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Polar and azimuthal geometrical
divergences in two-dimensional media
with a blockwise constant gradient

V.A. Tsetsokho, A.V. Belonosova, A.S. Belonosov

Introduction

Beginning with paper [1], the ray method has long been used to solve numer-
ically various problems of mathematical seismics. Many papers (see, e.g.,
[2-5]) were devoted to questions of calculation of geometrical divergence in
combined two- and three-dimensional media with curvilinear interfaces. For
layered and blockwise gradient media (in this paper, no distinction is made
between these media), explicit expressions for ray, eikonal, and geometri-
cal divergence (see [6-8]) have been widely used in computer realizations of
the ray method. For instance, explicit expressions used in the calculation
of geometrical divergence for a three-dimensional blockwise linear medium
written in a special curvilinear system of coordinates and not yet adapted
to the two-dimensional case are presented in [8].

In this paper, the authors present their long experience of work with
computational schemes of the ray method for the calculation of geometrical
divergence in two-dimensional blockwise linear media. The authors believe
that the following two considerations justify the appearance of this paper:

1. The algorithms obtained for the calculation of geometrical divergence
lj in the plane of a ray and geometrical divergence | in the direction per-
pendicular to the plane of the ray are new and, what is more important,
they are represented in a form that can be easily used for programming.

2. Results 1 and 2 formulated in Section 5 for divergence [, in an ar-
bitrary (not necessarily gradient) block medium with piecewise smooth ve-
locity V' (P) are interesting from the point of view of theory. For instance,
a method of derivation of explicit solutions for a class of direct and inverse
problems of ray acoustics proposed in [9, 10] is based, instead of variable ¢,
on the following variable (denoted by the same symbol):

ldz|

Az
(y,z) ()

(10, p. 194]. In our notation, it is written in the form
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t— f V(P)dss.
L(Mo,M)

Here L(Mjy, M) is the ray connecting points My and M. It turns out (and
this follows from Result 2) that the variable ¢t has a simple geometrical
meaning: it coincides with the divergence [; along the ray L(My, M) up to
a factor 1/V(Mp).

1. Model of medium

Assume that the properties of an elastic medium do not depend on the
coordinate y in a rectangular Cartesian system of coordinates O, =z, y, z.
The propagation velocity V' = V'(z, z) of a longitudinal or a transverse elastic
wave as a function of z and z is considered to be specified in a rectangle 0 <
¢ <L,0<z<H. It is assumed to be a piecewise smooth function which
has at piecewise smooth “interfaces” either a discontinuity or a discontinuity
of its first-order partial derivatives. A region of smoothness of the function
V will be called, as usual, a block. It is assumed that the number of blocks
is finite and that the boundary of each block consists of a finite number of
smooth sections of interfaces and straight-line segments. The straight-line
segments bound the global domain of the function V. Every smooth section
of the boundary of a block is either specified by an equation of the form
z = f(z) or z = f(z), or is a vertical or horizontal section at the boundary
of the rectangular domain in which the propagation process is being studied.

A variant of the geometry of an interface in a block medium described
above is presented in Figure 1.

0 L x

H

Z \

Figure 1. An example of block structure of a medium

Unless otherwise specified, the propagation velocity V; of a perturbation
inside each block B;,i=1,2,..., N, is a linear function

Vi(z, z) = a;z + biz + ¢i. (1)
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2. Problem statement

Formulas to calculate the geometrical divergence of central ray fields along
rays located in the plane Ozz are derived for the model described above.
The purpose of this section is to define the terminology used here.

Let us consider an arbitrary ray L going out of the point My. At the
points M;, i = 1,...,n — 1, it meets successively with interfaces at which
reflection, refraction, or exchange may take place. Then it comes to the
point M,,. '

We call this ray regular if:

1) The projection M; of each of the points M;, i = 1,...,n — 1, on the
plane Oz z has a circular ¢;-vicinity, in which the interface is a smooth
arc with ends located on the circle;

2) the ray glancing angle at each of the points M; is not zero.
We say that a ray is locally equivalent to the initial ray if it:

(a) begins at My;

(b) passes successively the same n—1 interfaces in spherical ¢;-vicinities of
the points M;, ¢ =1,...,n—1, as the ray L with the same (refraction-
reflection) type of passage and exchange;

(c) ends at a point M of the block with the end point M, of the ray L,
and

(d) satisfies the conditions of regularity.

In general, we say that the two rays starting from a point and having end
points in a common block are equivalent, if they can be made the first and
the last members of a finite succession of rays, in which rays with neighboring
numbers are locally equivalent.

Note that equivalent rays are also called rays of a common code.

Now assume that a ray L is in the plane Ozz. We call it a basic, or
initial, ray, because we shall calculate all the necessary values along it.

Let us introduce ray parameters ¢, 6, ¢t of the points M of all kinds of
rays equivalent to the initial ray: ¢ and @ are the azimuthal and polar angles
of a ray starting at a point My. These parameters are referred to a system of
coordinates obtained from the initial system of coordinates by a translation
of the origin to the point Mp; t is the time of propagation of a perturbation
along a ray with angular parameters ¢ and # from the point Mj to a point
M. Let us denote the ray parameters of the final point M,, of the ray L by
©o, 0o, and to. Since L lies in the plane Ozz, g = 0 or 7. For the sake of
definiteness, we assume that @y = 0 from here on.
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For each admissible value of (p,8,t) by #(,¢,0) we denote the radius

vector Oﬂ of the point M with the given values of ray parameters. Thus,
the vector function

z(t, v, 0)
(p,8,t) = F(t,0,0) = ( y(t,,0) ) , (2)
z(t, ¢, 6)

is defined. Here ¢, 0, and ¢ are ray parameters of all kinds of points lying
on rays equivalent (or locally equivalent) to the basic ray.

When studying the differential properties of function (2) in the vicinity
of (o, 80,%0), it is convenient to consider that the corresponding point M,
(it is the final point of the initial ray) does not lie on the boundary of a
block. This requirement does not cause loss of generality, because otherwise
the velocity in this block can be considered somewhat prolonged outside the
boundary of the block near M, by expression (1) that specifies it. Then the
function (2) under study is a restriction of the similar function determined
for the block thus modified.

We assume that all above conditions are satisfied and that the boundaries
of the interface near points M;, ¢ = 1,...,n — 1, are sufficiently smooth
curves. Then we can assert that, for all ¢, 6, t that are close enough to their
values at the points of the basic ray not coinciding with M;,:1=1,...,n-1,
function (2) is defined and repeatedly differentiable. Then the quantities

- o 1 87(t,¢,0)\|?=¥ =0
=0 (M,M)E (m“(—af—)) oo , (3)
=6o
p=tp0 (=0)

o7 df BF(tl (p,e)

(4)

8=69
are defined. Here M # M;, i = 1,...,n — 1, and the vector #(t,¢,0) is
defined above. We call (3) azimuthal divergence, and (4) polar geometrical
divergence at the point M along the ray L. From here on, we write l J_,H(M )
instead of 111 | (Mo, M).

The purpose of the present paper is to obtain explicit expressions for [
and I, for the model of medium described in Section 1.

3. Equation for variations

It follows from definitions (3) and (4) that vectors I} and f|'| are tangential
to the surface ¢ = const or, equivalently, they are orthogonal to the ray
L at the point M. In this case, /| lies in the plane of the ray, and [, is
orthogonal to this plane, because function (2) is even with respect to ¢. Let
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7 denote the unit vector tangential to the ray L at the point M. The vector
is oriented in the direction where ¢ increases. Let 7 denote the unit vector
orthogonal to 7 lying in a plane of the ray and such that the pair (7, V) has
the same orientation as the pair (E,:) of the unit vectors of the z and =z
axes, respectively. The unit vector of the y axis is denoted, as usual, by J.
Therefore, assuming that

w=>0 -7, =9, (5)
we can write - L.
Iy =17, I” =l||z'/'. (6)

Here we show that the quantities J; and I satisfy the same differential
equation which follows from the equations of variations for the ray equation
along its sections between the points M; and M;,;, i =0,...,n — 1. This
justifies the use of the same symbol u(t, ¢g, 8p) to denote

sinfpl; = u(t, g, b) (w0 = 0), (7)
) = ul(t,p0,60) (wo=0). (8)

Let us derive the equation we promised.
We choose the following ray equation parameterized with respect to

time t: )

d (% Vv

a(ve) =7 )
Here the symbols d/dt(...) and (.:.); denote the same, i.e., (partial) deriva-
tives of (...) of the variables ¢, ¢, and 8 with respect to t. Using the equality

feo L1
71 =T (10)
we rewrite (9) in the form
_l_f + “i (l) = __H_
va T Ta\v)T v
Hence, taking into account that
d (1 1d
a(v)=—vanv
we obtain
d7 _d
- ~ TV =-vV. | (1)

Now let us differentiate (11) with respect to a parameter a, where a := ¢
or a:= @, at a = ag (ag = g or y, respectively). Changing the order of
differentiation with respect to a and ¢ (which is possible because function
(2) is smooth), we write the result in the following form:
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d (07 ot .d [0 a L o
Case a = (. Since the function V and, hence, VV and In V' do not depend

on y,
i) a

E}-V—- —a(an)=0, —éa(VV):O
and, consequently,
F-‘]_ + F.z =0, (13)
07 (10) 8 (.1 19 .
8o~ Oa (r 7) "V 8a (F2)- (14)

Changing the order of differentiation in the right-hand side of (14) and
taking into account formulas (3), (6), and (7), we obtain

ofr 1d
da  V dt( 7) = ( ) (15)
Finally, from (12), (13), and (15) we obtain the following equation:
d 'l:l.t u;) d
dt(V) (V @V =0 (16)

The first integral of this equation for each of the intervals [t;, ;1] is evidently

% = const or % = const. (17)

Here 1, is the derivative of u(t,0,8) with respect to the arc length s of
the ray L.

Conclusion 1. Relations (17) were obtained without the use of the prop-
erty of linearity of function V' in the block under consideration.

Case a = 6. Since the function V' in the block under consideration is
linear, VV = const. Therefore, F3 = 0 (in (12)). Let us multiply the both
sides of (12) scalarly by 7. Then, taking into account that (¥- F1) =0, we

obtain Q797 8 d
- T = T _

From the relation of orthogonality

(i‘_ﬁ.ﬁ)ﬂ
dt da)

the first term in (18) can be written in the following form:
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. d /o7 d (., 07
(> &(5) - a5 19)
If we use the relations of orthogonality

(8) (7-7%)=0 and (b) (a- ‘;—';) ~0
and the equality
-
(c) -5 =u,

o0

87
obtained from (4), (6), and (8), we transform the expression (17 . :91) as
follows: . a

NG ORIEY
Yoa) T \Wae\v)) TV e\ v V(" 0"

@ 1/, 9;)@1(~.i )

= V(V 91‘1 = Vv v dt(uy)

- 3+2(,; d")(s_).“_t. (20)

Thus, in accordance with (18)-(20), as in the case a := ¢, for (4:/V) equa-
tion (16) (and, hence, equalities (17)) is valid.

To conclude, returning from u to [, !, we formulate some results that
follow from the fact that (16) has the first integral (17):

For any two points M and M’ of the ray L lying between M; and M;,,
1 =20,...,n — 1, the following equalities hold:

(I)s(M) _ (i)s(M")
V(M) — vy
(M) ()a(M)
V(M) vy

Equality (21) need not be valid only for a linear function V. From (21) and
(22), integrating over the arc length s of the ray L between the points M
and M’, we derive that

(21)

(22)

W(M) =1 (M) + (iL),(M") I(M', M), (23)
(M) =1y (M") + (iy),(M) (M, M). (24)
Here
, p e 1 7
(M, M) = me(F(s,qou,Bg))ds - V(M,)jV(P) dsp.  (25)
s(M") M
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Let us apply (24) for a ray that lies on L but starts not at My but at M ',
Then I;(M") = 0, ({;)s(M’) = 1. We see that

(M, M) :=1)(M',M). (26)

That is, /(M', M) has the meaning of polar geometrical divergence at the
point M along a ray starting at M (lying on L).

Since I (M ', M) has an explicit expression for media with linear velocity,
we obtained explicit expressions (21)-(26) which relate the values of quan-
tities &) )|, (i 1,11)s at two arbitrary points lying in a smooth section of the
ray L

4. Formulas for recalculation at interfaces

To obtain final formulas for geometrical divergence, we should find relations
between the values of quantities I, (M), (I.,)s(M) as the point M passes
through the points M;, i = 1,...,n — 1, that lie on interfaces.

Let M, denote any point M;, and let S denote an interface as a surface
in the space Ozyz on which M, lies (the same letter S, if necessary, will
denote the trace of the interface on the plane Ozz). We write the boundary
of § in the vicinity of M, in implicit form:

F(z,y,2) = 0. (27)

Here F(z,y,z) is a sufficiently smooth function that does not depend on y
and such that VF(z,y,z) # 0 for all (z,y,z) € S in the vicinity of M,.

All values referring to a ray incident on S at a point of incidence M
will have superscript “~”, and values of an outgoing (reflected or refracted)
ray will have superscript “+”. Using these symbols, we write the first basic
relation on S that expresses the condition of continuity of a ray during its
passage through S:

i:_(t’(l":a) :F+(t!tpl 0) (28)

Here
t =t*(p,0) (29)

is the equation of the surface S in the space of ray parameters ¢, ¢, . That
is, t£(¢, 6) is a solution for ¢ of equation

F(7(t,¢,0)) =0 (30)

in the vicinity of ray parameters g, 8, and t. of the point M,.
We write the second basic relation on § which is an expression of the
Snellius law of ray refraction and reflection. For this, we consider the unit
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vectors 7i* and 7~ normal to S at the point M with ray parameters t, o,
and 6 having acute angles with the unit vectors 7+ and 7- tangent to the
ray at the point M. It is clear that 7i* = 7~ under refraction and i+ = —fi-
under reflection. We write the Snellius law in the following form:

V(M)
V(M)

Our derivation of formulas of recalculation is based on the differentiation
of relations (28), (30), and (31) with respect to v and 8 under the assumption
(29). Prior to performing these operations, we note that, as in Section 2,
some stages of the derivation will be the same for each of the parameters

¢ and 0. Therefore, we give them, as in Section 2, a common name “a,
a:= p, or a := §, and assume that

[7*(t, 00, 0) xia* (M)] = (7i*) 7 (&, 00, 0)xA~(M)].  (31)

f, S
—(t — gt t . 2
Then . o ‘o ,
. u®(t,p0,0)j = (sin@)lj at a:= p;
u(t,goU,B) = { + - + ., + (33)
u (t, QO(J,G)V = I” v at o ;= 9.

Recall that here () j is the unit vector of the Oy axis, 7* are the unit vectors
orthogonal to 7 (respectively), oriented so that the frames (M, 7*, 7%) are
of the same type as the frame (O, k,1).

First we differentiate (30) with respect to o under condition (29). Then,
using (32) and the equalities

it = :i:l—z%, Fe=7,-V, (34)
we obtain (7t - %)
£y n--u
(t )a - V;(ﬁi K ‘?i)' (35)

Now let us differentiate relation (28) with respect to a under condition
(29) and make use of (32), (34), and (35). We have

e (ATewt) . L (A -aT)
{7 —-—~—(ﬁ+."__,+)1' =4 __(fi'--r"")T . (36)

From (36), we derive formulas for recalculation of the quantities I and [

Recalculation of I, . In this case, we take a := ¢ in (32), and 6 := 6 in
(33). Then, in accordance with (33), @#* are parallel to j. Since 7* lie in
the plane Ozz, (i* - 4*) = 0. Therefore, from (36) and (33) we obtain

(M) =1 (M,). (37)

Thus, M — 1, (M) is a continuous function along the ray L.
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Recalculation of I. Here we set a := 6 in (32) and 6 = o in (33). From
(33) and (36) we obtain

(o~ B0 (o B2y

We verify directly that the vectors

+
it = [ 77 - (- 9] (38)
are orthogonal, respectively, to the vectors 7i*, where

{ fi] under refraction,
nt =
i —fi; under reflection.

As a result, we obtain

JE (39)

@)L

o (7t -ﬁ-)L (40)
- cos 3

Equality (39) has a simple geometrical interpretation given in Figure 2
for the case of reflection.

M \
Continuation of reflected
ray to the lower area

Figure 2. Geometrical interpretation of the recalculation of [
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In Flgure 2, ~M,M, is the trace of the incident wave front; the dashed
line —M M isa contmuatlon of the ray reflected at the point M to the lower
medium; vM M is a continuation of the trace of the reflected wave front.
From the curvilinear rectangular triangles AM, M, [\ M and AM, M| M with
a common “hypotenuse” M, M with an accuracy up to o(df) we obtain
the equality . MM

MM| |,
C05ﬂ+ = COSﬁJ: (: [M*MD:
in which | M, M| = |I|d8 + o(d6).

Now let us derive formulas of recalculation for (i |)s- For this purpose,
we differentiate relation (31) with respect to & under condition (29). That
is, we operate on the both sides of (31) by the differential operator

Aa(o) = ()t + %(. ). (41)

Here t, is calculated by using any of formulas (35). For the present, we
write the result of the differentiation in a “compact” form, and relate it to
the point M,:

)[1(Aa?) x 5] + 7 x (Aat)]]
= 7[{(Aa?) x 7+ [F x (Ra@)] +(Aar) [Fx 7], (42)

V(M)
V(M)

v=v(M) = (43)

Recalculatlon of ({1)s. Let us assume that o = @in (42). Then A, (...) =
( )y Aafi = 0, Aqy = 0. These equalities are related to the symmetry

of the medium and the ray field about the plane Ozz. Equality (42) takes
a very simple form:

o7 1% a7 1
(5577 =[5 *7] (44)
However,

OF (15) e, = (33) ., (L) - .
dp (V)JT = sinfy v 5§ =sinf (iL), . (45)

Therefore, (44) and (43) can be written in the form

()3 (M) _ (i), (M)
Vv (M,) V(M)
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Conclusion 2. It is likely that the following alternative form of relation
(46) is in a better agreement with (21):
V(M) V(M)
Here the symbols (...)(M,), (...)(M,) denote limiting values of the
quantity (...) at the point M, for the incident ray and outgoing ray, respec-
tively.

Recalculation of (iil)ﬂ' Let us assume that a = @ in (42). For simplicity
of representation, we omit the signs “+” below, and give them only in the
final result. To expand equality (42), we need the following two rules:

1. The rule of operating by the operator A, on the superposition
®(7(t, @0,0)). Here ® is either a scalar function or a vector function that is
sufficiently smooth. This rule is represented by the formula

A,® = dB(A,7). (48)

Here the right-hand side is the value of the differential d® for the vector
AT

? 2. The rule of operating by the operator A, on 7(t,(0,8). We have
actually obtained this rule. Recall that the operating by the operator A, on
a function of ¢, ¢, @ is the differentiation of this function with respect to
under condition (29). We applied this very operation to the functions 7 *(t,
¢, 6) prior to formula (36), and formula (39) resulted from it. Hence, we
obtain the following formula (as before, we omit “+”):

il

Agi"(t, o, 8) = @-7) . (49)

Applying rules (48) and (49) to A,y and A7, we find

V*(#(t, 90,0)) | (48) ) & Y
Ay = A, | —— 22 = dy(AaT) = — ==, 50
o7 V= (#(t, ¢0,0)) (A7) =5 L (A7) (£0)
s (8),(49) dii(fiy ),  On
Agii = n(r(t,cpo,ﬂ)) NI I = oL A7) (51)

Now let us find A 7. For this, we transform expression (41) by substi-
tuting ¢/, from (35) into it and taking into account that @ = [ at a := 6
(see (33)). We obtain

fi-v 0

Then 97 (-7) 07
"...._T_ n-v _T

A7 =26 ~ U7 7) bs
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Using (20) and (33) we derive that

or _ (5 0T\ @)t . (39
50 = (u 39) vV = U (l”) (52)
Therefore ) o
o . V) o7
ApT = ()57 ln (~, ) 98" (53)

Let us introduce k;, ki, as the curvatures of the ray and the boundary, re-
spectively, at a point M = M(¢, g, #) by choosing their signs in accordance
with the equalities

or .

e k.7, (54)
aﬁ — =) =

—maﬁl =kp(A-77)7,. (55)

Note that due to the factor (i - 7i~) introduced in (55), the equality
ki = k; = kp holds. Here it turns out that ky, > 0 if the direction of
convexity of the boundary (along some of the axes) is an acute angle with
the vector 7i—, and k < 0 otherwise.

We use the notation y

I

('n'r_A

(A is the divergence along S, in contrast to I, where it is the divergence
along t = const or across the ray). Then

A = [(y)s — A7) - ke]ii - see (53) and (54);

Aji = [A(ﬁ-ﬁ‘) . kb]ﬁl - see (51) and (55);
(Agy) = ai_?;_ A - see (50).

Now, let us express [ x 7], [ X 7i], [ X 7i] in terms of [ x 7]. We have

7x7i] =[Fx (@ 97+ @E 77| =G DF =,
[Fx fiL] = [7x (AL A7 + (L 9)9)| = (e - 9)F x 7,
[Fxf] =[Fx(@-7)7+ @ 9)9)] = 9)F =,
so that _
[FxnA] = (cosPB)[Fx 7,
[T x 7] = —(cos B)[F x 7],
[T x 7] = —sgn(n- F)(sinB)[F x 7.

We find from these formulas that
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(10457 x 7 + 7 x (453)]]
= [(i“)., - Ak (7-7) — kb(ﬁ.ﬁ—))]i cos 3|7 x 7%,

(Agy) [F x i) = — 3‘1"1 A (7 - 9)[7 x 7). (56)

The equality [#* x ¥*] = [#~ x 7] holds due to the above construction.
Note that sgn(7i - #) controls the positiveness of negativeness of the angle of
incidence 3 if we consider it oriented between 7 and #i: if (7 - &) > 0, then
arg(7,7) > 0; if (7 - ¥') < 0, then arg(7, ) < 0.

And, finally, by introducing the angle of incidence 3~ and the angle of
reflection/refraction 8* and by using expressions (56) in (42) (written for
a := @), we obtain a formula for recalculation of (I;), in the following form
(all values are related to the point M.,)

7)) = ool (- 9) + bl 7)) | cosp’ (57)
=) o (k) + ) cong” — L T,

(7 - ¥) = sgn(n - ¥) sin 3.

5. Azimuthal divergence. Summary of results
Formulas (46) and (47) make it possible to formulate the following

Result 1. In a medium with a two-dimensional piecewise smooth velocity
for each regular ray L lying in the transverse plane, the following identity is

valid: .
(IL)s (M)
V(M)

Here [, (M) is the azimuthal divergence at a point M along L, const, and
the constant depends only on L. At the points M = M;,i=1,...,n—1,
the ray meets with the interfaces: here the identity (58) is understood as an
equality of the limiting values at the incident and refracted/reflected parts
of the ray L. Then, in accordance with (37), [, (M) is a continuous function
of a point M € L. From (58), we have

(i)u(or) = Ue2), (59)

= const, M e L. (58)

where (I1),(Mp) = 1.
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Therefore, integrating (59) over the length of the arc s along L from M,
to My, we obtain the following

Result 2. In a medium with a two-dimensional piecewise smooth velocity,
the azimuthal geometrical divergence ! 1 along any regular ray L is given by

the formula
M,

1

) = = — .

L (M) = 11 (Mo, M) = s f V(M) ds, (60)

My

Assume now that in each block B;, where a section L(M;, M; ;) of the

ray L between the points M; and M; 1, the velocity V; has a constant

direction g; (|¢| = 1) of the gradient (the modulus of the gradient does not

need to be constant). Then the Snellius law is satisfied in each block B;
(cf. (58)): .

[Fs (M) x gl

V(M)

Hence, we can write

= const;, M € L(M;, M;,).

v(n) = — VM) [Fu00) x @]
Yy

[F(M]) x G]
Integrating this equality along L from M; to M; .y, we find that

Mt

8(Miy1)
V(M) . B
/ V(M)dSM = '[ml:( / r,ds) X Q‘,J
M; s(M;) v

— .
| M M; % g

= V+ M YV I 61
) o0 <al oV
Let us denote (this notation does not contradict (25))
——
M:M:.\ 1 x &
UM;, Miyy) = M M;1 x i (62)

|7+(M;) x G|~
We obtain from (60)-(62)

Result 3. In a two-dimensional block medium with a constant direction
g of the velocity gradient V; in each block B;, the azimuthal geometrical
divergence along a regular ray L{MyM,,) is given by the formula

L (My) = L (Mo, Ma) = s [V (Mo, M) +

V+(M1)I(M1: MZ) to+ V+(Mn—1)I(Mn—1: Mﬂ)] . (63)
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Here V' (M;), i = 1,...,n — 1, are the limiting vales of the velocity V' at
the points M; from the refracted/reflected part of the ray L. The quantities
I(M;,Mi11), i = 0,...,n — 1, are calculated by using (62). They are the
azimuthal geometrical divergence along sections L(M;, M;1) of the ray L
with a polar axis at the source M; directed along the vector g.

Below we show how to construct, using dividers and ruler, a section equal
to [(M;, M;41), if the points M;, M;41 and the vectors 7H(M;) = 75, §; are
given (Figure 3).

Let us draw a straight line parallel to the vector ¢; through the point
M;,,. Let us draw another straight line parallel to the vector 7; through

the point M;. Let M;*! be the point of in-
M; tersection of these straight lines. Then

(M;, Miy1) = |M; M.

We adapt expression (63) for the case when

1(M;, M;-)) M;,, all b; = 0 in formula (1) , ie., when V; =
a;z + ¢;. Then ¢ = Sgn a;i (f is the unit
it vector of the Oz-axis), and (62) is written
' in the form
Figure 3. Construction of
the geometrical divergence M 7l
¢ UM, Mit1) : L(M;, M) = MiMir > 3

But |M; M1 X ;| = |zi41 — zi|, where z; = z(M;),i=0,...,n—1, and

-

|7+ (M;) x i| = singp™ (M)

Here v (M;) is the angle of the vector 7+(M;) with the axis Oz. Thus, we
have obtained

Result 4. For the model of medium described in Section 1 when all b; =0
in (1), the quantity I, (M,) determined from (3) at M := My, is calculated
by the formula

IZ-:+1 - zil

sin (M) (64

n—1
L (M) = g3y S ¥ O4)

Here |zi41 — %] is the shift of the L ray section along the Oz axis between the
points M; and M1, ¥*(M;) is the angle of the Oz axis with the tangential
vector M; to the part of the ray L going from the point M;; V+(M,~) is the
limiting velocity value at the point M; from the part of the ray L that goes
from M;,i=0,...,n—1.
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6. Polar geometrical divergence.
Summary of results

Note that for polar divergence there is no single expression similar to (63).
Calculation of I at the final point M, of a ray L is made in n steps by
performing at every i-th step (i = 0,...,n — 1) the following operations of
(a) recalculation and (b) translation:

(a) at ¢ =0, the initial conditions IIT(Mi) :=0 and (in):(Mi) = 1for [ at
the source are set; at ¢ # 0, the recalculation of IH(M,-) and (i”);(M,-)
to zﬁ(M,-) and (i), (M;) is done by formulas (40) and (57);

(b) the “translation” of l) and iII along L(M;M;,,) from their values
lﬁ'(M.;) and IIT(M‘) at the point M; to the values li(Mi.}.l) and Iﬁ(MiH)
at the point M;,; is provided by formulas (22), (24), and (25); in this
case, li(M,,_) = I}(My), and therefore we get the result at the step
t=n—1.

The above algorithm is only a preliminary formulation of finding 1) (M),
because the recalculation and translation formulas are still not written in a
form that was announced. Besides, recalculation formulas should be special-
ized for linear velocities, because the expressions presented were obtained
without the assumption of linearity. Here we are going to give expressions
for the derivative 8y/0n; (see (57)) and for the ray curvature.

Let us find an expression for (8y/dn| )(M;). Recall that

Vi(z,z) =aizc +biz+¢;, i=0,...,n—1, (65)
is the velocity along the section of the ray L between the points M; and

M4y (i.e., the velocity in block B;). Then the function v (see (43)) at the
point M; is given by the formula

) V(M) V(M) &z + biz + ¢;
M) ‘= — = — . 66
V(M) V(M) Via(M) eigz+bijz+cig (66)
Hence, we find that
1 - ~

Vy(M;) = VilO%) [(a,- — Yiai—1)i + (b; — ’rz'bi-l)k] : (67)

where bt

AiTi T 032 T &

¥ =y (M;) = - (68)

ai 1% + b1z +ciy
It can be easily derived from (38) that
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T

AL(M;) =7, = ng(M;) -1 —n; (M) -k =ngi—ng (69)

Thus, in accordance with (66) and (68), we have

Oy df L
B—T'E(M’) = (Vy-n])
1

m [(Gi - 'Tiai—l)n{z — (b - 'nb,v_l)n;z]_- (70)

Now let us find an expression for the ray curvature k; given by formula
(54). It is known that in the case of linear velocity V(z, z) = az+bz+c each
ray is a circumference. Its center O,, for a ray lying in the plane Ozz, is
at the intersection of the straight line V(z, z) = 0 with a straight line going
through a point M, = (., 2z.) of the ray normal to the tangential vector 7
to the ray at this point (Figure 4).

Figure 4. Construction of a ray pass-
ing through M, in the direction 7 in a
medium with linear velocity

We write the equation I‘/(m, z) =0 in the form
a(z — z.) + b(z — z.) = =V (2., 2,) = -V (M,).
The equation of a straight line passing through M, orthogonally to 7 is
T2(Z — 24) + T2(2 — 2z.) = 0.

Solving this system for # — z, and z — z, (the coordinates of the vector
ey
M*Ot)) we find that

_ V(M)
(M*O*)z = (2: - I,) - at, — szs

_ V(M)
(M,0,), = (z—2z) = ar, — bro’

Hence, taking into account that 7/ o T+ (—72)k, VV = ai + bk, we can
write
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o7 (VV - D)

—(M,) =Yy

gs M) V(M) "~
Comparing it with (54), we obtain

VA .
= —_V—(J\}j’ V=m+(—1)k. (71)

Let us introduce the following notation:

i H:" VV;, * _;'_
kiz_w (: _(__yjﬁ) (72)
Vi(M;) Vi(Mi11)
Here . . - .
v =7 (My) = T (M) — F (Mo)k = 157 — K. (73)
Then the quantities k¥ (M;) in the recalculation formula (57) at M, = M;
1=0,...,n — 1, are given by the equalities -
kX (Mi) = ki, i=0,...,n—1;
(74)

kr_(Ml) = k‘i—l: i=17--"n°

Now we have done all the necessary work to write formulas for calculation
of [;;(M,). We try to make these formulas convenient for programming.
Since the final result is the quantity I)(My), we simplify the notation for

the intermediate quantities IW(M,-), (Iﬁ) s(M;), and I(M;, M; ) by using the

symbols I, i, and Ii*1, respectively. The meaning of other notation will
be explained when necessary in the process of derivation of the formulas
independently of the preceding text. The numbers of formulas from which
some equalities were obtained will be indicated over the equality signs or
within the brackets given in the right-hand sides. Thus, we have obtained

Result 5: An algorithm for calculation of polar geometrical diver-
gence ). We calculate {(My,), which is the polar geometrical divergence
along a ray L lying in the plane Ozz with the start at M, = (zo, 20) for
the two-dimensional block linear velocity model described in Section 1. The
ray L reaches the final point M, = (z,,z,) through (n — 1) interfaces S; at
the points M; = (z,2;),7=1,...,n— 1 at a speed in each block B;, where
the ray L lies between the points M; and M;,;. For this speed we use the
formula
Vi(z,z) = ajz + bz + ;.

The interfaces S; in the vicinity of the points M; are specified by equations
of the form z = fi(z) or # = fi(2). The calculation is based on finding
recurrently quantities 13", i:, 1=0,...,n—-1, 1, l',:_, t = 1,...,n, where
l, = Ij(My). The rules used are as follows:
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1) Initial conditions: Iy = 0, Iy =1;
2) Translation formulas:

l;,y =i +I[;T*"  (obtained from (24)),

- _ VilMit1) i+

. - ——--- H 2
liya AR (obtained from (22)),

i=0,...,n—1. Here

(Tip1 — ) @

. 1 —2) b
l:+1 (2=5} I(Mi, Mi+1) (6=2) (z‘l+1+ Z) 1 :
Tiz @i
T b

it T are the components of the unit vector 7;" = 7*(M;). It is tangent to

the reflected /refracted part of the ray L at the point M;;
3) Recalculation formulas:
I; =Cil; (from (40)),
if = Ail; + Bil;  (from (57) and (40)),

i=1,...,n—1. Here

Ci = (At ;) =k, cosf; = |(As- 77, 7= i 4 ik = (M),

are the unit vectors tangent to the incident part of the ray L at the point
M; for the sign “—” and to the reflected-refracted part for the sign “+”; 7i;
is the unit vector normal to S; at the point M;. It is determined by the
following equalities:

fi (a:,) i— if 9; is specified

1 -
k,
V1 + (fi(zi)) 1+ (f:(m:))z by equation z = f;(z);

if S; is specified

\/7 m by equation z = f;(z);

El

% M;
iy =sgn(f; - 77 ) A= o TV (1(1\/})
@) [ @5
Bi= =k [K - (ARG - S Q‘],
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v =T~k (FFLEY);

+ . —. —
K = Kyt 5) + it 75

(74) (9 (12) avi + bt
k+ = k; k- = k‘-__ ; ki —_ —_ 1z u;
i 1 Ti 1 ‘[:(M:)
Oy ) (70) (a; — viai—1)n;, — (bi — vibi—1)n
(= | (M) ) = 12 .
Q (anl( 2 Vio1(M;)

ky; is the curvature of the interface S; at the point M; determined by using
the rule (see (55)):

. (—sgnng)x; if S;is specified by equation z = f;(x),
bt (—sgnng)x; if S;is specified by equation z = f;(z);
—% if S; is specified by equation z = f;(z),
= (L4 £%(z:)) "
' £i' (=)

(1+ £2(z) )3/2 if S; is specified by equation z = f;(2).
1

Here the calculation algorithm for [(M,) terminates.

Conclusion 3 (On correctness of the calculation formulas). In the calcu-
lation formulas for /| and [, presented, the expressions we used for I}*! =
I(M;, M; 1) (see (28), (62)) represent an indeterminate form of 0/0 when
the ray goes from the point M; in the direction 7;*. This direction is par-
allel to the gradient direction of the velocity Vi(z,z) = a;z + bjz + ¢;, i.e.,
T G

+ b

1z i
zi+1 — 2z; in (64) is equal or close to zero. Here one of the formulas known
in the literature for the evaluation of indeterminate forms should be used to

calculate [i*. This is one of such formulas, which we give in vector form:

the determinant is equal or close to zero, or when the difference

. e M; M; o .
[ = IMiMi+1|(COS(ﬁ-+,M£Mi+1) + IZT%H'(!H - Tf))-

Here H; is the distance from the point M; to the straight line V;(z,z) = 0,

M) L VY

(75)
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