image. The red channel is utilized for deter-
mining the type of pixel, while the other channels are employed to determine
the initial concentration of particles. In the software implementation of this
algorithm, the correspondence between the pixel types and the values of the
RGB red channel is set in the configuration file (Figure 4).



Software system for cellular automata modeling of gas flows 5

Figure 3. Model cell with superim-
posed orthogonal grid (gridSteps = 12)

Figure 4. Example of a CA preproces-
sor configuration file

In the configuration file shown in Figure 4, there are 16 types of cells,
for the first type (type0) the range of values of the red RGB channel is
from 192 to 255. For the second type (type1) –– from 64 to 127. For the
third one (type2)–– from 128 to 191 and for the last one (type15)–– from 1
to 63. The remaining cell types (from type3 to type14) are reserved and
are fictitious. This is done so that, with further expansion of the system’s
functionality, it would be possible to add new types of cells and use them in
modeling. Here, type0, type1, type2, and type15 correspond to the cells
of the environment, the inlet, the outlet, and the wall, respectively.

At each iteration, after calculating the characteristics of the cell, data
about it is stored in the corresponding element of the cell array. The result
of the algorithm is a representation of the computational domain in the form
of a cellular array.

2.2. Algorithm for converting mesh geometry into cellular array.
The input data for the algorithm is a computational finite element mesh of
the model in the “.ngeom” format (Figure 5). This format for storing mesh
geometry is widely used in the LOGOS Aero-Hydro software package.

The “.ngeom” format defines the structure of a text file consisting of
several interrelated blocks. Let us consider the blocks used in the algorithm.

1. A block containing the finite element numbers and their corresponding
type (a label indicating the finite element’s belonging to a specific
group) will be referred to as the “element-type” block.

2. A block containing the finite element numbers, the number of nodes
in the mesh, and the node numbers that belong to a specific finite
element will be referred to as the “element-node” block.



6 E.K. Burnyshev

Figure 5. Example of a file in “.ngeom” format

3. A block containing the numbers of the mesh nodes and their coordi-
nates. Let us denote this block by “node-coordinates”.

The algorithm for translating from a finite element representation to a
CA can be divided into two functional stages. At the first stage, data is
read from the “.ngeom ” file, and at the second stage, the mesh geometry is
directly transformed into the geometry of a cellular automata.

First stage:

1. Read and store data from the “element-type” block.

2. For each finite element, find the corresponding entry in the “element-
node” block.

3. For each node, find the corresponding coordinates from the “node-
coordinates” block.

After the first stage of the algorithm, a structured data set is obtained.
Each element of this dataset contains the identifier of a finite element, its
type and the coordinates of its nodes. This dataset will be referred to as
the “mesh”.



Software system for cellular automata modeling of gas flows 7

Second stage:

1. In the “mesh”, find the minimum x and y coordinate values of the
nodes (xMin, yMin respectively). Increase the coordinate values of
all nodes in the “mesh” by the absolute values of xMin and yMin
for x and y respectively. At the same time, the z coordinate is dis-
carded for each node, since the FHP-MP model is two-dimensional.
Thus, the projection of the “mesh” onto the XY plane is obtained
and simultaneously normalized.

2. For each specific finite element of the “mesh”, segments are con-
structed, the vertices of which are the nodes of this element.

3. Divide the length of each segment by the size of the model’s hexagonal
cell: countSteps = L/KX . Here, countSteps is a positive integer, L
is the segment length, KX is the size of the model cell.

4. If countSteps = 0 (Figure 6a), then for the ends of the segment,
determine the cells in which they are geometrically located. Assign
to these cells the type of the finite element from the ”mesh” to which
the segment belongs. If countSteps is non-zero (Figure 6b), then it
determines the number of splits of the segment. Divide the segment
into countSteps equal “sub-segments”. For each vertex of the “sub-
segments”, determine which model cell it geometrically falls into and
assign the corresponding type to this cell.

a b

Figure 6. Square finite element of the “mesh” and topology of the FHP-MP
model: a –– element sides are smaller than the size of the model cell; b –– element
sides are larger than the size of the model cell



8 E.K. Burnyshev

3. Testing of the software system

3.1. Problem of sudden expansion in gas pipeline flow. Several well-
known gas dynamics problems were selected to test the preprocessor module,
including the problem of sudden expansion in gas pipeline flow (Figure 7).

Figure 7. Sudden expansion in gas pipeline flow
(taken from [8, Fig. 7.8, p. 261])

The preprocessor input was a raster image, created using a graphics
editor, which represented the geometry of the flow expansion problem. Due
to the symmetry of the problem, the gas pipe was modeled as expanding
only in the top half. The initial image had a resolution of 514 by 232 pixels.
The KX parameter of the configuration file, which indicates the size of the
model cell, was set to 1. The cellular automata model parameters that
determine the number of particles emitted by the inlet and absorbed by
the outlet per iteration were set to 10 and 3 respectively. The simulation
was conducted for 2,000 iterations of the cellular automata. The following
transformation of the computational domain in the cellular automata was
obtained (Figure 8).

Figure 8. CA-region of the gas pipeline flow expansion problem after 2,000
computational iterations



Software system for cellular automata modeling of gas flows 9

The FHP-MP model postprocessor generates an output raster describing
the computational domain according to the following rules: high-pressure
areas are bright (bright red), low-pressure areas are dark (black); particle
velocity vectors are indicated by yellow arrows, with the magnitude of the
velocity being proportional to the length of the arrow.

As seen in Figure 8, a low-pressure area forms in the upper part of the
gas pipeline during flow expansion. In this zone, flow separation from the
pipeline walls occurs, leading to the formation of a vortex. Such behavior
of the gas flow within the computational domain fully corresponds to the
known analytical solution [8].

3.2. Problem of flow around a circular cylinder. As one of the test
cases for verifying the functionality of the conversion module, the problem of
flow around a circular cylinder was selected. The simplicity of the geometry
of the study region, the known analytical solution, and the high level of
interest from researchers in the field of gas and hydrodynamics were key
factors in choosing this problem as a test.

The geometry of the problem was defined in the LOGOS Aero-Hydro
package (Figure 9). The finite element mesh was saved in the “karman.ngeom”
file and fed into the converter module. Four types of elements and their cor-
responding types of cellular automata in the FHP-MP model were defined
as parameters in the converter’s configuration file: Inlet-1, Outlet-2, Wall-3,
Symmetry-4.

It can be seen that the conversion of the computational domain’s geom-
etry is performed correctly (Figure 10).

Figure 9. Geometry of the computational domain of the circular
cylinder flow problem in the LOGOS Aero-Hydro package

Figure 10. Geometry of the computational domain of the circular
cylinder flow problem in the FHP-MP model



10 E.K. Burnyshev

Figure 11. The result of calculating the circular cylinder flow
problem in the FHP-MP model after 18,000 iterations

It is worth noting that in the cellular automata model, the types of
cells for the outer contour and the inner part of the circular obstacle differ:
inside are “environment” type cells, and outside are “wall” type cells. In
the LOGOS Aero-Hydro computational model, the cylindrical obstacle is
represented only by an outer layer of elements (Wall-3). This discrepancy
in computational models is due to the nature of the conversion algorithm’s
operation and does not affect the calculation results.

The problem was solved in both cellular automata and finite element for-
mats. Using the FHP-MP cellular automata, a turbulent flow pattern of gas
streams around the circular obstacle was successfully simulated (Figure 11).

The cellular automata array size was 2,566 by 721 cells. At least 10,000
iterations of the cellular automata transition function were required to com-
plete the transient processes. The final calculation result, shown in Fig-
ure 11, was obtained after 18,000 iterations.

The final simulation image obtained in the LOGOS Aero-Hydro package,
as well as the result of a real experiment captured by a stationary camera,
are presented in Figures 12 and 13, respectively.

As a result of the testing, successful transfer of the computational do-
main’s geometry from a mesh representation to a cellular automata format
was achieved. Qualitative similarity of gas flow patterns was observed in
both the LOGOS Aero-Hydro package and the FHP-MP model, as well as
with the results of the real experiment.

Figure 12. The result of the calculation of the circular cylinder
flow problem in the LOGOS Aero-hydro package



Software system for cellular automata modeling of gas flows 11

Figure 13. A double row of alternating vortices behind
a circular cylinder (taken from [9, Fig. 31, p. 68])

Conclusion

The following components were developed: an algorithm for converting
raster images into a cellular automata array in the FHP-MP model and
an algorithm for converting the mesh geometry of a finite element model
from the LOGOS Aero-Hydro package into the FHP-MP cellular automata.
These algorithms were implemented in C++ as standalone software modules
of a preprocessor and converter.

The developed modules, along with the solver and postprocessor of the
FHP-MP model, form an integrated system for gas flow modeling (Figure 1).
Through the converter, this system can be integrated with the LOGOS Aero-
Hydro package.

The developed modules and the overall modeling system were tested on
several basic gas dynamics problems. The results of the computational ex-
periments exhibited qualitative agreement with the analytical and numerical
benchmarks.

Future work on the gas flow modeling software system is planned. One
area of development is to expand the functional capabilities of the converter
module. It is intended to consider not only the geometry of the computa-
tional model but also some of its quantitative characteristics (e.g., velocity,
pressure). This enhancement will allow for the assessment of not only quali-
tative similarities and differences between solutions in the cellular automata
and finite element models but also enable correspondence between their
quantitative characteristics.

References

[1] Theory of Self-Reproducing Automata / J. Von Neumann.––Urbana: University
of Illinois Press, 1966.

[2] Medvedev Yu.G. An extension of the cellular-automaton FHP-I flow model
to the FHP-MP multiparticle model // Vestnik Tomskogo gosudarstvennogo
universiteta. –– 2009.–– No. 1(6). –– P. 33–40 (In Russian).



12 E.K. Burnyshev

[3] Frisch U. Lattice-Gas automata for Navier-Stokes equations / U. Frisch, B. Has-
slacher, Y. Pomeau // Phys. Rev. Lett. –– 1986.–– No. 56.

[4] Betelin V.B., Shagaliev R.M., Aksenov S.V., et al. Mathematical simulation
of hydrogen-oxygen combustion in rocket engines using LOGOS code // Acta
Astronautica-96. –– 2014. –– P. 53–64.

[5] Basov K.A. ANSYS for Designers. ––Moscow: DMK Press, 2009 (In Russian).

[6] Medvedev Yu.G. Architecture of the Cellular Automata topologies library //
Bull. Novosibirsk Comp. Center. Ser. Computer Science.––Novosibirsk, 2022.––
Iss. 46. –– P. 27–41.

[7] Lopatkin A., Loginov I. LOGOS software package. Integration of some file for-
mats for data storage // Proc. ST conference “Molodej v nauke”.–– Sarov, 2011
(In Russian).

[8] Mechanics of Fluids / B. S. Massey, J. Ward-Smith.––7th ed.––Taylor & Francis,
1998.

[9] Aerodynamics / T. Karman.––McGraw-Hill Paperback, 1963.


