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On the surface hitting in the receivers
by the ray method
in 3D-layered homogeneous media

V.A. Tsetsokho, S.P. Vinogradov

1. Introduction

Optimization methods of the solution of inverse kinematic problems, have
gained importance in the last few years. Such methods demand fast algo-
rithms of ray tracing from a given position of the source M, to a given series
of the points M, forming a set (generally speaking, two-dimensional) of the
receivers M;, i = 1,2,...,n, on the surface of observation.

In particular, when solving the 3D-seismotomography problems in the
class of piecewise-constant curvilinear-layered media, which require to
quickly carry out hitting with respect to trajectories, consisting of rectilin-
ear pieces, satisfying at the boundaries S, ..., Sy, the refraction-reflection
laws of geometrical seismics. When solving the fast hitting problem it is
natural to use the smoothness of the coordinates z(M), y(M), z2(M) of a
point M on the surface of observations as functions of the ray parameters
6 and ¢, specifying the polar and the azimuth angles of a ray going the
source at the point M. For this purpose it is required that the algorithms
of calculation of an arrival curve included the procedure of calculation of
partial derivatives vector-functions F(M) = (z(M),y(M),2(M)) on S by
the parameters 6 and .

In the case a considered model of media, these partial derivatives have
explicit expressions, discussed in the present paper. In addition, this paper
deals with the algorithm of constructing the areal first arrival curve based
on the solution of the initial problem for the ray equation.

In this paper, we have overcome, though obvious in its sense, but a
necessary stage of transition to calculations of the 3D seismic fields on the
basis of the ray seismic formulas.

2. Model of a medium

The most important fact for the further calculations is that a ray when
moving from one boundary to another is in media with constant velocity. In
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this sense, it is not important how a model of a medium is arranged on the
whole — block or stratified. Here, as usual, under the block of the model we
understand, such in which inside the considered mathematical bar

0<z<a, 0<y<b, 0<z<H, H>O,

the crossing of interfaces of media is admitted and in the layered model, the
interfaces do not cross. Here (z,y, z) are rectangular Cartesian coordinates,
z is the depth.

In numerical experiments we consider the layered model, whose bound-
aries S; are set by the explicit equations:

z= fi(z,y), 0<zx<a, 0<y<bh i=0,1,...,n

Here S5, is the day’s surface and the velocity of elastic waves v; between the
boundaries S; and S;y; is constant.

Clearly, the curvilinear-layered model is a special case of the block model
and it is a natural generalization of the horizontal layered model admitting
the same tree of possible ways of passage of rays through the interfaces.

3. Geometrical divergence of rays

In this section, the elementary derivation of the recurrent formulas of the
calculation of geometrical divergence of rays along the given surface in the
3D block-homogeneous medium lengthways is obtained. Certainly, these
formulas can be obtained as a special case from those already available (see,
for example, [1, 2, 6, 9] and modern version (3, 7, 8]) presenting more general
expressions for the block-gradient media.

We have found it expedient to give an independent derivation, first,
because in transition to more general 3D models it is useful to have reliable
formulas for testing, and, secondly, because the offered scheme of derivation
can be, in turn, generalized to the block-gradient medium, as it was done
for the 2D medium in [4], which represents a methodological interest.

Finally, the expediency of publication of this paper is justified, also, by
the fact that, we propose the formulas suitable for the direct programming.

Let us pass to exact definitions and statements of the problem. Let us
fix an arbitrary point M of the medium and consider a ray L* going from
My, meeting successively (n — 1) boundaries Sg,, ..., Sk, _,, on which there
is a reflection or a refraction (with an exchange or without exchange) and
coming to the surface observations S at a point M*. The sequence k, ...,
kn—1 together with attributes specifying the character of passing the borders
(reflection/refraction) and the type of exchange (PP, SS, PS, SP) is the code
of the ray L*. Further boundaries will be designated by S;,i =1,2,...,n—1.
Let us recall that the ray parameters at any point M lying on the ray L,
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going from the point My are the tern (¢, 8, 8) or the tern (¢,8,7). Here ¢
and @ are the azimuthal and the polar angles of outgoing of the ray from the
point My (the source), s is the length of a part (segment) of the ray from
its beginning My up to M, 7 is the time propagation along the ray from Mj
up to M. 4

Let us designate by ¢., 6., and s, the value of ray parameters at the
point M*. The ray L* is assumed to be prospective regular {according to
the given code) in the sense that for any (¢, ) essentially close to (¢, 8.)
there is a ray L with the parameters ¢ and @ in the source My going to
some point M on the observations surface S and having the same code as
the ray L*.

For regularity of the ray L* it is enough to require the absence of zero
angles of sliding of the ray with boundaries and surface of observations,
and also, sufficient smoothness of these surfaces should be not lower C? for
boundaries and not lower C! for the surface of observations.

Further, ¢, 8, and s are ray parameters of the point M lying on the ray
L, going from My, and coming to S with the ray code L*, and the radius is
the vector of the point M with the following ray parameters:

z(s,9,0)
7= (s, ¢,0) = (y(s,qb,ﬁ)) :
z("’d” 9)

We assume that the function (s, ¢,6) is determined on the open set U
of the form

U= {(¢:0,3) l (6,0) € (¢s — 8,4 +8) x (0. — 6,0, +6), 0<s< s.+5},

where § > 0 is a small enough number.

We consider that the ray L* and the rays L which are close enough to
it, can in case of necessity be continued beyond S along the ray in the same
medium in which they approached S. This remark is important when §
coincides with the interface of media.

Finally, let us write down, the equation of the surface of observations S
near to the point M*: :

®(z,y,2) = 0. (1)

By virtue of the theorem of an implicit function, from the condition of
inequality to zero of the angle of sliding of the ray L* with the surface S
follows V@(M™*) - 784, ¢s,0,) # 0.

Equation (1), written down in the ray parameters:

&((s,¢,0)) =0 (2)

defines the parameter s close to the tern (s,, ¢.,6,) as function of ¢ and 6:

3 ='s(¢,0). (3)
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Now we are able to give a few definitions of objects be dealt with.

Definition 1. Let us name the vectors I_;, and Iy determined from the equal-
ities

Iy = [y(M*) = [y(L*; Mo, M*; 5,,) & %(F(sw, 6),6,0)) (4.6.),
(4)
o = l(M°) = (L% Mo, M*; 5,) % D7(s(9,60),6,0)) (9.,6.)

by the azimuthal and polar divergences of the central ray field with the centre
at Mj along the ray L* at the point M, along the surface S.

Remark. Further, we omit the index “+” with all these terms only for the
convenience of description of the conditions of existence and differentiability
of the vector-functions 7(s(¢, 9), ¢,0).

Let us formulate the problem, which solving is the main objective of the
given section.

Let the ray L (with the ray code L*) pass the boundaries S;, i =
1,2,...,n — 1, at the points M;. Let S be denoted by S,, and M, is the
point of arrival of the ray to the surface S,,.

Problem. It is required to construct formulas for finding the vectors of the
azimuthal and the polar divergences al the points M; on the surfaces S;,
i=1,2,...,n, respectively:

Igs :=Ig(L, Mo, M;, S;), lg; :=Ip(L, My, My, S;). (5)

For solving this problem it is required to introduce one more class of
objects, the so-called angular divergences of the considered central ray field.

Definition 2. Let L be any ray considered in the problem of the central
rays field. Let M be a point of this ray with ray parameters s, ¢, § (M
may not coincide with M;, i = 1,2,...,n), and S be a smooth surface
passing through M under non-zero angle to L (S may not coincide with S;,
i=12,...,n).

Let us first assume that § is not a boundary, and let 7(M) = 7(s, ¢,0)
be the unit vector, tangential to a ray at the point M:

F(M) = 7i(s, $,0) = 7(s, ¢,6). | (6)

The angular azimuthal and polar divergences along L at the point M
along the surface S will be called, accordingly, the vectors iy and tj, deter-
mined by the equalities



On the surface hitting in the receivers ... 81

o = (M) = Ty(L; Mo, M3 ) = 2 (7(6(6,0),6,0)), o
7
o = (M) = Qo(L; Mo, M; S) i= 2 (7(a(¢,6),,6)),

where s(¢,6), as well as in (3), is the length of the ray L = L(¢,6) from M,
up to M € S.

If S coincides with one of the boundaries S;, i = 1,2,...,n — 1, we will
consider the angular divergences iy, g on the part of the ray falling on
S and the angular divergences ﬂ; , g on the leaving part of the reflected
or the refracted part of a ray. These values are determined by the formulas
obtained from (7) by attributing the marks “—” and “+” above the letters
“u” and “r”. Thus 7~ (M) and 7 (M) are tangential vectors at the point
- M falling on S and leaving parts of the ray L.

3.1. Recalculation of angular divergences through
the surface interface

For the sake of simplicity of calculations, omit the index “i” of the boundary
Si, as well as in all the objects connected with this boundary, and designate
this boundary through S. All the data concerning falling on § at the point
M of the ray L parts will be denoted by “—”, and the data, concerning the
leaving part by “+”.

In Definition 2, we have introduced the tangential vector to the rays
77 (M), 7H(M). Let i = i*(M) be the unit normal vector to S at the
point M directed such that (7~,7~) > 0 and (iit,7+) > 0.

Write down in the vector form the Snellius law of passage of the ray L
through S at the point M:

7 — (@, TR =y (7 - (A, 7)), (8)
Here VHM)

Using the scalar form of the Snellius law let us express the cosine angle
of the reflection or refraction (7it,#+) through the cosine of the angle of
incidence (7i~,7~). We have

(A*,7%) = cos Bt = \/1 —sin? g+ = \/1 — v2sin? 8-
= /(1 =?) +12(~, 7)2. (10)
Then, taking into account that

A = A (1)
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we can write down
FH =7 + M7, (12)

where

A= @4 a W (1 - 92) + 42, 7 )2 — 4 - (7, 7). (13)
Remark. Note, that in the case of reflection
A= —(Bty- (7, 7)) = —x
and in the case of refraction
1—+2 1—+2

AzA—‘Y.(n_’?_):A-{-'Y'(ﬁ_ ‘?_)z X )

where A = \/(1 — 72) +47- (ﬁ—’,,—:_.)z.

In order to obtain the required formulas of recalculation it is necessary
to differentiate (12) with respect to the parameters ¢ and # under condition
(3)- As all the calculations are identical for each of the parameters ¢ and 6,
we give them a common name “a”.

According to (7) we have

o7 _ 87 (s(¢,0),¢,0)
da fa

Asin (2) i~ = i~ (7(s(¢,6), $,0)), then according to the rule of differ-
entiation of superpositions and (4) we find that

on- -

—— =din (M){l,),

o = dim (M) (l) (15)
where the right-hand side is the value of differential of a unit normal vector
A~ to S tangential to S on the vector of linear divergence i,.

Leaving aside the question about the coordinate presentation of the right-
hand side of (15), let us write out the result of differentiation of identity (12).
We should note, that the functions y(M), (A*,7~)(M) are constant. We
have

= at. (14)

- A
@ = iy + () + (16)
O A(At,dan) . 8-, )
%a - @™ da (17)
on~, 7 T ——
M)~ (g f),7) + (7). (18)

Thus the recalculation formulas have been obtained.
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3.2. Recalculation of azimuthal and polar divergences
between the interfaces

Let us now establish the connection between I_:,,-, 11'2,- and l_;i_l, Uy
1,2,...,n; a:=¢,6.

In view of linearity of parts of rays between the points M;_; and M; the
angular divergence is transferred from the point M;_; up to the point M;
without changes, or more precisely

1=

——

Upi = Ezz’—l’ i=12...,n (19)

To recalculate the linear divergence, let us take advantage of the linearity
of parts of rays between the points M;_; and M;.

We will vary the parameter a by the value da. Then the point M;_; will
be subject to moving M;_; M/_; on the surface S;_1(z > 1):

M;_1M_| = lpi-1da + o(da),

and the vector 7;", will thus receive the increment A7;"; determined by the
formula

Let us calculate the move M;M; of the points M; caused by variation in
the parameter a.
At the first, move the point M; to the point E on the vector M;_1M]_,.
It is obvious that
|M;_,E| = | M;_1 M;].
Then the point E is moved on the vector |M;_1M;| - A7, to the point E'.
Obviously, the point E' is on the disturbed ray, and

ME' = M,‘,_]_M‘-'_l + |M,'_1M,'| . A‘i_';-tl
= (lai-1 + |Mi_1 My - @f;_,)dax + o(dar). (20)

ai—1

Finally, the point M is obtained by mapping the point E' on S; in a direction
7t | + AT, the disturbed ray.

The point M; can be taken as projection of the point E’ parallel to the
undisturbed direction 7;"; on the surface tangential to S; at the point M;

i.e., accurate to the infinitely small value of order higher than da:
M,‘M{ =ME +pu- ﬁ.‘tl + o(da),
where p is found from the condition

(ME +p-7H,,i7) =0.

i—11 "%

Thus,

_ (MiE’1 ﬁ:)

MM = M,E
- (n';‘ » Ty

1

- 771 + o(da). (21)
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Taking into account that M; M} = lyida+ o(de), and basing on (20) and
(21) we come to the following formulas:

=4 (Ai-1,77) 4

i—1 — (f_i— P i—1) (22)
Ay = Dpioa + My My - iy, (23)

a:=¢,0,i=1,2,...,n.
The initial conditions are the following:

raﬂ = 0, = d’: 0;

at = (—sin¢sin0)i + (cos psinb)j, a:= ¢;
a0 ™ | (cos pcos )i + (singcos)j + (—sin@)k, a:=8.

Here ¢, 0 are the angular coordinates of the spherical system which corre-
spond to the rectangular system obtained from the initial system by shifting
the origin of coordinates to the point My. In this case, i, 7, and k are unit
vectors of the initial system of coordinates.

It is now necessary to write out the formulas for the so-called Rodrig
vector dii(l) in the case of the explicit equation z = f (z,y) of the surface S.

The index “~” of the vector 7i and the subscript “a” of the vector I are
omitted for simplicity.

Let (7, ,) be the basis coordinate system (z, y) on the surface S at the
point M(z,y, z(z,y)):

e =(1,0,f)7, 7 =(0,1,5)". (24)

Then for any vector k = (hz, hy, h;)T, which belongs to the tangential plane
to S at the point M, the following equality is valid

h=he 7% +hy 7, (25)
The vectors oii( (1))
- z, Yy, 2z, N
fly, = yaz Y)) def dii(rs),
- (26)
i = Bﬂ(z,yé;(z,y)) U g (i)
belong to the tangential plane to S at the point M, ie., #i,,f;, € TyS.

These expressions can be obtained, using the known formulas of differen-
tial geometry in the case of general parametric equations of a surface (the
Weingarten formula [5)).

In conclusion, in the coordinate system (z,y), a unit normal vector 7 =
7i(z,y, z(z,y)) is written down in the form
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L 1 T —
n_m (f:mfyv 1) (nﬁ'!ﬂ'y?nz) (27)

As a result of differentiation of equation (27) with respect to = and y we
obtain

ﬁ’z/ z/y (bz/y i) - fi, (28)
where
b _nz (fzz! yzi )Ti by - nz ( zya u 30)T'

Taking into consideration the remark on the representation of the tan-
gential vector in the basis (77,}) (formula (25)), we can write down:

fig = (bea(nZ +nj) — baynany )% + (—bezniany + bey(n? +n2))7,

(29)
ﬁ' (by= ("' + "'y) - yy"z“v)" + (—byznzny + by, (ﬂ + "z))"
Finally, in view of linearity of the mapping larrowdii(l),l € Twm(S)
div(l} = Lo}, + b7, == v, + v, 7, (30)

where
(o) =27 (5) a1
Here B is a matrix of the second square form of a surface z = f(z,y)
"
(% %)

2 2 _
T= (?: e ) : (32)
My Ny +ng

Formulas (30)-(32) at = l-;; within the factor (i~ - i) and the index

“” are the calculation formulas for the vector dii~ ().

4. The algorithm of hitting in receivers by
the ray method

Let us assume that the surface of observations S is described by the equation
z= f(mry)'r (:.-:,y) € [O!L] X [Ox Ll

with a smooth function f and the twe-dimensional grid of points {P;;} on S:
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Pij=(27i,yj,f($i,yj)), i=11"'1N11 j=1,...,N2,

where (z;,y;) are nodes of a two-dimensional grid located in the plane zOy.
It is required to find all the rays of the given code which are leaving the
source at the point My and coming to receivers located at the points F;;,
i= 1,. Nl, j =1,. N

_ Let us assume that the ray to which we are going to hit and thus its ray
parameters ¢, o are found coming to some point Py € {P;;}. Then as the
next point P, € {P;;} will be the nearest to Py grid node {P;;} not hit yet.

Describe the algorithm of obtaining the values ¢,, 8, for the point P, by
consecutive determination of the ray parameters ¢, 6 starting with ¢y, 6.

Consider the field of rays of the given code to be regular in the vicinity
of Py and the point P, to be in this vicinity.

Then in the vicinity of the point Py, the surface of observations can
be regularly parameterized by the ray parameters ¢, @ of the rays of this
ray code, crossing the surface near to the point P;. Let (¢,0) — (¢,0)
be the specified parameterization, and (¢,8) belongs to some vicinity of
the point (¢g,6). In the - previous - section, the calculation formulas for the
natural local basis gﬂ = l¢, 37; = Iy on S in the chosen parameterization be
given. Our task consists in finding the ray parameters ¢,,6, of the points
P, provided that we are able to calculate 7(¢,8) and the vector l¢,£g for
some value (¢, 8) close to (¢, 6p).

. —
The beginning of the algorithm. Let us map the vector PP, on the
tangential plane to S at the point Py (in the given version mapping is not

=,
orthogonal, but parallel.to the axis Oz) The obtained vector PyP,’ (al-
ready belng in a subspace of the vectors l¢,, lg) is decomposed to the vectors

I¢5(¢0y 90)1 19(¢0 90)

— " -
PyP,' = Ay - 1g(ho, 00) + Abg - lg(bo, 6o).

Assuming ¢; = ¢o + Ady, 01 = 8y + Afy, we calculate the point P; on
S with the ray parameters ¢1, 61, that is, 7(P1) = 7(¢1,01), and the vectors

I3(¢1,01), lo(61,61).

Continuation and termination of the algorithm. If the point P, ap-
pears close to P, with the given accuracy, the solving the problem is finished.
If the desired accuracy is not attained, then we pass to the beginning of the
algorithm by increasing of unit the subscripts of the letters P, ¢, 6

As a result of this iterative procedure the ray parameters (¢y,6,) at
the points P, close to P, are calculated with the given accuracy. These
parameters are taken as the sought for values of (¢.,6,). .
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